
 1

A Parallel Pairwise Local Sequence Alignment
Algorithm

Sanghamitra Bandyopadhyay, Senior Member, IEEE, Ramkrishna Mitra

Abstract—Researchers are compelled to use heuristic based

pairwise sequence alignment tools instead of Smith-Waterman
(SW) due to space and time constraints, thereby losing significant
amount of sensitivity. Parallelization is a possible solution,
though till date the parallelization is restricted to database
searching through database fragmentation. In this article, the
power of a cluster computer is utilized for developing a parallel
algorithm, RPAlign, involving, firstly, detection of regions that
are potentially alignable (RPAs), followed by their actual
alignment. RPAlign is found to reduce the timing requirement by
a factor of upto 9 and 78 when used with BLAST and SW
respectively, while keeping the sensitivity similar to the
corresponding method. For distantly related sequences, that
remain undetected by BLAST, RPAlign with SW can be used.
Again, for megabase scale sequences, when SW becomes
computationally intractable, the proposed method can still align
them reasonably fast with high sensitivity.

and space complexity are still high [6]. LAGAN[7] is another
implementation of dynamic programming but is not applicable
on a genome scale without prior information (“anchors”) that
directs comparison to orthologous regions.

There are many heuristic based search tools and they can be
categorized into hash-table based search tools and suffix-tree
based tools. FASTA [8], BLAST [9][10], MegaBLAST [11],
BL2SEQ [12], WU-BLAST [13], SENSEI [14], FLASH [15],
PipMaker [16], Pattern Hunter [17], BLAT [18], SSAHA
[19], are methods that belong to the category of hash-table-
based tools. These are basically achieved by “Seed-and-
extend” methods. In a Seed-and-extend method, one or more
exactly matching k-mers (“Seeds” or “hot-spots”) provide
initial evidence of possible similarity. These seeds are then
extended to compute the final sequence alignments. The
extension step is more accurate than the seeding step, but it is
computationally expensive. These methods quickly abandon
most candidate similarities because they don’t immediately
yield alignments that are likely to be statistically significant.
Current hash-table-based search tools handle short queries
well, but become very inefficient, in terms of both time and
space, for long queries. The limitation of seed-and-extend
methods have been overcome in [20], [21], [22]. In [22] a
parallel technique called Pash was designed to compare
genome-sized datasets. However it is not the best choice when
indels are prevalent. As mentioned in [22], Pash is relatively
inefficient when mapping a relatively small dataset onto a
relatively larger one.

Index Terms—BLAST, message passing interface (MPI),

parallel computing, Smith-Waterman.

I. INTRODUCTION

Pairwise sequence alignment is a challenging task because
of the exponential growth of genomic information,

necessitating large scale comparison of two input strings. The
size of GenBank /EMBL/DDBJ nucleotide database is now
doubling in every 15 months [1]. When searching databases to
find out sequences similar to a given query sequence, the
search programs compute an alignment score for every
sequence in the database. This score represents the degree of
similarity between the query and database sequence. A
dynamic programming algorithm for computing the optimal
local alignment score was first described by Smith and
Waterman [2], and later improved by [3] for linear gap
penalty functions. Though dynamic programming is the best
alignment procedure so far, it is not suitable for large strings
in terms of both time and space. For two strings of length m
and n, the time and space complexities of the Smith and
Waterman (SW) algorithm are O(mn).

Suffix tree is another efficient approach on which various
search tools have been developed. These include MUMmer
[23], QUASAR [24], REPuter [25], AVID [26]. There are
many significant problems with the suffix-tree based
approach: they manage mismatches inefficiently (they are
good for highly similar strings, but fail to recognize more
distant homologies) and they have a high space overhead.

Most of the tools mentioned above require data structures
larger than the database, some of them more than two orders
of magnitude larger. Recent advances in parallelization makes
it possible to implement BLAST
(http://www.ncbi.nlm.nih.gov/BLAST) in a parallel setup as
well. Earlier works on parallel sequence search mostly focus
on distributing the query set across several cluster nodes [27],
[28], [29] each of which executes a serial job. Throughput is
increased, but the time for a particular query to complete is
unchanged. Other existing parallel techniques have been

The time and space complexity had been improved to O(rn)
by [4], where r is the amount of allowed error, by considering
only the useful part of the distance matrix. However, for large
error rates, r is O(m), so the complexity is still O(mn). Later
on, the space complexity of SW was improved to O(n) [5].
Dynamic programming has been accelerated through GLASS
by finding exactly matching long substrings first, but the time

 2

focusing mostly on database segmentation. In this approach
the database is partitioned among cluster nodes and an
assigned part of the database is searched for the same query
[30], [31]. This approach of database splitting was developed
in the mpiBLAST [32]. Among the several published parallel
BLAST codes, mpiBLAST reported the highest speed up,
underwent the largest scalability tests, and has been directly
integrated with the NCBI toolkit. A subsequent efficient
algorithm pioBLAST [33] was developed which has reduced
non-search overheads of mpiBLAST by focusing on the use of
collective I/O and dynamic database partitioning. Parallel
BLAST has also been implemented on supercomputers like
the IBM Blue Gene/L [34]. It is based on optimally splitting
up the set of queries as well as databases. It reduced the I/O,
thereby delivering a fast, high throughput BLAST. This
method is capable of performing at least 2 million BLAST
searches per day against a database of 2.5 million protein
sequences. The other useful works on the parallelization of
BLAST are ParAlign [35], pp-Blast [36], ScalaBLAST [37].
All the above mentioned parallel BLAST implementations are
based on searching database sequences in parallel by
segmenting and distributing the set of query sequences or
database sequences.

Although BLAST is widely used in the Bioinformatics
community, it is well known to suffer from low sensitivity as
compared to SW. In particular for the sequences which are
distantly related BLAST may be unable to throw up any hit, a
problem that SW can overcome. However, SW is known to be
unable to compare two large DNA sequences due to its
computational complexity. Some attempts in developing
faster, parallel, implementations of the SW algorithm can be
found in [38], [39] but these are essentially database searching
algorithm. In [39] a vector implementation of SW makes the
rigorous Smith-Waterman competitive with BLAST (within a
factor of 5 or less) but for large scale DNA sequence it is not
practical. Few attempts have been made for developing
parallel algorithms for comparing a pair of large scale
sequences. This requires proper fragmentation of the two
sequences, and distribution of the fragments to the different
nodes of a parallel computer. Not much work is available in
this direction probably because it has been difficult to
parallely identify those subsequences which are actually
alignable in the two sequences though some sequential
algorithm have been attempted in this regard[21].

 In this article, we propose an efficient algorithm which can
overcome this problem and can align two DNA or protein
sequences in parallel by identifying regions that are
potentially alignable (RPAs). Once this is done parallely, the
task of aligning these subsequences can be easily parallelized
resulting in a gain in computation time. Such a parallel
algorithm, referred to as RPAlign, is developed in this article.
It employs frequency counts in windows to detect the RPAs in
the two subsequences. A cluster computer is utilized for
implementing RPAlign using Message Passing Interface
(MPI). Note that our task is not to propose a new alignment
algorithm, but to improve the time requirement, through the

use of judicious parallelism, of any pairwise local sequence
alignment method.

II. SYSTEMS AND METHODS
The code is written in C using Message Passing Interface

(MPI). A cluster of 18 nodes is used with Linux WS 3.0
standard operating system. Master node consists of Intel Xeon
2.8 GHz single CPU and 1 GB RAM. Each Slave or Worker
node consists of Pentium IV 2.8 GHz CPU and 512 MB
RAM. The bl2seq module of NCBI BLAST toolkit (version
2.2.15) is used for both DNA and protein sequences.

III. ALGORITHM AND IMPLEMENTATION
The detection of RPA between two DNA or protein

sequences is based on the computation of the frequency of
each type of element. The system incorporates one master
processor (MP) and n-1 worker processors (WPs). The
proposed algorithm is described below in detail.

A. Efficient Data Handling forParallelProcessing
The MP and WPs parallely read the two input sequences Sl

and Ss, assuming |Sl| > |Ss|, and determine their lengths. Each
processor (including the MP, that is treated as WP1 in the
following discussion) then extracts one overlapping
subsequence from the larger sequence Sl. Considering the
length of the overlapping window to be denoted by w, the
length of each subsequence or fragment Fi, i=1, 2, …, n, is
given by

,w
n
Sl +

where n is the number of nodes in the cluster. Therefore the
start and end positions of fragment Fi denoted by Starti and
Endi are given by,

1*)1(+−=
n
S

iStart l
i

 and

w
n
S

iEnd l
i += * .

Fig. 1. Parallel I/O and dynamic partition of the larger sequence (Here Sl).

 3

Parallel file I/O in a shared memory framework is used
through which load balancing is performed and copying
overhead is reduced.

B. Computing Frequencies and Composite Scores
The tasks performed by processor Pi, i=1, 2, …, n are

outlined in Fig. 2. These are now described in detail.

Fig. 2. Flow chart of BINARY matrix formation in each processor.

Fi, the fragment of Sl read by Pi, is further divided into
substrings of length w by sliding it one letter at a time to
generate substrings Fij, j=1, 2, …, |Fi|-w+1. The second
sequence Ss is also divided into substrings of length w by
shifting w letters at a time to yield Ssk substrings, where k = 1,
2, …, |Ss|/w . Then for every possible substring Fij or Ssk,
the frequencies of each type of element are determined as fe
(Fij) or fe (Ssk) for e=1, 2, …, 5 for DNA and e=1, 2, …, 20 for
protein sequence. For the DNA sequence, elements are A, T,
G, C and N where N stands for the unknown and for protein
sequence there are 20 different types of amino acids present.
A score is then computed on the basis of f for a substring pair.
On the basis of this score RPA will be detected. As protein
sequences are more complex in nature than the DNA
sequences, and as substitution matrix plays an important role
for the alignment, computation of RPA for protein sequences
is much more complicated than for DNA sequences. This is
first described below. On the other hand as DNA sequences
are usually much larger than protein sequences, efficient data
handling is essential. For this reason an optimization
technique has been developed.

1) Protein Sequences: In the proposed algorithm BLOSUM

62 [40], a substitution matrix generally used for comparison of
two protein sequences, is considered though other standard
substitution matrices can also be implemented. According to
this matrix, two identical residues can generate a score from
+4 to +11 depending on the residue type; while for two non-
identical residues the score can be generated from –4 to +3.
On the basis of the scores of two amino acid residues, as
provided by BLOSUM 62, amino acid pairs have been
classified into 15 categories which are given in Table I. Note
that the score generated by category 1 amino acid pair is ~3
times more than the score of category 7 amino acid pair. From

category 1 to category 7 all amino acid pairs are identical and
other categories provide the score of non identical amino acid
pairs.

Let Cat (Ae, Ae´), return the category of amino acid pair
[Ae, Ae´] from Table I. Then we define

)),((_ e´AACatScoreBL e

as the BLOSUM 62 score for the respective category as

obtained from Table I. After computing the frequency fe, e=1,
2, …, 20 of all the substrings, composite scores (CS) are now
computed as follows:

)1())),((_(

*))(),((),(

e´

e´

20

1

20

e´
e´,

AACatScoreBL

SfFfMinSFCS

e

skije
e e

e
skij γ∑∑

= =

=

 where the function γ(x) is defined as
 γ(x) = x if x > 0
 γ(x) = 0 if x <= 0

Note that Eqn. 1 considers all those amino acid pairs which

provide a positive BLOSUM 62 score.
2) DNA Sequences: Here the minimum frequencies of A, T,

G, C, and N corresponding to each pair Fij and Ssk are
computed. On the basis of those frequencies, fe, e=1, 2, …, 5,
CS is now computed as,

)2())(),((),(e

5

1
skije

e
skij SfFfMinSFCS ∑

=

=

C. Generating the BINARY Matrix

It may be noted that CS is a gross over estimation of the
actual alignment score of the two substrings. This is done on
purpose to ensure that even after such an over estimation, if
CS < θ, where θ is a threshold value, then the corresponding
substrings need not be considered as they are not alignable.
Now a matrix called BINARY of dimension |Ss|/w X |Fi|/w
is generated in node i, where each row and column represents
w length of non overlapping letters of Ss and Fi respectively.
Initialize BINARY matrix to all 0’s. For each Ssk, k=1, 2, …,
|Ss|/w, w consecutive fragments from Fi are used to compute
w different CS values. If any of these CS values exceeds a
threshold θ, then cells (k, j) and (k, j+1) of BINARY matrix are
set to 1 as w consecutive CS values cover 2w-1 letters. Fig. 3
states this process formally.

Note that all the w CS values need not be computed. As
soon as a value exceeding θ is obtained, the remaining
substring pairs are not considered any further. Since DNA
sequences can be extremely long leading to high
computational cost for comparing all the CS values with θ, a
procedure for optimizing this computation is described below.

 4

D. Merging and Redistribution
After each WPi completes the computation of the BINARY

matrix these are transmitted to the MP. Here the matrices are
collated side by side to yield a matrix called
RPA_DETECTION matrix. In this matrix, diagonals that are
strings of all 1’s are found. The start and the end positions of
these diagonals define the RPAs. Note that, there is a
possibility for multiple overlapping surfaces of similarity
(diagonals) in RPA_DETECTION matrix. As a result there is a
chance that a particular sequence fragment may be included in

S

Th
th
is
in
ca

ve

th
de

D
co
m
th
=
In
Fi

se
th

va

For k= 1, 2, …, |Ss|/w
 For j=1, 2, …, |Fi|/w
 Compare Fij, j= (j-1)w+1, …, jw,
 and Ssk to provide CS1, CS2, …, CSw

.
 If max (CSk

, k=1,…, w) > θ then
 set BINARY(k, j) = BINARY(k, j+1) =1
 End If
 End
End
multiple aligned segments. In RPAlign, this problem is
reduced by merging the adjacent overlapping diagonals. But
the overlapping diagonals which are not adjacent are also

Fig. 3. Computation of BINARY matrix in processor Pi

SCORE WISE CATEGORIES OF AMINO ACID PAI

core Category
11 1
9 2
8 3
7 4
6 5
5 6 [
4 7
3 8
2 9 [d,
1 10 [s, t][a, s][n, s][d
0 11 [a, c][g, s][d, s][e, s][k, s][n, t][a, g][e, n][q, n][n,
-1 12 [c, s][c, t][c, m][c, i][c, l][c, v][p, s][h, s][r, s][m

[d, g][d, h][d, k][d, t][e, t][q, y][i, t][l, t]
-2 13 [c, f][c, y][i, s][l, s][s, v][f, s][s, y][f, t][t, y][g,

[g, k][g, t][g, w][m, n][n, y][d, r][e, m][e, y][l,
-3 14 [c, p][c, g][c, n][c, d][c, q][c, h][c, r][c, k][s, w][

[d, y][e, i][e, l][e, f][e, w][i, q][f, q][
-4 15 [c, e],[

e substring Fij+1 is generated by sliding Fij by one le
e right. That is, to generate a new substring, Fij+1, one
removed from the left most position and one new le

serted at the right most position of the current substr
n generate two possible effects on Fij+1.
(a) If the inserted and deleted letters are the same
ctor of Fij and Fij+1 are the same.
(b) If the inserted and deleted letters are not identica
e frequency of one element type (A, T, C, G or
creased by one, and the other one is increased by one.
On the basis of the above logic it is clear that CS valu

NA sequences can be changed by at most 1. No
mputing the value in cell (k, j) and (k, j+1) of the BI
atrix, CS is first computed between Ssk and Fij. If CS
en as earlier, computation is discontinued and BINARY
BINARY (k, j+1) =1. However, if CS < θ, then let θ´=
 this case the next comparison needs to be made be
(j+θ´+1) and Ssk. In this way when, (j+θ´+1) > w, the
arch is discontinued, since under no circumstance can
e CS

lue exceed θ. If (j+θ´+1) < w, then the process repeats.

TABLE I
RS ON THE BASIS OF SUBSTITUTION MATRIX (BLOSUM62)

Amino Acid pairs

[w, w]
[c, c]
[h, h]

[p, p][y, y]
[d, d][f, f][g, g] [n, n]

e, e][k, k][m, m][q, q][r, r][t, t]
[a, a][i, i][l, l][s, s][v, v]

[i, v][f, y]
e][e, q][h, y][k, r][l, m][i, l][w, y]
, n][e, k][q, r][k, q][i, m][f, w][h, n][l, v][m, v]
 r][k, n][d, q][e, h][e, r][h, q][m, q][h, r][f, i][f, l][a, t][a, v][g, n][q,s][f, m][t, v]
, s][r, t][m, t][a, p][d, p][e, p][p, q][k, p][a, e][a, q][a, r][a, k][a, m] [a, i][a, l]

[k, t][q, t][h, k][f, h][m, r][k, m][m, y][m, w][p, t][i, y][l, y][f, v][v, y]
 p][h, p][n, p][h, t][p, r][m, p][p, v][a, d][a, h][a, f][a, y][e, g][g, q][g, h][g, r]
q][e, v][k, v][q, v][q, w][h, m][h, w][t, w][l, r][r, y][k, l][k, y][c, w][l, w][a, n]
i, p][l, p][p, y][a, w][g, m][f, g][g, y][i, n][l, n][n, v][f, n][d, m][d, i][d, v,][d, f]
h, i][h, l][i, r][r, f][r, v][r, w][i, k][f, k][k, w][i, w][v, w][g, v][h, v]
f, p][p, w][g, i][g, l][n, w][d, l][d, w]

tter to
 letter
tter is
ing. It

considered as RPAs, the reason being that prior knowledge
about which RPA will provide the best score is absent. The
diagonal which is a subset of another diagonal is not
considered as an RPA. Finally all these RPAs are redistributed
to each node including the MP in such a way that the load
balancing will be achieved. Thereafter each node performs the
actual alignment either by BLAST (providing RPAlign
BLAST) or by SW implementation (providing RPAlign SW)
and alignment output is stored in a shared memory space.

then f

l then
N) is

es for
w for
NARY
 > θ,
 (k, j)

 θ-CS.
tween
n the

any of

IV. RESULTS
The speed and more importantly, the quality of alignment

of the proposed method is evaluated using a set of eight amino
acid, eight DNA and seven megabase scale DNA sequence
pairs. The length of the input sequences ranged from less than
66 to 8797 residues for amino acid sequences and from 723 bp
to 11.1 mb for nucleotide and genome sequences. The nucleotide
sequences are described in Table II and the protein sequences
are described in Table V. The window length w is chosen, in

general, as min (
40

lS , 25000). The variation of the performance

 5

of RPAlign is studied for different values of the threshold θ in
terms of the window size (or, different values of θ/w).

The performance of RPAlign is compared in terms of speed
and quality with SW implementation and BLAST (bl2seq with
–F F option to disable the filter query sequence option). For
each pair of input sequences the time of the fastest of three
consecutive runs is recorded.

A. Sensitivity Analysis

Measurement of the sensitivity of BLAST, RPAlign BLAST
and RPAlign SW are computed based on the alignment
provided by SW. Experiments with RPAlign are conducted
for different fractions of θ/w, namely, 0.8, 0.85, 0.9 and 0.95.
Note that here for RPAlign SW, the choice of an appropriate
θ/w for a particular sequence pair depends on the
characteristics of the sequences, their relationships, i.e.
whether they are closely or distantly related. Not only that,
their length is also an important consideration. Lower θ/w
value is not suitable for the two closely related same length
input sequences, as the proposed method will detect only one
long diagonal whose start point is near the top left cell of the
RPA_DETECTION matrix and end point is near the bottom
right cell. As all other minor diagonals are subset of this
diagonal, they are not considered as RPAs. Thus it will not be
possible to parallelize the algorithm effectively. The situation
will be the same as performing BLAST or SW in a stand alone
mode. But for the sequences, which have less homology or
have significant homology but their lengths are quite different
from each other, θ/w= 0.8 is ideal in terms of sensitivity. For
two input sequences of length m and n, SW needs O(mn) in
both time and space. But for the case where m>>n, the
effective search space will be at most ~ O(n2), since the length
of the aligned portion in the larger sequence will be of the
order of the length of the shorter sequence. RPAlign first
detects the RPAs in the two sequences, which will be of
length at most ~ O(n). Thereafter, it can immediately prune
(m-n) elements from the larger sequence, thereby providing
significant time gain for alignment. Thus θ/w=0.8 in such
cases is effective. For example for P8, where the length of the
two sequences are quite different, the TG obtained is 61.39%,
while sensitivity is still 100% (See Table III and Table IV, last
row). For the remaining sequence pairs except for P6, θ/w=0.8
produces 100% sensitivity and TG range is 0.23% - 19.04%.
θ/w=0.85 and 0.9 appear to be reasonable choices in RPAlign

as these provide high sensitivity, while TG is also reasonably
high. Except for the pair P6, θ/w=0.85 and 0.9 provide
sensitivity ranges from 85.79% -100% and 62.43% - 98.75%,
respectively, while TG range is from 5.21% - 79.48% and
56.61% – 91.83%, respectively. θ/w=0.95 or more is
recommended when the two input sequences are homologous
or closely related. Here RPAlign detects many small RPAs as
a result of which full parallelism can be obtained. In the
process some amount of sensitivity is lost. From Table III it is
found that for P2, P3, P4 and P5, RPAlign SW with θ/w=0.95
produces sensitivity ranges from 40.33% - 51.69% which are
still much higher than BLAST (0.65% - 3.61%). For the pairs
P6, P7 and P8 where significant similarity is found, BLAST
produces the sensitivity ranges from 20.12% - 29.44% with
respect to SW whereas RPAlign SW with θ/w=0.95 produces
65.76% - 99.7%. Here it is clear that to gain speed up if we
consider θ/w=0.95 even then we can gain a significant amount

TABLE II
 NUCLEOTIDE SEQUENCE PAIRS AND THEIR RESPECTIVE ID AND LENGTH

Sequence 1 Sequence 2 Pair
GI Number Length(bp) GI Number Length (bp)

P1 92296557 723 114157166 1549
P2 118562368 6485 89142743 6736
P3 13273284 16571 508206 13246
P4 28876381 38206 303969 34214
P5 209811 35937 28876316 41796
P6 28876316 41796 28876437 40014
P7 112806880 44237 114804244 158484
P8 41179002 203828 114804244 158484

of sensitivity than BLAST. Moreover sometimes BLAST is
unable to align two distantly related sequences as is the case
for pair P1 (denoted by UA under BLAST in Table III). But
for P1 also RPAlign with θ/w=0.95 produces significant
sensitivity (76.97%). As can be noted from Table III and
Table IV, as θ/w is increased, the sensitivity decreases but the
time gain (TG) increases. To measure the sensitivity for
protein sequences, eight pairs are considered out of which first
four are taken from ASTRAL database
(http://astral.berkeley.edu/) where sequences are less than
40% similar in nature (see Table V). For protein sequences,
RPAlign is executed with θ/w= 7.5 or less to obtain 100%
sensitivity. Here threshold value θ is always higher than
window length w because BLOSUM 62 score is considered to
detect RPAs. From R1 to R8, SW and RPAlign SW produces
the same results. For R1 to R4, which are ASTRAL domain
sequences and have less than 40% domain conservedness as
mentioned in the ASTRAL database [Chandonia et al., 2004],
BLAST is unable to align the sequences whereas for the
remaining pairs it’s sensitivity range with respect to SW is
from 5.33% – 30.48%. This reflects that BLAST produces
significantly lower quality of alignment than RPAlign SW.

B. Timing Analysis
Parallel implementation of the proposed method makes it
efficient in terms of speedup of the computation. The timing
analysis is provided here based on the same set of DNA
sequences considered earlier. Fig. 4 shows the speed
comparison among the different algorithms. It is in fact a
graphical representation of the timing results in Table IV. As
expected, RPAlign BLAST requires the lowest computation
time followed by that for BLAST. Again SW always requires
the largest computation time, while RPAlign SW with
different values of θ/w, in general, provides an improvement
over the SW time. Among the latter, RPAlign SW with θ/w=
0.95 provides the largest speedup. P6 presents an interesting
case where no time gain (TG) is observed for θ/w = 0.8 and
0.85 since the sequences are similar. In fact, here the
alignment time is the same as that for SW. The additional

 6

RPA detection time results in an overall negative time gain.
Moreover it becomes evident from this result that the
detection time of RPAs is only a very small factor of the
alignment time. As can be obtained from Table V, for protein
sequence pairs R1 to R4, the execution times for SW and
RPAlign SW are almost the same since the sequences are very
small. However for R5 to R8 a significant TG is obtained. For
example for R5 to R8, SW needs 9.68, 8.62, 7.76 and 6.33
seconds, respectively, whereas RPAlign SW needs 1.81, 0.11,
0.15 and 1.91 seconds, respectively. Thus the TG obtained
ranges from 69.82% – 98.72% with 100% sensitivity as
compared with SW. For the same set of data TG of BLAST
over SW and RPAlign SW ranges from 99.14% – 99.38% and
36.36% – 97.17% respectively but with significantly lower
sensitivity values viz., 5.33% – 30.48%.

Table IV shows that B
99.95% as compared
improves upon the time
quality of alignment. Fo
over BLAST is 23.8%
99.99%.
Fig. 5 shows the spee
BLAST and RPAlign B
scale DNA sequences. F
to perform the alignmen
figure shows that the p
the performance of BLA
for RPAlign SW, though

manageable. Interestingly, it was observed that BLAST show
a tendency to come closer. This presents an interesting
application of the proposed method which can be used in
conjunction with SW for megabase scale sequences with high
sensitivity, as characteristic of SW, but with significantly
reduced time requirement.

V. DISCUSSION AND CONCLUSION
An MPI based parallel algorithm for performing pairwise
local alignment through the detection of regions that are
potentially alignable has been proposed. It has been observed
that the proposed method can provide an alignment quality
comparable
to that of the SW algorithm while requiring significantly less
time. Although BLAST has reduced the running time compared

SENSITIVITY COMPARISON O
BLAST

SensitiPair

SW BLAST

P1 100 UA

P2 100 3.61

P3 100 1.63

P4 100 0.65

P5 100 0.75

P6 100 29.44

P7 100 20.12

P8 100 26.69

TABLE V
SENSITIVITY COMPARISON OF PROTEIN SEQUENCES BY SW, BLAST AND

RPALIGN SW
(I: IDENTITY, S: SIMILARITY IN SW, P: POSITIVE IN BLAST, G: GAP)

Pair Sequence ID Length
(aa)

Program I S/ P G

d1idra_ a.1.1.1 127 SW 3 4 0
BLAST - - -

R1
g1pnb.1 a.52.1.3

107

 RPAlign SW 3 4 0
d1s69a_ a.1.1.1 123 SW 5 9 0

BLAST - - -
R2

d2tct_1 a.4.1.9 66
RPAlign SW 5 9 0

d1allb_ a.1.1.3 161 SW 25 44 37
BLAST - - -

R3
d1wmub_ a.1.1.2 146

RPAlign SW 25 44 37
d1jbob_ a.1.1.3 172 SW 13 30 18

BLAST - - -
R4

d3sdha_ a.1.1.2 145
RPAlign SW 13 30 18

119568124 8797 SW 450 768 987
4181 BLAST 24 30 2

R5
125983774

 RPAlign SW 450 768 987
119568112 8757 SW 92 165 193

3728 BLAST 28 28 4
R6

118085751
 RPAlign SW 92 165 193

119568122 8779 SW 66 100 86
3461 BLAST 12 21 0

R7
125853858

 RPAlign SW 66 100 86
TABLE III
F DNA SEQUENCES BY SW, RPALIGN SW,
AND RPALIGN BLAST

vity (%) with respect to SW

RPAlign SW with θ/w= RPAlign
BLAST

0.95 0.9 0.85 0.8

UA 76.97 94.19 97.71 100

3.61 51.69 74.34 88.42 100

1.63 41.62 69.21 100 100

0.65 43 62.43 85.79 100

0.75 40.33 68.06 86.14 100

29.44 99.7 99.7 100 100

20.12 65.76 81.21 91.04 100

26.69 93.22 98.75 100 100
LAST achieves a TG of 99.39 –
to SW. RPAlign BLAST further

 of BLAST while providing the same
r example the TG of RPAlign BLAST
– 82.28% and over SW is 99.59% –

d comparison among RPAlign SW,
LAST for seven pairs of magabase
or these sequence pairs SW is unable
t because of the sequence sizes. The
roposed method efficiently enhances
ST by a significant margin. The time
 greater than that for BLAST, is still

47221249 6015 SW 509 900 1058
4181 BLAST 38 53 11

R8
125983774

 RPAlign SW 509 900 1058

with the best known SW implementation, it has significantly
low sensitivity particularly for the sequences which are
distantly related and thus does not reflect the actual biological
evidence. The characteristic of the proposed algorithm is that
if it is used with BLAST it runs much faster with the same
quality of output. If it is used with SW implementation, then
the required time is much smaller and sometimes comparable
to that of BLAST, but sensitivity is comparable to that of SW.
The RPAlign algorithm thus allows the researchers to obtain
SW-like sensitivity, while requiring significantly less time.
Our aim is to enhance the existing methodologies in terms of
speed without losing the sensitivity provided by them by

 7

utilizing the power of parallel processing. It can be used with
any pairwise alignment algorithm like BLAT, BLASTZ etc. It
can efficiently align not only the large DNA sequences but
also the more complex protein sequences which are less
similar in nature. The efficiency of the proposed method
derives from the fact that it is able to appropriately prune
those regions of the sequence pair which will not take part in
the final alignment (which the SW algorithm unnecessarily
tries to align). This in turn results from the detection of the
regions where alignment is possible. In the case of distantly
related sequence pairs, the gain is much more, since in these
cases a large amount of effective pruning is possible. RPAlign
SW is 8-78 times faster than SW and RPAlign BLAST is
hundreds to thousands times faster than SW. For megabase
scale sequences RPAlign BLAST is found to be 3-9 times
faster than BLAST. Fig. 5. Speed comparison among RPAlign SW, RPAlign BLAST, and

BLAST.

TIME COMPARISON OF DNA SEQUENCES

T
RPAlign SW Pair SW

θ/w=0.95 TG (%) θ/w=0.9 TG (%) θ/w=0.85

P1 0.098 0.012 87.75 0.023 76.53 0.039

P2 2.73 0.06 97.8 0.55 79.83 0.56

P3 12.85 0.26 97.97 3.128 75.65 12.18

P4 82.79 1.06 98.71 11.8 85.74 39.07

P5 92.78 2.54 97.26 8.21 91.83 33.87

P6 96.02 95.36 0.68 95.36 0.68 96.03

P7 112.69 6.28 94.42 48.89 56.61 87.67

P8 4347.32 239.72 91.81 1656.38 61.89 1678.4

Fig. 4. Speed comparison among RPAlign SW, SW, RPAlign BLAST a
BLAST.

TABLE IV
 BY SW, RPALIGN SW, BLAST AND RPALIGN BLAST

ime (Seconds)

BLAST RPAlign BLAST
TG (%) θ/w=0.8 TG (%) TG (%) θ/w= 0.9 TG

w.r.t.
BLAST

TG
w.r.t.
SW

60.2 0.086 12.24 UA UA UA UA UA

79.48 2.21 19.04 0.025 99.45 .011 56 99.59

5.21 12.82 0.23 0.078 99.39 .032 58.97 99.75

52.8 82.52 0.32 0.071 99.91 .053 25.35 99.93

63.49 90.09 2.89 0.12 99.87 .047 60.83 99.94

-0.01 96.03 -0.01 0.084 99.91 .064 23.8 99.94

22.2 96.03 14.78 0.146 99.87 .065 55.47 99.94

61.39 1678.4 61.39 1.349 99.95 .239 82.28 99.99

As RPAlign produces high quality of alignment in a
significantly lesser time, we are currently investigating new
multiple sequence alignment techniques in a parallel
framework. In the near future we will utilize the power of
RPA detection for database searching using SW in parallel.
Database size can be reduced by removing the sequences
which have no RPAs before doing the actual search. Again
use of SW will result in a stronger biological significance.

ACKNOWLEDGEMENT
The authors thank Dr. Susmita Sur-Kolay, Associate

Professor, ACMU, Indian Statistical Institute, Kolkata, India
for providing access to the cluster computer.

REFERENCES
nd

[1] D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, B. F. F. Ouel-
 lette, B. A. Rapp and D. L. Wheeler, “GenBank,” Nucleic Acids Res., 28,
 15-18, 2000.
[2] T. F. Smith and M.S. Waterman “Identification of common molecular s-

 8

 ubsequences,” J. Mol. Biol ., 147, 195–197, 1981.
[3] O. Gotoh, “ An improved algorithm for matching biological sequences,”
 J. Mol.Biol., 162, 705-708, 1982.
[4] E. W. Myers, “An O(ND) difference algorithm and its variations,” orith-
 mica, 1, 251–266, 1986.
[5] F.W. Myers, W. Miller, “ Optimal alignments in linear space,” Bioinfor-
 matics oxford journal, 4, 11-17, 1988.
 [6] S. Batzoglou, L. Pachter, J. P. Mesirov, B. Berger and E. S. Lander, “ H-
 uman and mouse gene structure: comparative analysis and application to
 exon prediction,” Genome Res., 10, 950-958, 2000.
[7] M. Brudno, C. B. Do, G. M. Cooper, M. F. Kim, E. Davydov, NISC Co-
 mparative Sequencing Program, E. D. Green, A. Sidow and S. Batzoglou,
 “LAGAN and Multi-LAGAN: Efficient tools for large-scale Multiple A-
 lignment of Genomic DNA,” Genome Res. 13, 721-731, 2003.
[8] W. Pearson and D. Lipman, “Improved tools for biological sequence co-
 mparison. Proc. Natl Acad. Sci., USA, 85, 2444-2488, 1988.
[9] S. F. Altschul, W. Gish, W. Miller, E. W. Myers and D. J. Lipman, “ Ba-
 sic local alignment search tool,” J. Mol Biol., 215, 403-410, 1990.
[10] S. F. Altschul, T.L. Madden, A. A. Schäffer, J. Zhang, W. Miller, D. J.
 Lipman, “Gapped BLAST and PSI-BLAST: a new generation of protein
 database search programs,” Nucleic Acids Res., 25, 3389-3402, 1997.
[11] Z. Zhang, S. Schwartz, L. Wagner and W. Miller, “A greedy algorithm f-
 or aligning DNA sequences”, J. Comput. Biol., 7, 203-214, 2000.
[12] T. A. Tatusova and T. L. Madden, “BLAST 2 SEQUENCES, a new tool
 for comparing protein and nucleotide sequences,” FEMS Microbiol Lett.,
 174, 247-250, 1999.
[13] W. Gish, “WU-BLAST” http://blast.wustl.edu/, 1995.
[14] D. J. States and P. Agarwal, “Compact encoding strategies for DNA seq-
 uence similarity search,” In ISMB. AAAI, St Louis, MO, 211-217, 1996.
[15] A. Califano and I. Rigoutsos, “FLASH: A fast look-up algorithm for stri-
 ng homology,” In ISMB, Bethesda, MD, 56–64, 1993
[16] S. Schwartz, Z. Zhang, K. A. Frazer, A. Smit, C. Riemer, J. Bouck, R. G-
 ibbs, R. Hardison, W. Miller, “PipMaker- a web server for aligning two
 genomic DNA sequences,” Genome Res., 10, 577–586, 2000.
[17] Bin Ma, John Tromp, Ming Li “ Pattern Hunter : Faster and more sensiti-
 ve homology search,” Bioinformatics, 18, 440–445, 2002
[18] W. J. Kent, “BLAT-the BLAST-like alignment tool,” Genome Res., 12,
 656-664, 2002.
[19] Z. Ning, A. J. Cox and J. C. Mullikin, “ SSAHA: A fast search method
 for large DNA databases,” Genome Res., 11, 1725-1729, 2001
[20] T. Kahveci, V. Ljosa and A. K. Singh, “ Speeding up whole-genome ali-
 gnment by indexing frequency vectors,” Bioinformatics, 20, 2122- 2134,
 2004.
[21] K.R. Rasmussen, J. Stoye and E.W. Myers In Proc. of the 9th Conf. on
 Computational Molecular Biology (RECOMB'05), pp189-203, Camb-
 ridge, MA, 2005.
[22] K. J. Kalafus, A. R. Jackson and A. Milosavljevic, “ Pash: Efficient Ge-
 nome-scale sequence anchoring by positional hashing,” Genome Res, 14,
 672-678, 2004.
 [23] A.L. Delcher, S. Kasif, R. D. Fleischmann, J. Peterson, O. White and S.
 L. Salzberg, “ Alignment of whole genomes,” Nucleic Acids Res., 27,
 2369 -2376, 1999.
[24] S. Burkhardt, A. Cramer, P. Ferragina, H. Lenhof, E. Rivals, M. Vingron
 “ Q-gram based database searching using a suffix array (QUASAR) ,” In
 RECOMB. ACM Press, France, 77–83, 1999.
[25] S. Kurtz C. Schleiermacher, “ REPuter: fast computation of maximal re-
 peats in complete genomes,” Bioinformatics, 15, 426–427, 1999.
[26] N. Bray, I. Dubchak and L. Pachter, “ AVID: a global alignment progr-
 am,” Genome Res., 13, 97–102, 2003.
[27] R. Braun, K. Pedretti, T. Casavant, T. Scheetz, C. Birkett, C. Roberts,
 “ Parallelization of local blast service on workstation clusters,” Future
 Generation Computer Systems, 17, 745-754, 2001.
[28] N. Camp, H. Cofer and R Gomperts, “ High-throughput blast,
 http://www.sgi.com/industries/sciences/chembio/resources/papers/
 HTBlast/HTWhitepaper.html”, 1998.
[29] E. H. Chi, E. Shoop, J. Carlis, E. Retzel, J. Riedl, “Efficiency of shared-
 memory multiprocessors for a genetic sequence similarity search algori-
 thm,” Technical Report, University of Minnesota, CS department, vol.
 TR97 -05, 1997.
[30] R. D. Bjornson, A. H. Sherman, S. B. Weston, N. Willard, J. Wing, “ Tu-
 rboblast (r): A parallel implementation of blast built on turbohub,” Pro-
 ceedings of the International Parallel andDistributed Processing Sym-
 posium, 2002.

[31] D. Mathog, “ Parallel blast on split databases,” Bioinformat ics, 19, 18-
 65 –1866, 2003.
[32] A. E. Darling, L. Carey, W. Feng, “The design, implementation, and eva-
 luation of mpi-BLAST,” In Proceedings of the Cluster World Conferen-
 ce and Expo, in conjunction with the 4th international Conference on L-
 inux Clusters: The HPC Revolution, San Jose, CA, 2003.
[33] H. Lin, X. Ma, P. Chandramohan, A. Geist and N. Sarnatova, “ Efficient
 data access for parallel blast,” International Parallel and Distributed
 Processing Symposium, 2005..
[34] H. Rangwala, E. Lantz, R. Musselman, K. Pinnow, B. Smith, B. Wallen-
 felt, “ Massively Parallel BLAST for the Blue Gene/ L. HAPCW ”, 2005.
[35] T. Rognes, “ ParAlign: a parallel sequence alignment algorithm for rapid
 and sensitive database searches,” Nucleic Acid Research, 29, 1647- 16-
 52, 2001.
[36] E.C. Osório, J.E. de Souza, A.C. Zaiats, P.S.L. de Oliveira and S. J.
 De Souza, “ pp-Blast: a pseudo-parallel ” Blast, Braz. J Med Biol Res.,
 36, 463-64, 2003.
[37] C. Oehmen and J. Nieplocha, “ScalaBLAST: A scalable implementation
 of BLAST for high-performance data-intensive Bioinformatics analysis,”
 IEEE Transactions on parallel and distributed systems, 17, 740-747,
 2006.
[38] T. Rognes, and E. Seeberg, “Six-fold speed-up of Smith-Waterman sequ-
 ence database searches using parallel processing on common microproc-
 essors,” Bioinformatics, 16, 699-706, 2000.
[39] M. Farrar, “Striped Smith-Waterman speeds database searches six times
 over other SIMD implementations,” Bioinformatics, 23, 156-161, 2007.
[40] S. Henikoff and J. G. Henikoff, “Amino acid substitution matrices from
 protein blocks,” Proc Natl Acad. Sci. USA, 89, 10915-10919, 1992.

	INTRODUCTION
	Systems And Methods
	Algorithm And Implementation
	Efficient Data Handling forParallelProcessing
	Computing Frequencies and Composite Scores
	Generating the BINARY Matrix
	Merging and Redistribution

	Results
	Sensitivity Analysis
	Timing Analysis

	Discussion And Conclusion
	Acknowledgement
	References

