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Abstract—Researchers are compelled to use heuristic based 

pairwise sequence alignment tools instead of Smith-Waterman 
(SW) due to space and time constraints, thereby losing significant 
amount of sensitivity. Parallelization is a possible solution, 
though till date the parallelization is restricted to database 
searching through database fragmentation. In this article, the 
power of a cluster computer is utilized for developing a parallel 
algorithm, RPAlign, involving, firstly, detection of regions that 
are potentially alignable (RPAs), followed by their actual 
alignment. RPAlign is found to reduce the timing requirement by 
a factor of upto 9 and 78 when used with BLAST and SW 
respectively, while keeping the sensitivity similar to the 
corresponding method. For distantly related sequences, that 
remain undetected by BLAST, RPAlign with SW can be used. 
Again, for megabase scale sequences, when SW becomes 
computationally intractable, the proposed method can still align 
them reasonably fast with high sensitivity.  

and space complexity are still high [6]. LAGAN[7] is another 
implementation of dynamic programming but is not applicable 
on a genome scale without prior information (“anchors”) that 
directs comparison to orthologous regions. 

There are many heuristic based search tools and they can be 
categorized into hash-table based search tools and suffix-tree 
based tools. FASTA [8], BLAST [9][10], MegaBLAST [11], 
BL2SEQ [12], WU-BLAST [13], SENSEI [14], FLASH [15], 
PipMaker [16], Pattern Hunter [17], BLAT [18], SSAHA 
[19], are methods that belong to the category of hash-table-
based tools. These are basically achieved by “Seed-and-
extend” methods. In a Seed-and-extend method, one or more 
exactly matching k-mers (“Seeds” or “hot-spots”) provide 
initial evidence of possible similarity. These seeds are then 
extended to compute the final sequence alignments. The 
extension step is more accurate than the seeding step, but it is 
computationally expensive. These methods quickly abandon 
most candidate similarities because they don’t immediately 
yield alignments that are likely to be statistically significant. 
Current hash-table-based search tools handle short queries 
well, but become very inefficient, in terms of both time and 
space, for long queries. The limitation of seed-and-extend 
methods have been overcome in [20], [21], [22]. In [22] a 
parallel technique called Pash was designed to compare 
genome-sized datasets. However it is not the best choice when 
indels are prevalent. As mentioned in [22], Pash is relatively 
inefficient when mapping a relatively small dataset onto a 
relatively larger one.  

 
Index Terms—BLAST, message passing interface (MPI), 

parallel computing, Smith-Waterman. 
 

I. INTRODUCTION 

Pairwise sequence alignment is a challenging task because 
of the exponential growth of genomic information, 

necessitating large scale comparison of two input strings.  The 
size of GenBank /EMBL/DDBJ nucleotide database is now 
doubling in every 15 months [1]. When searching databases to 
find out sequences similar to a given query sequence, the 
search programs compute an alignment score for every 
sequence in the database. This score represents the degree of 
similarity between the query and database sequence. A 
dynamic programming algorithm for computing the optimal 
local alignment score was first described by Smith and 
Waterman [2], and later improved by [3] for linear gap 
penalty functions. Though dynamic programming is the best 
alignment procedure so far, it is not suitable for large strings 
in terms of both time and space. For two strings of length m 
and n, the time and space complexities of the Smith and 
Waterman (SW) algorithm are O(mn).  

Suffix tree is another efficient approach on which various 
search tools have been developed. These include MUMmer 
[23], QUASAR [24], REPuter [25], AVID [26]. There are 
many significant problems with the suffix-tree based 
approach: they manage mismatches inefficiently (they are 
good for highly similar strings, but fail to recognize more 
distant homologies) and they have a high space overhead.  

Most of the tools mentioned above require data structures 
larger than the database, some of them more than two orders 
of magnitude larger. Recent advances in parallelization makes 
it possible to implement BLAST 
(http://www.ncbi.nlm.nih.gov/BLAST) in a parallel setup as 
well. Earlier works on parallel sequence search mostly focus 
on distributing the query set across several cluster nodes [27],  
[28], [29] each of which executes a serial job. Throughput is 
increased, but the time for a particular query to complete is 
unchanged. Other existing parallel techniques have been 

The time and space complexity had been improved to O(rn) 
by [4], where r is the amount of allowed error, by considering 
only the useful  part of the distance matrix. However, for large 
error rates, r is O(m), so the complexity is still O(mn). Later 
on, the space complexity of SW was improved to O(n) [5]. 
Dynamic programming has been accelerated through GLASS 
by finding exactly matching long substrings first, but the time  
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focusing mostly on database segmentation. In this approach 
the database is partitioned among cluster nodes and an 
assigned part of the database is searched for the same query  
[30], [31]. This approach of database splitting was developed 
in the mpiBLAST [32]. Among the several published parallel 
BLAST codes, mpiBLAST reported the highest speed up, 
underwent the largest scalability tests, and has been directly 
integrated with the NCBI toolkit. A subsequent efficient 
algorithm pioBLAST [33] was developed which has reduced 
non-search overheads of mpiBLAST by focusing on the use of 
collective I/O and dynamic database partitioning. Parallel 
BLAST has also been implemented on supercomputers like 
the IBM Blue Gene/L [34]. It is based on optimally splitting 
up the set of queries as well as databases. It reduced the I/O, 
thereby delivering a fast, high throughput BLAST. This 
method is capable of performing at least 2 million BLAST 
searches per day against a database of 2.5 million protein 
sequences. The other useful works on the parallelization of 
BLAST are ParAlign [35], pp-Blast [36], ScalaBLAST [37]. 
All the above mentioned parallel BLAST implementations are 
based on searching database sequences in parallel by 
segmenting and distributing the set of query sequences or 
database sequences. 

Although BLAST is widely used in the Bioinformatics 
community, it is well known to suffer from low sensitivity as 
compared to SW. In particular for the sequences which are 
distantly related BLAST may be unable to throw up any hit, a 
problem that SW can overcome. However, SW is known to be 
unable to compare two large DNA sequences due to its 
computational complexity. Some attempts in developing 
faster, parallel, implementations of the SW algorithm can be 
found in [38], [39] but these are essentially database searching 
algorithm. In [39] a vector implementation of SW makes the 
rigorous Smith-Waterman competitive with BLAST (within a 
factor of 5 or less) but for large scale DNA sequence it is not 
practical.  Few attempts have been made for developing 
parallel algorithms for comparing a pair of large scale 
sequences. This requires proper fragmentation of the two 
sequences, and distribution of the fragments to the different 
nodes of a parallel computer. Not much work is available in 
this direction probably because it has been difficult to 
parallely identify those subsequences which are actually 
alignable in the two sequences though some sequential 
algorithm have been attempted in this regard[21]. 

 In this article, we propose an efficient algorithm which can 
overcome this problem and can align two DNA or protein 
sequences in parallel by identifying regions that are 
potentially alignable (RPAs). Once this is done parallely, the 
task of aligning these subsequences can be easily parallelized 
resulting in a gain in computation time. Such a parallel 
algorithm, referred to as RPAlign, is developed in this article. 
It employs frequency counts in windows to detect the RPAs in 
the two subsequences. A cluster computer is utilized for 
implementing RPAlign using Message Passing Interface 
(MPI). Note that our task is not to propose a new alignment 
algorithm, but to improve the time requirement, through the 

use of judicious parallelism, of any pairwise local sequence 
alignment method.     

 

II. SYSTEMS AND METHODS 
The code is written in C using Message Passing Interface 

(MPI). A cluster of 18 nodes is used with Linux WS 3.0 
standard operating system. Master node consists of Intel Xeon 
2.8 GHz single CPU and 1 GB RAM. Each Slave or Worker 
node consists of Pentium IV 2.8 GHz CPU and 512 MB 
RAM. The bl2seq module of NCBI BLAST toolkit (version 
2.2.15) is used for both DNA and protein sequences.        

 

III. ALGORITHM AND IMPLEMENTATION 
The detection of RPA between two DNA or protein 

sequences is based on the computation of the frequency of 
each type of element. The system incorporates one master 
processor (MP) and n-1 worker processors (WPs). The 
proposed algorithm is described below in detail. 

A. Efficient Data Handling forParallelProcessing 
The MP and WPs parallely read the two input sequences Sl 

and Ss, assuming |Sl| > |Ss|, and determine their lengths. Each 
processor (including the MP, that is treated as WP1 in the 
following discussion) then extracts one overlapping 
subsequence from the larger sequence Sl. Considering the 
length of the overlapping window to be denoted by w, the 
length of each subsequence or fragment Fi, i=1, 2, …, n,  is 
given by 

,w
n
Sl +  

where n is the number of nodes in the cluster. Therefore the 
start and end positions of fragment Fi denoted by Starti  and 
Endi  are given by, 
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n
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iEnd l
i += * . 

 
Fig. 1. Parallel I/O and dynamic partition of the larger sequence (Here Sl). 
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Parallel file I/O in a shared memory framework is used 
through which load balancing is performed and copying 
overhead is reduced. 

B.  Computing Frequencies and Composite Scores 
The tasks performed by processor Pi, i=1, 2, …, n are 

outlined in Fig. 2. These are now described in detail. 
 

 
Fig.  2. Flow chart of BINARY matrix formation in each processor. 
 

Fi, the fragment of Sl read by Pi, is further divided into 
substrings of length w by sliding it one letter at a time to 
generate substrings Fij,  j=1, 2, …, |Fi|-w+1. The second 
sequence Ss is also divided into substrings of length w by 
shifting w letters at a time to yield Ssk substrings, where k = 1, 
2, …, |Ss|/w . Then for every possible substring Fij  or Ssk,  
the frequencies of each type of element are determined as fe 
(Fij) or fe (Ssk) for e=1, 2, …, 5 for DNA and e=1, 2, …, 20 for 
protein sequence. For the DNA sequence, elements are A, T, 
G, C and N where N stands for the unknown and for protein 
sequence there are 20 different types of amino acids present. 
A score is then computed on the basis of f for a substring pair. 
On the basis of this score RPA will be detected. As protein 
sequences are more complex in nature than the DNA 
sequences, and as substitution matrix plays an important role 
for the alignment, computation of RPA for protein sequences 
is much more complicated than for DNA sequences. This is 
first described below. On the other hand as DNA sequences 
are usually much larger than protein sequences, efficient data 
handling is essential. For this reason an optimization 
technique has been developed.  

 
1) Protein Sequences: In the proposed algorithm BLOSUM 

62 [40], a substitution matrix generally used for comparison of 
two protein sequences, is considered though other standard 
substitution matrices can also be implemented. According to 
this matrix, two identical residues can generate a score from 
+4 to +11 depending on the residue type; while for two non-
identical residues the score can be generated from –4 to +3. 
On the basis of the scores of two amino acid residues, as 
provided by BLOSUM 62, amino acid pairs have been 
classified into 15 categories which are given in Table I. Note 
that the score generated by category 1 amino acid pair is ~3 
times more than the score of category 7 amino acid pair. From 

category 1 to category 7 all amino acid pairs are identical and 
other categories provide the score of non identical amino acid 
pairs.  

Let Cat (Ae, Ae´), return the category of amino acid pair 
[Ae, Ae´] from Table I. Then we define  

)),((_ e´AACatScoreBL e  
 
as the BLOSUM 62 score for the respective category as 

obtained from Table I. After computing the frequency fe, e=1, 
2, …, 20 of all the substrings, composite scores (CS) are now 
computed as follows: 
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 where the function γ(x) is defined as 
               γ(x) = x             if x > 0 
               γ(x) = 0             if x <= 0 
 
Note that Eqn. 1 considers all those amino acid pairs which 

provide a positive BLOSUM 62 score. 
2) DNA Sequences: Here the minimum frequencies of A, T, 

G, C, and N corresponding to each pair Fij and Ssk are 
computed. On the basis of those frequencies, fe, e=1, 2, …, 5, 
CS is now computed as, 
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C.  Generating the BINARY Matrix  
 
 

It may be noted that CS is a gross over estimation of the 
actual alignment score of the two substrings. This is done on 
purpose to ensure that even after such an over estimation, if 
CS < θ, where θ is a threshold value, then the corresponding 
substrings need not be considered as they are not alignable. 
Now a matrix called BINARY of dimension |Ss|/w X |Fi|/w 
is generated in node i, where each row and column represents 
w length of non overlapping letters of Ss and Fi respectively. 
Initialize BINARY matrix to all 0’s. For each Ssk, k=1, 2, …, 
|Ss|/w, w consecutive fragments from Fi are used to compute 
w different CS values. If any of these CS values exceeds a 
threshold θ, then cells (k, j) and (k, j+1) of BINARY matrix are 
set to 1 as w consecutive CS values cover 2w-1 letters. Fig. 3 
states this process formally. 

Note that all the w CS values need not be computed. As 
soon as a value exceeding θ is obtained, the remaining 
substring pairs are not considered any further. Since DNA 
sequences can be extremely long leading to high 
computational cost for comparing all the CS values with θ, a 
procedure for optimizing this computation is described below. 



 4

D. Merging and Redistribution   
After each WPi completes the computation of the BINARY  

matrix these are transmitted to the MP. Here the matrices are 
collated side by side to yield a matrix called 
RPA_DETECTION matrix. In this matrix, diagonals that are 
strings of all 1’s are found. The start and the end positions of 
these diagonals define the RPAs. Note that, there is a 
possibility for multiple overlapping surfaces of similarity 
(diagonals) in RPA_DETECTION matrix. As a result there is a  
chance that a particular sequence fragment may be included in 
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For k= 1, 2, …, |Ss|/w  
   For j=1, 2, …, |Fi|/w 
       Compare Fij,  j= (j-1)w+1, …, jw, 
       and Ssk to provide CS1, CS2, …, CSw

. 
       If max (CSk

, k=1,…, w) > θ then 
          set BINARY(k,  j) = BINARY(k,  j+1) =1 
       End If 
    End  
End  
multiple aligned segments. In RPAlign, this problem is 
reduced by merging the adjacent overlapping diagonals. But 
the overlapping diagonals which are not adjacent are also  

 
Fig. 3. Computation of BINARY matrix in processor Pi 

SCORE WISE CATEGORIES OF AMINO ACID PAI

core Category 
11 1 
9 2 
8 3 
7 4 
6 5 
5 6 [
4 7 
3 8 
2 9 [d, 
1 10 [s, t][a, s][n, s][d
0 11 [a, c][g, s][d, s][e, s][k, s][n, t][a, g][e, n][q, n][n,
-1 12 [c, s][c, t][c, m][c, i][c, l][c, v][p, s][h, s][r, s][m

[d, g][d, h][d, k][d, t][e, t][q, y][i, t][l, t]
-2 13 [c, f][c, y][i, s][l, s][s, v][f, s][s, y][f, t][t, y][g,

[g, k][g, t][g, w][m, n][n, y][d, r][e, m][e, y][l, 
-3 14 [c, p][c, g][c, n][c, d][c, q][c, h][c, r][c, k][s, w][

[d, y][e, i][e, l][e, f][e, w][i, q][f, q][
-4 15 [c, e],[

e substring Fij+1 is generated by sliding Fij by one le
e right. That is, to generate a new substring, Fij+1, one
removed from the left most position and one new le

serted at the right most position of the current substr
n generate two possible effects on Fij+1.   
(a) If the inserted and deleted letters are the same 
ctor of Fij and Fij+1 are the same. 
(b) If the inserted and deleted letters are not identica
e frequency of one element type (A, T, C, G or 
creased by one, and the other one is increased by one. 
On the basis of the above logic it is clear that CS valu

NA sequences can be changed by at most 1. No
mputing the value in cell (k, j) and (k, j+1) of the BI
atrix, CS is first computed between Ssk and Fij. If CS
en as earlier, computation is discontinued and BINARY
BINARY (k, j+1) =1. However, if CS < θ, then let θ´=
 this case the next comparison needs to be made be
(j+θ´+1) and Ssk. In this way when, (j+θ´+1) > w, the
arch is discontinued, since under no circumstance can 
e CS  
 
lue exceed θ. If (j+θ´+1) < w, then the process repeats.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE I 
RS ON THE BASIS OF SUBSTITUTION MATRIX (BLOSUM62) 

 
Amino Acid pairs 

[w, w] 
[c, c] 
[h, h] 

[p, p][y, y] 
[d, d][f, f][g, g] [n, n] 

e, e][k, k][m, m][q, q][r, r][t, t] 
[a, a][i, i][l, l][s, s][v, v] 

[i, v][f, y] 
e][e, q][h, y][k, r][l, m][i, l][w, y] 
, n][e, k][q, r][k, q][i, m][f, w][h, n][l, v][m, v] 
 r][k, n][d, q][e, h][e, r][h, q][m, q][h, r][f, i][f, l][a, t][a, v][g, n][q,s][f, m][t, v] 
, s][r, t][m, t][a, p][d, p][e, p][p, q][k, p][a, e][a, q][a, r][a, k][a, m] [a, i][a, l] 

[k, t][q, t][h, k][f, h][m, r][k, m][m, y][m, w][p, t][i, y][l, y][f, v][v, y] 
 p][h, p][n, p][h, t][p, r][m, p][p, v][a, d][a, h][a, f][a, y][e, g][g, q][g, h][g, r] 
q][e, v][k, v][q, v][q, w][h, m][h, w][t, w][l, r][r, y][k, l][k, y][c, w][l, w][a, n] 
i, p][l, p][p, y][a, w][g, m][f, g][g, y][i, n][l, n][n, v][f, n][d, m][d, i][d, v,][d, f] 
h, i][h, l][i, r][r, f][r, v][r, w][i, k][f, k][k, w][i, w][v, w][g, v][h, v] 
f, p][p, w][g, i][g, l][n, w][d, l][d, w] 
 
 

tter to 
 letter 
tter is 
ing. It 

 
considered as RPAs, the reason being that prior knowledge 
about which RPA will provide the best score is absent. The 
diagonal which is a subset of another diagonal is not 
considered as an RPA. Finally all these RPAs are redistributed 
to each node including the MP in such a way that the load 
balancing will be achieved. Thereafter each node performs the 
actual alignment either by BLAST (providing RPAlign 
BLAST) or by SW implementation (providing RPAlign SW) 
and alignment output is stored in a shared memory space. 

then f 

l then 
N) is 

es for 
w for 
NARY 
 > θ, 
 (k, j) 

 θ-CS. 
tween 
n the 

any of 

IV. RESULTS 
The speed and more importantly, the quality of alignment 

of the proposed method is evaluated using a set of eight amino 
acid, eight DNA and seven megabase scale DNA sequence 
pairs. The length of the input sequences ranged from less than 
66 to 8797 residues for amino acid sequences and from 723 bp 
to 11.1 mb for nucleotide and genome sequences. The nucleotide 
sequences are described in Table II and the protein sequences 
are described in Table V. The window length w is chosen, in 

general, as min (
40

lS , 25000). The variation of the performance   
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of RPAlign is studied for different values of the threshold θ in 
terms of the window size (or, different values of θ/w).  

 
 
 

 
 
 
 
 

 
 
 
 
The performance of RPAlign is compared in terms of speed 
and quality with SW implementation and BLAST (bl2seq with 
–F F option to disable the filter query sequence option). For 
each pair of input sequences the time of the fastest of three 
consecutive runs is recorded. 

A. Sensitivity Analysis 
 

Measurement of the sensitivity of BLAST, RPAlign BLAST 
and RPAlign SW are computed based on the alignment 
provided by SW. Experiments with RPAlign are conducted 
for different fractions of θ/w, namely, 0.8, 0.85, 0.9 and 0.95. 
Note that here for RPAlign SW, the choice of an appropriate 
θ/w for a particular sequence pair depends on the 
characteristics of the sequences, their relationships, i.e. 
whether they are closely or distantly related. Not only that, 
their length is also an important consideration. Lower θ/w 
value is not suitable for the two closely related same length 
input sequences, as the proposed method will detect only one 
long diagonal whose start point is near the top left cell of the 
RPA_DETECTION matrix and end point is near the bottom 
right cell. As all other minor diagonals are subset of this 
diagonal, they are not considered as RPAs. Thus it will not be 
possible to parallelize the algorithm effectively. The situation 
will be the same as performing BLAST or SW in a stand alone 
mode. But for the sequences, which have less homology or 
have significant homology but their lengths are quite different 
from each other, θ/w= 0.8 is ideal in terms of sensitivity. For 
two input sequences of length m and n, SW needs O(mn) in 
both time and space. But for the case where m>>n, the 
effective search space will be at most ~ O(n2), since the length 
of the aligned portion in the larger sequence will be of the 
order of the length of the shorter sequence. RPAlign first 
detects the RPAs in the two sequences, which will be of 
length at most ~ O(n). Thereafter, it can immediately prune 
(m-n) elements from the larger sequence, thereby providing 
significant time gain for alignment. Thus θ/w=0.8 in such 
cases is effective. For example for P8, where the length of the 
two sequences are quite different, the TG obtained is 61.39%, 
while sensitivity is still 100% (See Table III and Table IV, last 
row). For the remaining sequence pairs except for P6, θ/w=0.8 
produces 100% sensitivity and TG range is 0.23% - 19.04%. 
θ/w=0.85 and 0.9 appear to be reasonable choices in RPAlign 

as these provide high sensitivity, while TG is also reasonably 
high. Except for the pair P6, θ/w=0.85 and 0.9 provide 
sensitivity ranges from 85.79% -100% and 62.43% - 98.75%, 
respectively, while TG range is from 5.21% - 79.48% and 
56.61% – 91.83%, respectively. θ/w=0.95 or more is 
recommended when the two input sequences are homologous 
or closely related. Here RPAlign detects many small RPAs as 
a result of which full parallelism can be obtained. In the 
process some amount of sensitivity is lost. From Table III it is 
found that for P2, P3, P4 and P5, RPAlign SW with θ/w=0.95 
produces sensitivity ranges from 40.33% - 51.69% which are 
still much higher than BLAST (0.65% - 3.61%). For the pairs 
P6, P7 and P8 where significant similarity is found, BLAST 
produces the sensitivity ranges from 20.12% - 29.44% with 
respect to SW whereas RPAlign SW with θ/w=0.95 produces 
65.76% - 99.7%. Here it is clear that to gain speed up if we 
consider θ/w=0.95 even then we can gain a significant amount  

TABLE II 
 NUCLEOTIDE SEQUENCE PAIRS AND THEIR RESPECTIVE  ID AND LENGTH 

Sequence 1 Sequence 2 Pair 
GI Number Length(bp) GI Number Length (bp) 

P1 92296557 723 114157166 1549 
P2 118562368 6485 89142743 6736 
P3 13273284 16571 508206 13246 
P4 28876381 38206 303969 34214 
P5 209811 35937 28876316 41796 
P6 28876316 41796 28876437 40014 
P7 112806880 44237 114804244 158484 
P8 41179002 203828 114804244 158484 

of sensitivity than BLAST. Moreover sometimes BLAST is 
unable to align two distantly related sequences as is the case 
for pair P1 (denoted by UA under BLAST in Table III). But 
for P1 also RPAlign with θ/w=0.95 produces significant 
sensitivity (76.97%). As can be noted from Table III and 
Table IV, as θ/w is increased, the sensitivity decreases but the 
time gain (TG) increases. To measure the sensitivity for 
protein sequences, eight pairs are considered out of which first 
four are taken from ASTRAL database 
(http://astral.berkeley.edu/) where sequences are less than 
40% similar in nature (see Table V). For protein sequences, 
RPAlign is executed with θ/w= 7.5 or less to obtain 100% 
sensitivity. Here threshold value θ is always higher than 
window length w because BLOSUM 62 score is considered to 
detect RPAs. From R1 to R8, SW and RPAlign SW produces 
the same results. For R1 to R4, which are ASTRAL domain 
sequences and have less than 40% domain conservedness as 
mentioned in the ASTRAL database [Chandonia et al., 2004], 
BLAST is unable to align the sequences whereas for the 
remaining pairs it’s sensitivity range with respect to SW is 
from 5.33% – 30.48%. This reflects that BLAST produces 
significantly lower quality of alignment than RPAlign SW.  

B. Timing Analysis   
Parallel implementation of the proposed method makes it 
efficient in terms of speedup of the computation. The timing 
analysis is provided here based on the same set of DNA 
sequences considered earlier. Fig. 4 shows the speed 
comparison among the different algorithms. It is in fact a 
graphical representation of the timing results in Table IV. As 
expected, RPAlign BLAST requires the lowest computation 
time followed by that for BLAST. Again SW always requires 
the largest computation time, while RPAlign SW with 
different values of θ/w, in general, provides an improvement 
over the SW time. Among the latter, RPAlign SW with θ/w= 
0.95 provides the largest speedup. P6 presents an interesting 
case where no time gain (TG) is observed for θ/w = 0.8 and 
0.85 since the sequences are similar. In fact, here the 
alignment time is the same as that for SW. The additional 
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RPA detection time results in an overall negative time gain. 
Moreover it becomes evident from this result that the 
detection time of RPAs is only a very small factor of the 
alignment time. As can be obtained from Table V, for protein 
sequence pairs R1 to R4, the execution times for SW and 
RPAlign SW are almost the same since the sequences are very 
small. However for R5 to R8 a significant TG is obtained. For 
example for R5 to R8, SW needs 9.68, 8.62, 7.76 and 6.33 
seconds, respectively, whereas RPAlign SW needs 1.81, 0.11, 
0.15 and 1.91 seconds, respectively. Thus the TG obtained 
ranges from 69.82% – 98.72% with 100% sensitivity as 
compared with SW. For the same set of data TG of BLAST 
over SW and RPAlign SW ranges from 99.14% – 99.38% and 
36.36% – 97.17% respectively but with significantly lower 
sensitivity values viz., 5.33% – 30.48%.  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table IV shows that B
99.95% as compared 
improves upon the time
quality of alignment. Fo
over BLAST is 23.8% 
99.99%.  
Fig. 5 shows the spee
BLAST and RPAlign B
scale DNA sequences. F
to perform the alignmen
figure shows that the p
the performance of BLA
for RPAlign SW, though

manageable. Interestingly, it was observed that BLAST show 
a tendency to come closer. This presents an interesting 
application of the proposed method which can be used in 
conjunction with SW for megabase scale sequences with high 
sensitivity, as characteristic of SW, but with significantly 
reduced time requirement.  

V. DISCUSSION AND CONCLUSION 
An MPI based parallel algorithm for performing pairwise 
local alignment through the detection of regions that are 
potentially alignable has been proposed. It has been observed 
that the proposed method can provide an alignment quality 
comparable 
to that of the SW algorithm while requiring significantly less 
time. Although BLAST has reduced the running time compared  

 

SENSITIVITY COMPARISON O
BLAST 

 
SensitiPair 

SW BLAST 

P1 100 UA 

P2 100 3.61 

P3 100 1.63 

P4 100 0.65 

P5 100 0.75 

P6 100 29.44 

P7 100 20.12 

P8 100 26.69 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

TABLE V 
SENSITIVITY COMPARISON OF PROTEIN SEQUENCES BY SW, BLAST AND 

RPALIGN SW 
(I: IDENTITY, S: SIMILARITY IN SW, P: POSITIVE IN BLAST, G: GAP) 

Pair Sequence ID Length 
(aa) 

Program I S/ P G 

d1idra_ a.1.1.1 127 SW 3 4 0 
BLAST - - - 

R1 
g1pnb.1 a.52.1.3 

 
107 

 RPAlign SW 3 4 0 
d1s69a_ a.1.1.1 123 SW 5 9 0 

BLAST - - - 
R2 

d2tct_1 a.4.1.9 66 
RPAlign SW 5 9 0 

d1allb_ a.1.1.3 161 SW 25 44 37 
BLAST - - - 

R3 
d1wmub_ a.1.1.2 146 

RPAlign SW 25 44 37 
d1jbob_ a.1.1.3 172 SW 13 30 18 

BLAST - - - 
R4 

d3sdha_ a.1.1.2 145 
RPAlign SW 13 30 18 

119568124 8797 SW 450 768 987 
4181 BLAST 24 30 2 

R5 
125983774 

 RPAlign SW 450 768 987 
119568112 8757 SW 92 165 193 

3728 BLAST 28 28 4 
R6 

118085751 
 RPAlign SW 92 165 193 

119568122 8779 SW 66 100 86 
3461 BLAST 12 21 0 

R7 
125853858 

 RPAlign SW 66 100 86 
TABLE III 
F DNA SEQUENCES BY SW, RPALIGN SW, 
AND RPALIGN BLAST 

vity (%) with respect to SW 

RPAlign SW with  θ/w= RPAlign 
BLAST 

0.95 0.9 0.85 0.8 

UA 76.97 94.19 97.71 100 

3.61 51.69 74.34 88.42 100 

1.63 41.62 69.21 100 100 

0.65 43 62.43 85.79 100 

0.75 40.33 68.06 86.14 100 

29.44 99.7 99.7 100 100 

20.12 65.76 81.21 91.04 100 

26.69 93.22 98.75 100 100 
LAST achieves a TG of 99.39 – 
to SW. RPAlign BLAST further 

 of BLAST while providing the same 
r example the TG of RPAlign BLAST 
– 82.28% and over SW is 99.59% – 

d comparison among RPAlign SW, 
LAST for seven pairs of magabase 
or these sequence pairs SW is unable 
t because of the sequence sizes. The 
roposed method efficiently enhances 
ST by a significant margin. The time 
 greater than that for BLAST, is still 

 
 
 
 
 

47221249 6015 SW 509 900 1058
4181 BLAST 38 53 11 

R8 
125983774 

 RPAlign SW 509 900 1058
 

with the best known SW implementation, it has significantly 
low sensitivity particularly for the sequences which are 
distantly related and thus does not reflect the actual biological 
evidence. The characteristic of the proposed algorithm is that 
if it is used with BLAST it runs much faster with the same 
quality of output. If it is used with SW implementation, then 
the required time is much smaller and sometimes comparable 
to that of BLAST, but sensitivity is comparable to that of SW. 
The RPAlign algorithm thus allows the researchers to obtain 
SW-like sensitivity, while requiring significantly less time. 
Our aim is to enhance the existing methodologies in terms of 
speed without losing the sensitivity provided by them by 
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utilizing the power of parallel processing. It can be used with 
any pairwise alignment algorithm like BLAT, BLASTZ etc. It 
can efficiently align not only the large DNA sequences but 
also the more complex protein sequences which are less 
similar in nature. The efficiency of the proposed method 
derives from the fact that it is able to appropriately prune 
those regions of the sequence pair which will not take part in 
the final alignment (which the SW algorithm unnecessarily 
tries to align). This in turn results from the detection of the 
regions where alignment is possible. In the case of distantly 
related sequence pairs, the gain is much more, since in these 
cases a large amount of effective pruning is possible. RPAlign 
SW is 8-78 times faster than SW and RPAlign BLAST is 
hundreds to thousands times faster than SW. For megabase 
scale sequences RPAlign BLAST is found to be 3-9 times 
faster than BLAST.  Fig. 5. Speed comparison among RPAlign SW, RPAlign BLAST, and  

BLAST. 
  
  
  
  
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

TIME COMPARISON OF DNA SEQUENCES

T
RPAlign SW Pair SW 

θ/w=0.95 TG (%) θ/w=0.9 TG (%) θ/w=0.85

P1 0.098 0.012 87.75 0.023 76.53 0.039 

P2 2.73 0.06 97.8 0.55 79.83 0.56 

P3 12.85 0.26 97.97 3.128 75.65 12.18 

P4 82.79 1.06 98.71 11.8 85.74 39.07 

P5 92.78 2.54 97.26 8.21 91.83 33.87 

P6 96.02 95.36 0.68 95.36 0.68 96.03 

P7 112.69 6.28 94.42 48.89 56.61 87.67 

P8 4347.32 239.72 91.81 1656.38 61.89 1678.4 

 

Fig. 4. Speed comparison among  RPAlign SW, SW, RPAlign BLAST a
BLAST. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

TABLE IV 
 BY SW, RPALIGN SW, BLAST AND RPALIGN BLAST 

 
ime (Seconds) 

BLAST RPAlign BLAST 
TG (%) θ/w=0.8 TG (%)  TG (%) θ/w= 0.9 TG 

w.r.t. 
BLAST

TG 
w.r.t. 
SW 

60.2 0.086 12.24 UA UA UA UA UA 

79.48 2.21 19.04 0.025 99.45 .011 56 99.59 

5.21 12.82 0.23 0.078 99.39 .032 58.97 99.75 

52.8 82.52 0.32 0.071 99.91 .053 25.35 99.93 

63.49 90.09 2.89 0.12 99.87 .047 60.83 99.94 

-0.01 96.03 -0.01 0.084 99.91 .064 23.8 99.94 

22.2 96.03 14.78 0.146 99.87 .065 55.47 99.94 

61.39 1678.4 61.39 1.349 99.95 .239 82.28 99.99 

 
 
As RPAlign produces high quality of alignment in a 
significantly lesser time, we are currently investigating new 
multiple sequence alignment techniques in a parallel 
framework. In the near future we will utilize the power of 
RPA detection for database searching using SW in parallel. 
Database size can be reduced by removing the sequences 
which have no RPAs before doing the actual search. Again 
use of SW will result in a stronger biological significance. 
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