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Abstract

Intelligent guessing plays a critical role in the success and scalability of a non�

enumerative optimization algorithm that primarily relies on the samples taken from

the search space to guide the optimization process� Linkage learning deals with the

issue of intelligent guessing by exploiting properties of the representation� This pa�

per underscores the importance of linkage learning in genetic algorithms and other
adaptive sampling�based optimization algorithms� It develops the foundation� iden�

ti�es the problems of implicit linkage learning in simple genetic algorithms� reviews

some of the early linkage learning e�orts� reports some of the recent developments�

and identi�es the future directions of linkage learning research�

Key words� Linkage learning� messy GAs� fast messy GA� GEMGA

� Introduction

Optimization deals with the problem of �nding solution�s� from a given search
space that extremizes the objective function value beyond a given desired
level� The suitability of an optimization algorithm depends on the nature of
the search space and the objective function� There exist many optimization
techniques that are specially designed for classes of objective functions and
the search spaces� For example� a gradient search based technique may re�
quire su�cient knowledge about the objective function in order to compute
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the gradient� linear programming is designed for linear objective functions�
subjected to linear constraints� These algorithms make use of their knowledge
about the search space and the objective function for guiding the search di�
rections� However� there also exist many practical problems for which such
knowledge is unfortunately not available� In this paper we shall call them
Black�Box Optimization �BBO� problems� If su�cient information to guide
the search process is not available� the most obvious way to proceed is either
to do an enumerative search or to search adaptively based on the samples
taken from the search space� Since for most of the interesting problems enu�
merative search is too expensive� a sampling based adaptive approach is often
the choice in practice� There exist many optimization algorithms like the Ge�
netic Algorithms ����� Simulated Annealing �
��� and Tabu search ���� that
take the latter approach� This approach to BBO is essentially based on the
process of guessing or hypothesis formation� Intelligent guessing requires both
understanding of patterns from the data and e�cient evaluation of guesses�
This process plays a fundamental role in sampling based adaptive BBO and
this paper addresses this issue in the context of Genetic Algorithms �GAs��
Like all other sampling based adaptive BBO algorithms� e�cient and intelli�
gent guessing from the collected samples is critical for scalable performance
of the GAs�

This paper points out that since sampling based adaptive guessing is fun�
damentally an inductive process� problem representation plays an important
role� Linkage learning� the main theme of this paper� addresses the issue of
e�cient� intelligent guessing by exploiting the properties of the representa�
tion� in the context of genetic algorithms� The objective of this paper is to
lay the foundation of linkage learning� o
er a perspective of the evolution of
linkage learning genetic algorithms over the last decade� and present some of
the recent developments�

Section � presents a discussion on the role of guessing and induction in BBO�
Section � gives a �avor of an abstraction of the concepts developed informally
in Section �� Section 
 de�nes linkage learning� Section � illustrates the devel�
oped concepts in the light of sequence representation� typically used in most
of the evolutionary algorithms� Section � discusses the early linkage learning
e
orts in simple GA� describes their problems� and identi�es the need for a
well�designed� explicit approach toward linkage learning� Section � develops
a Walsh representation based approach to understand the underlying mech�
anism of di
erent algorithms� presented in the following sections� Sections
���	 present di
erent versions of the so called messy GAs that pay explicit
attention to linkage learning� Section � describes the messy GA� its strengths�
and its weaknesses� Section � does the same for the fast messy GA� Section �	
presents the recent developments of the gene expression messy GA� Section
�� discusses some of the recent developments and on going research in this
area� Section �� presents a general discussion regarding many common argu�






ments often raised regarding linkage learning� Finally� Section �� concludes
this paper�

� Guessing� Induction� and BBO

Guessing in absence of complete knowledge is a common event of our everyday
life� In this section we investigate the role of guessing in the context of black�
box optimization �BBO�� First� let us consider a simple situation that requires
guessing� Say there is a large room full of people� possibly with money in their
pocket� and we would like to identify the person with the highest amount of
money� Let us also stipulate that we cannot search everyone�s pocket� rather�
we can only search a small fraction of the crowd�

One possible approach to address this problem is to randomly select individ�
uals from the crowd and report the one with the highest amount of money�
However� this approach is unlikely to be successful beyond the chance of ran�
dom events� A more intelligent and possibly e
ective way to approach this
problem is to try to detect possible patterns from the collected data� in other
words� we try to identify a relation between the amount of money that a per�
son has and some �intelligently� chosen set of features of that person� For
example� we could consider the quality of the dress� the type of watch� and
the hair�style as a set of features to determine the group of people who are
likely to have a lot of money in their pocket� So� initially we select a possible
set of such features to be considered� and then evaluate how good these fea�
tures are individually� or may be together in groups� for identifying the class
of people with lot of money� We may conclude that cheaply dressed people
are unlikely to carry a lot of money� therefore the classes �cheaply�dressed
people and well�dressed people� de�ned by the feature quality�of�dress are ap�
propriate for identifying the person with the highest amount of money� Once
we note that the class of well�dressed people is likely to contain the person
that we are looking for� we can focus the search only on this class of people�
Now we may note that a new feature� type�of�watch� can further classify the
class of well�dressed people in a useful manner� We note that people who are
well�dressed and wear an expensive watch are likely to have a lot of money�
At the same time� the feature hair�style may turn out to be a bad choice and
di
erent hair�styles may have nothing to do with the money� So we choose to
use the features quality�of�dress and type�of�watch together to de�ne a small
class of people who are likely to contain what we are looking for� As we see�
intelligent guessing in the current context involves formation of hypotheses�
consideration of the classes de�ned by the individual hypothesis� evaluation
of hypotheses� and selection of appropriate hypotheses�

We consider hypotheses de�ned by the feature set� use it to divide the search
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space into di
erent classes� and evaluate hypotheses using samples taken from
the search domain� The set of features to which we restrict our attention may
be pre�determined or dynamically constructed during the course of the search�
We started with three features� however� in addition to the individual features�
we also noted that considering some of these features together may turn out to
be quite useful� We can certainly argue that such subsets of features should be
considered as a new feature itself� Therefore dynamic construction of features
is a clear possibility� However� it is not di�cult to imagine a situation when the
number of such possible combinations of di
erent features becomes enormous�
For any n features there are �n di
erent possible subsets of features� Since �n is
an exponentially growing number� very soon we shall realize that consideration
of all such combinations may not be achievable� Therefore� we need to restrict
our scope somehow to a moderate set of hypotheses� We can now summarize
the main steps of our intelligent scheme to �nd the person with the highest
amount of money without checking everyone�s pocket as follows�

��� restrict the set of hypotheses to be considered to a moderate size�
��� consider a hypothesis and divide the search domain into di
erent classes

using the hypothesis�
��� take samples for evaluating the distribution properties of the classes�
�
� compare the hypotheses with each other� create an ordering� and select

appropriate hypotheses�
��� select the better classes de�ned by the chosen hypotheses for further

exploration�

Although we can design di
erent variations of the above scheme� the underly�
ing processes for hypotheses formation� evaluation through the consideration
of the class properties� and exploitation of good hypotheses for subsequent
search remain invariant� This document emphasizes these fundamental pro�
cesses of non�enumerative adaptive search�

The problem discussed above illustrates a typical situation in a BBO� where
the objective to �nd the person with highest amount of money is replaced by
a general computable objective function� The search space is a well�de�ned
domain� in this paper we shall only consider a discrete search domain� The
samples taken from the search domain are generated by the search operators
of the BBO algorithm� Despite these super�cial di
erences� the fundamental
steps of intelligent guessing about the desired quality solution is essentially the
same as what is delineated earlier in this section� Since guessing is essentially
an inductive process� at this point it may be appropriate to make the concepts
slightly more formal following the standard literature on induction ���� �note
that we are referring to inductive learning not to mathematical induction��

The word hypothesis may mean di
erent things in di
erent contexts� There�
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fore� let us choose a rather well�de�ned set�theoretic object called relations � ���
instead of the word hypothesis� In our previous example� di
erent combina�
tions of the features quality�of�dress� watch�type� and hair�style correspond
to di
erent relations� These relations divide the domain into di
erent classes
and the class properties are in turn evaluated by taking samples� This decom�
position of BBO is illustrated in Figure �� This �gure uses similarity based
equivalence relations � and classes for the relation and class space respectively�
The search domain is the space of all four�bit binary strings� The SEARCH
�Search Envisioned As Relation and Class Hierarchizing� framework proposed
elsewhere ���� ��� makes use of this decomposition of BBO into ��� relation�
��� class� and ��� sample spaces� SEARCH emphasizes two main important
underlying processes of BBO algorithms� ��� evaluations and construction of
partial ordering� followed by selection of good relations� and ��� evaluation
and construction of partial ordering� followed by selection of good classes�
Note that we used the phrase �partial ordering� since in general there may
be cases when construction of a strict ordering among the relations and the
classes is not possible�

In SEARCH� relations that are inherently good for decision making are said to
properly delineate the search space� If we construct a partial ordering among
the classes de�ned by a relation� select the �top� ranked classes for further
exploration� and the class containing the optimal solution is one among those
selected classes� then we say that relation properly delineates the search space�
The function �top� is typically de�ned either implicitly or explicitly by the
algorithm� Moreover� construction of the partial ordering among the classes
requires a comparison statistic that is again provided by the chosen algorithm�
Therefore� for a given class comparison statistic and a de�nition of �top�� we
can identify a certain group of delineable relations that help identify the classes
containing the desired quality solutions�

Earlier we noted that computation is manageable only when the set of all rela�
tions to be considered is moderate� Similar argument can be made in the class
space too� Note that evaluation of a relation requires evaluation of the classes
it de�nes� If a relation divides the search space into a very large number of
classes� then evaluating those classes is going to be computationally expensive�
Therefore� we need to consider only a moderate number of relations� and also
only those relations that de�ne a moderate number of classes� Let us introduce

� A relation is de�ned as a set of ordered tuples� A class is a tuple of elements

taken from the domain under consideration� In this document we will primarily be

concerned with tuples taken from space of n�ary Cartesian products of the search

domain with itself�
� An equivalence relation is a relation that is re�exive� symmetric� and transitive�

Equivalence classes are the classes de�ned by an equivalence relation� Similarity

based equivalence relations among a space of binary sequences de�ne equivalence

based on the similarity among the sequences�
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an index associated with the relations for representing the number of classes
that it de�nes� Let us call a relation of order�k if k is the logarithm of the
number of classes it de�nes� We would like to consider only those relations for
which k is a small constant� Therefore� a BBO algorithm essentially needs to
detect order�k delineable relations where k is a small constant�

This discussion points out that since induction is an essential part of BBO� a
search for appropriate relations is critical� Instead of looking for better solu�
tions from the beginning� an �intelligent� BBO algorithm should

��� �rst detect the structure of the search space� induce relations and classes
to capture that� and then

��� identify desired quality solutions by guiding the search following the de�
tected structure�

The SEARCH framework captures this perspective in a formal manner� Ap�
preciating linkage learning requires understanding the foundations of this per�
spective� Therefore� before addressing linkage learning� let us brie�y overview
this framework�

� Overview Of SEARCH

This section presents a brief abstract overview of the decomposition of BBO�
following the SEARCH framework� Figure � presents a process oriented view
of the following major components of SEARCH�

��� classi�cation of the search space using relations
��� sampling
��� evaluation� ordering� and selection of better classes
�
� evaluation� ordering� and selection of better relations
��� resolution

Each component is brie�y discussed in more detail in the following� A relation
is denoted by ri� where i is the index of the set of all relations� �r� under
consideration of the algorithm� Let Ci be the collection of the classes� created
by relation ri� The set of relations Sr actually used by an algorithm to solve the
given BBO is a subset of �r� Denote the members of Ci by C��i� C��i � � �CNi�i�
where Ni is the total number of classes in Ci�

Once the relation ri is used to generate Ci the next step is to evaluate the
classes in Ci� To do that we need samples from the domain of optimization�
We assume that the BBO algorithm is equipped with at least one operator to
generate new samples� This operator can be either a random sample generator
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or a smarter one that exploits information from the prior relation� class� and
sample evaluations�

The next step is to construct an ordering among the classes in Ci� To do so�
we need a way to compare any pair of classes� A statistic Tc can be computed
for each of the classes� and they may be compared based on this statistic�
This statistic will be called a class comparison statistic� This class comparison
statistic can be used for computing a tentative ranking among the classes in
Ci� For certain choices of Tc� some classes may not be compared with other
classes� This means that sometimes a total order may not be constructed�
Therefore� in general� a statistic Tc can be used to construct a partial order
on Ci� Let us denote this partially ordered collection by Ci� �� Typically� BBO
algorithms use either distribution dependent or distribution free statistics for
comparing classes� A distribution dependent statistic typically uses mean and
variance information for comparing classes� On the other hand� a distribu�
tion free approach like order statistics ��	� uses properties of the orderings of
class members� Once the ordering is constructed� the next goal is to select
some � � Mi � kCik top ranked classes from Ci� �� Mi represents the total
number of top ranked classes that will be selected for future considerations�
Let TOP�Ci� ��Mi� be a function that returns the �top� Mi classes of Ci� �� The
exact choice of Mi is likely to depend on the decision error probability in
choosing an appropriate relation and ordering construction among the classes�
For example� if sampling is insu�cient� the ordering of classes cannot be re�
lied upon with high con�dence� and drastic elimination of classes may not be
appropriate� Therefore� a relatively larger value of Mi may be used� These Mi

classes constitute the updated version of the class search space� Choosing the
parameter Mi is a responsibility of the BBO algorithm�

Next� this ordering among the classes is used to evaluate the relation ri itself�
Di
erent kinds of statistics can be used to compare relations with one an�
other� We denote this relation comparison statistic by Tr and call it a relation
comparison statistic� The set of all relations currently under consideration is
ordered based on this statistic� Note that� again� this ordering does not have
to be a total ordering� The top Mr relations are kept for future consideration
and the rest are discarded� in a manner very similar to what we did for the
classes� The choice of a good Tr is not quite obvious� This is one among the
main issues that this paper considers�

Not all the relations are appropriate for a given BBO problem� A relation is
not appropriate with respect to the chosen Tc and the BBO problem if the
class �C��i� containing the desired optimal solution is not one among some top�
ranked classes� ordered based on this statistic� If the class C��i is not among
the top Mi classes� the algorithm is not likely to succeed� Let us de�ne a
function DC�ri� T �Mi� that returns a one if C��i � TOP�Ci� ��Mi�� otherwise�
it returns a zero� For a given BBO problem� a relation ri� a class comparison
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statistic Tc� and a parameterMi� if DC�ri� Tc�Mi� � �� we say that ri properly
delineates the search space� If all the properly delineating relations needed to
solve the problem in polynomial time �along problem size� quality of solution
and reliability of the success probability� are in the given relation space �r�
then we call the problem delineablewith respect to �r� Recall from the previous
section that having all the required delineable relations may not be su�cient
since we can only evaluate a polynomial number of classes in polynomial time�
Therefore� we need the problem to be order�k delineable�

Not all the classes de�ned by a relation need to be considered� As more and
more relations are evaluated� the information gathered may be used to prune
out di
erent classes before evaluating a new relation� Let r� be a relation that
is logically equivalent to r� � r�� where r� and r� are two di
erent relations�
the sign � denotes logical AND operation� If either of r� or r� was earlier
found to properly delineate the search space with certain value of Mi� then
the information about the classes that were found to be bad earlier can be
used to eliminate some classes in r� from further consideration� Black�box algo�
rithms often implement a resolution�like process to take advantage of any such
possible decomposability� If the chosen relation ri can be decomposed into a
collection of di
erent relations� denoted by �krk� then resolution can eliminate
bad classes using the information collected from possible earlier evaluations of
some relations in �krk�

Repeated iterations of the above steps result in gradual focusing into those re�
gions of the search space which look better� using the chosen class and relation
comparison statistics� The set of all these relations ri� ri��� � � � used to solve
the problem is denoted by Sr� Whether or not the algorithm approaches the
globally optimal solution depends on whether or not the problem is delineable�
success in �nding proper relations� better classes� and su�cient sampling� A
detailed description of each of these processes can be found elsewhere �����

As noted earlier� choice of a good relation comparison statistic is not quite ob�
vious� This question goes to the heart of the so called linkage learning problem
in genetic algorithms� The following section initiates the discussion�

� Relation Evaluation And Linkage Learning

This paper considers the issue of relation evaluation and comparison for prob�
lems that are order�k delineable with respect to the given relation space� Since
the problem is order�k delineable the objective of the search in the relation
space is to detect relations that are very likely to properly delineate the search
space�
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Detecting delineable relations requires �rst de�ning a good measure to evalu�
ate relations� The SEARCH framework assumes existence of such a measure�
it does not� however� provide us a good measure that can be used to evaluate
relations� Given a set of relations� their respective classes� and a sample set�
we need to identify an e
ective way to decide whether or not the relation is
order�k delineable� This problem is traditionally called the linkage learning
problem in the genetic algorithm literature� Although linkage learning is a
fundamental task for every inductive optimization algorithm independent of
the relation space considered� typically GAs are designed to consider similarity
based equivalence relations in a sequence representation� Therefore� the rest
of this paper will focus on this special case� The following section describes
this special case in further details�

� Illustration� Sequence Representation and Similarity Based Equiv	

alence Relations

Consider an ��bit binary sequence representation similar to the case shown in
Figure �� Let us consider Similarity Based Equivalence Relations �SBERs� in
this sequence space� There exist �� such SBERs� Clearly this is exponential in
� and as a result we cannot consider all of them in a reasonable time for large
values of �� We need to somehow choose a polynomial number of relations from
them� moreover� the every chosen relation must have an order value less than
or equal to some constant k� One way to do that is to restrict the number of f �s
�i�e� the positions of similarity based equivalence� to at most k� This is because
an SBER with k positions of similarity based equivalence de�nes exactly �k

di
erent classes� For example� f��� �f denotes position of equivalence� and
the � character matches with any binary value� divides the space into two
equivalence classes� ���� and 	���� The class ���� contains all the
sequences with � in the leftmost position� and 	��� contains those with
a 	 in that position� Similarly ff�� de�nes classes 		��� �	��� 	����
and ����� SBERs in the sequence space and the corresponding classes are
sometimes called partitions and schemata respectively in the genetic algorithm
literature� Therefore� our relation space is now comprised of order�k relations�
The objective of the search in the relation space is essentially the search for
detecting the delineable ones from the set of

Pi	k
i	�

�
�
i

�
relations� Any member

of this relation space has at most �k classes�

The rest of this paper explores linkage learning for order�k delineable prob�
lems with respect to a relation space de�ned by SBERs in sequence space�
However� before moving any further we would like to explain the rationale
behind choosing this special case�

First of all� representations are typically not chosen randomly� In case of our
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toy problem of �nding the person in the crowd with lot of money� we started
with a sensible set of features� For most of the real life cases� the chosen rep�
resentation is often much better than a randomly chosen one� Although there
may exist interesting problems that are not delineable with respect to their
most obvious representation� we believe that we should take one step at a
time��rst develop accurate algorithms for delineable problems and then ex�
plore representation construction� We also assume that orders of the required
delineable relations are bounded by some constant k� This has a similar ratio�
nale� Most of the real world problems do not exhibit complete non�linearity
where every feature non�linearly interacts with every other feature� Typically�
non�linearity is bounded� in other words only a relatively small number of
features �with respect to �� interact with each other� Simon�s article on the
architecture of complexity ���� o
ers a stimulating discussion on this issue�
Although delineability and non�linearity are two separate but related issues�
bounded non�linearity in many practical problems often su�ces considering
relations� de�ned by only a bounded number of features together�

The next issue is regarding the special case where the relation space is com�
prised on only SBERs� Although SBERS are certainly simple in nature� they
are of popular choice for many inductive learning algorithms such as Decision
trees ��
�� Version space algorithms ���� and others ����� However� it is easy
to construct a problem where more complex relations are needed to capture
certain subsets of the search space� Given their popularity� simplicity� and
historical role in the development of GAs� the authors believe that using the
SBER based relation space is a good choice as a starting point for designing
and testing linkage learning algorithms�

Although the relation space contains �� SBERs� the order�k delineability as�
sumptions restrict the number of e
ectively considered relations to a number
polynomial in �� Clearly we can come up with a polynomial time enumerative
algorithm to evaluate relations� provided we have a good measure to do so�
The objective of the rest of this paper is to o
er a perspective on the e
orts
to develop good relation evaluation measures and e�cient polynomial time al�
gorithms that make use of them for detecting good relations� The importance
of linkage learning has been realized since the dawn of the GA research� The
following section describes the early work in simple GA ���� �	� based linkage
learning�


 Linkage Learning In Simple GA

The simple GA �sGA� does not explicitly process the partitions �SBERs�
and schemata �classes�� Therefore in sGA� there is no explicit e
ort to detect
signi�cant partitions� However� the design of the GAs has been traditionally
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motivated by di
erent aspects of the partition and schema processing �����
Nevertheless� the e�cacy of the implicit processing has been questioned since
the inception of the GAs�

Several e
orts have been made for designing simple GAs that try to detect sig�
ni�cant partitions and schemata� The history of linkage learning e
orts dates
back to Bagley�s dissertation ���� Bagley used a representation in which the
gene explicitly contains both the position and the allele value� For example�
string ��	 ���� 	��� ��� will correspond to the string ��	 in a �xed�locus rep�
resentation of the simple GA� Bagley used the so called inversion operator
for adaptively clustering the related genes that de�ne good partitions and
schemata� The inversion operator works by reversing the order of the genes
lying in between a pair of randomly chosen points along the chromosome�
Although this mechanism was intended to generate new tightly coded par�
titions� Bagley�s work provided no mechanism for accurate evaluation of the
partitions� Moreover� introduction of the inversion operator restricted the use
of GA crossover operator and Bagley did not conclude in favor of the use
of inversion� Rosenberg ���� also investigated the possibility of learning link�
age by evolving the probability of choosing a location for crossover� Although
this approach does not rigorously search for appropriate partitions� adaptive
crossover point may be able to process schemata� with widely separated �xed
bits� better than a single point crossover� Frantz ���� investigated the utility
of the inversion operator and like Rosenberg reported that inversion is too
slow and not very e
ective� Holland ���� also realized the role of linkage learn�
ing and suggested the use of inversion operator despite its reported failure
in earlier studies� Goldberg and Lingle ���� introduced a new PMX crossover
operator that could combine the ordering information of the selected regions
of the parent chromosomes� They concluded that this approach has more po�
tential than the earlier approaches� Scha
er and Morishima ���� introduced
a set of �ags in the representation� These �ags were used for identifying the
set of genes to be used for crossover points� For di
erent test problems� they
noted the formation of certain favorite crossover points in the population� that
corroborated their hypothesis regarding the need for detecting gene linkage�
Goldberg and Bridges ���� con�rmed that lack of linkage knowledge can lead
to failure of GAs for di�cult classes of problems� such as deceptive problems�
Additional e
orts on linkage learning GAs can be found elsewhere �
�� ����

In addition to the growing empirical evidence of the need for well�designed ex�
plicit linkage learning algorithms in the GAs� theoretical advancements have
also started corroborating these observations� E�cacy of such implicit process�
ing of relations has been seriously questioned on theoretical grounds elsewhere
���� ��� �	�� Thierens and Goldberg ��	� showed that simple GA fails to scale
up for the class of problems with only order�k signi�cant partitions� unless
information about the appropriate partitions is provided by the user�
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Among others� merger of the distinct decision making processes in relation�
class� and sample spaces into a single selection process over the population and
the lack of adequate e
orts to methodically search for the appropriate order�k
partitions makes the SGA less scalable� The SGA also has some additional
problems in the context of e�cient partition search� A single sample from the
search space can be used for the evaluation of all the relations under consid�
eration� This is because that sample must belong to some schema de�ned by
any partition� This is often called implicit parallelism in the GA literature�
Although this can be exploited in a very systematic manner when relations
are methodically processed� implicit processing of schemata makes this quite
noisy in the sGA� These observations regarding the problems of simple GA in
searching appropriate partitions and schemata resulted in the development of
a new class of genetic algorithms that explicitly search for the delineable re�
lations and classes� However� before discussing these algorithms we would like
to develop a Walsh representation based perspective of partition evaluation�
The following section discusses this�

� Linkage Learning� And Walsh representation

As we noted in the previous section� implicit detection of delineable partitions
through the simple GA selection does not appear to be a scalable solution
to di�cult linkage learning problem� However� explicit detection of linkage
requires an appropriate measure for detecting linkage� It turns out that� al�
though we cannot determine delineability of relation without the knowledge
of the desired solution� we can still de�ne a quite accurate measure to con�
struct a partial ordering among the partitions based on their contribution to
the objective function value� This can be done in a straight forward manner
by representing the objective function using a set of suitable basis functions�
Walsh representation ��� provides one possible way to do so for SBERs in
sequence representation� In the Walsh representation� the objective function
can be viewed as a linear combination of the �tness contributions from the
di
erent partitions� This provides a nice approach for associating a notion
of �signi�cance� with the di
erent partitions� The absolute magnitude of the
individual partition contribution to the objective function can be used for
evaluating and comparing the partitions�

Although a linkage learning algorithm does not necessarily have to use Walsh
representation for evaluating relations� in the rest of this paper we shall use
this approach to understand the underlying mechanism of di
erent explicit
linkage learning genetic algorithms� We shall do so because the authors be�
lieve that Walsh representation can serve this purpose well for SBERs in a
sequence representation� at least until a better approach is developed� The
following section o
ers a brief review of the Walsh representation� This will be
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followed by a discussion on the suitability of this chosen approach to compare
partitions�

��� Brief review of Walsh representation

Walsh functions ��� are orthogonal functions that found applications in many
di
erent �elds such as signal processing� image analysis� and others� Like
Fourier� Laplace� and other transformations� Walsh functions are often used
to transform the representation into a convenient form� Application of Walsh
transformation �WT� in understanding Genetic Algorithms was �rst noted
by Bethke ���� Further investigation of this approach can be found elsewhere
��
� ��� ��� 
��� Traditionally the Walsh functions are designed for binary
sequences� However� they can easily be extended to higher cardinality repre�
sentation� as shown elsewhere ����� Therefore all the arguments to be made in
the coming sections using WT can be extended for higher cardinality repre�
sentations� For a string �x� of � binary variables� WT makes use of �� Walsh
functions as a basis set� where each basis function corresponds to a unique
partition j� They can be de�ned as follows�

�j�x�� ����

x�j� ���

Where j and x are binary strings of length �� In other words j � j�� j�� � � � j�
and x � x�� x�� � � �x�� �j�x� can either be � or ��� A function f�x� can be
written using the Walsh basis functions as follows�

f�x� �
X

j

wj�j�x� ���

where wj is the Walsh Coe�cient �WC� corresponding to the partition j as
de�ned in the following�

wj �
X
x

f�x��j�x� ���

We note from Equation � that the �tness function can be expressed as a
linear sum of the Walsh functions� each weighted by the corresponding Walsh
coe�cients� The Walsh coe�cient wj can be viewed as the relative contribution

of the partition j to the function value of f�x�� Therefore� the absolute value
of wj can be used as the �signi�cance� of the corresponding partition j� The
following section explains this proposition�
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��� The Walsh perspective of linkage learning

The absolute value of the Walsh function re�ects the relative importance of a
partition with respect to others in terms of its contribution to the objective
function� Consider an ��bit maximization problem and a partition j� Without
loss of generality let us assume that wj is a positive number� Let  j be the

set of all partitions that involve at least one variable used in the partition j�
Let C


��

j
and C


��

j
be the collections of schemata for which the Walsh function

�j�x� takes a value of � and �� respectively� Now if we take a member of any

of the classes in C

��

j
and modify its values only over the �xed positions of the

partition j in such a way that it becomes a member of one of the classes in C

��

j
�

the overall objective function value may be increased by an amount �wj if the
change in feature values does not cause some other partitions in  j to decrease
the objective function value� However� in general� �xing the values of partition
j may restrict the choice of feature values in some other partitions in !j �  j

and as a result partitions in !j may increase or decrease the objective function
value� The overall change in objective function value because of the changes
in partition j can therefore be computed as �j � ��wj "

P
k��j

wk�k����� By
no means does the above discussion claim that the suggested relation measure
can be e�ciently computed and used for constructing a partial ordering in
the relations for any general class of objective functions without adopting any
approximation� Selection of a few �polynomialy bounded� good relations re�
quires construction of a partial ordering among the relations� In other words�
we should be able to quickly identify the relations that signi�cantly contribute
to the objective function and discard the rest� This fundamentally means that
there exists a large number of relations whose contribution to the objective
function is negligible� The order�k delineability property satis�es this require�
ment� Clearly� this property of the representation depends on the choice of the
basis functions to de�ne the relations� and Walsh representation is unlikely to
be a universally good choice of basis for representing the relations� However�
we believe that Walsh representation works quite well for understanding the
linkage learning of SBERs�

Partitions with non�zero Walsh coe�cients also re�ect the underlying non�
linearity of the given problem� For example� consider an objective function
f�x�� x�� x�� x
� � f��x�� x��"f��x�� x
�� In the Walsh representation the value
of w
j��j��j��j�� and w
j��j��j�� and any such other Walsh coe�cient correspond�
ing to partitions involving a pair of variables� one each from the two linearly
decomposable partitions� is zero� However� note that having w
j��j��j��j�� � 	
does not necessarily mean that x�� x�� x�� x
 there does not exist any low or�
der interaction among these variables� For example� if the WCs coe�cients
corresponding to every order�� partitions have a non�zero� signi�cant WC�
then �xing the value for some �xi� xj� is going to e
ect every other partition
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�xi� xk� and �xj� xm�� As result� we may have to consider higher�order parti�
tions� subsuming overlapping order�� partitions� An example of this case can
be found elsewhere ����� that constructed a class of order�� deceptive problems
using only up to order�� non�zero WCs� However� this by no means suggests
that partitions� higher than order�� but less then order�k are not needed to be
considered for learning linkage information� This is because non�linear interac�
tions among more than three variables can always be contributed by non�zero
WCs for higher order partitions�

The following section describes the �rst e
ort to develop the so called messy
GA that tries to detect linkage in an explicit manner�

� The Messy GA� Early E
orts

The messy GA �mGA� ���� ��� �
� ��� is one among the few early e
orts that
was speci�cally developed for linkage learning� The mGA took at least two
important steps�

��� Separated the partition and schema spaces from the sample space and
thereby paid explicit attention to the partition and schema processing�

��� Focused on only the order�k delineable problems�

The mGA uses a population that contained all �deterministically enumerated�
order�k schemata de�ned by the chosen representation� So the population size
was

�
�
k

�
�k� where � is the problem length� The population is cleverly used

to represent the partition and schema spaces during the initial stage of the
algorithm� It gradually switches the population to the sample space during the
following stages� This switching process will be more obvious once we discuss
the messy representation later in the section� The search process is distinctly
divided into two stages� namely�

� Primordial stage� Detects appropriate partitions and schemata� population
represents the partition and schema spaces�

� Juxtapositional stage� Computes intersection among the better schemata
to �nd the optimal solutions� once the good partitions and schemata are
detected� population gradually switches to the mode representing the sample
space�

The complexity of the mGA is O��k�k�� The following section describes the
mGA representation�
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	�� Messy representation

The mGA uses a richer representation compared to sGA in order to learn the
appropriate partitions and also to be able to use the population for represent�
ing both the schema and sample space� Just like Bagley�s GA representation
���� the mGA gene is an ordered pair� �locus
 value�� The locus gives the actual
position of the gene in the decoded string and the value is any letter from the
alphabet set�

The messy GA strings can be under�speci�ed� exactly speci�ed or over�speci�ed�
For example� in a ��bit problem the string ��	 ���� 	��� ���� ���� ��� is
over�speci�ed� the string ��	 ���� ���� 	�� is exactly speci�ed� and the string
��	 ���� ��� is under�speci�ed� Over�speci�ed strings are mapped to a string
containing � unique genes by left�to�right scanning of the strings on the basis
of �rst�come �rst�served preference� The over�speci�ed and exactly speci�ed
strings are samples from the search space� On the other hand� an under�
speci�ed string with k unique genes de�nes a schema of order�k� In mGA�
partitions are evaluated based on the quality of the schemata it de�nes� The
schemata de�ned by the under�speci�ed strings are evaluated using a local
search template string� This template is a locally optimal string that remains
unchanged during a particular iteration of the messy GA� The template is
always exactly speci�ed� The missing genes of an under�speci�ed string are
�lled in by the template� The incompletely speci�ed string ��	 ���� ��� pro�
duces the string ��	 ���� 	��� ��� once it is expressed in the context of the
template ��	 ���� 	��� 	���

	�� Messy operators

The messy GA uses two main operators� ��� thresholding selection and ��� the
cut and splice operator� The following sections describe these operators�

	���� Thresholding selection

As noted earlier� the mGA population represents the complete order�k schema
space during the primordial stage� However� there must be a mechanism to pay
attention to the partitions for making sure that the schemata from di
erent
partitions are not compared to each other� Since selection is the primary mech�
anism for comparing di
erent schemata� the mGA imposes certain restrictions
on the selection operator� It introduces an operator called thresholding selec�
tion that tries to minimize selective competition among schemata that do not
share more than a certain threshold number �called the thresholding parame�
ter� of genes with same locus� Consider the strings ��� 	��	 	��� ��� ���	 ����
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and ��� 	��� ���� The �rst two strings de�ne equivalence classes 		�� ��� over
the relation ff�� On the other hand� the last string de�nes the class �	� over
the relation �ff � Clearly� comparing the �rst two makes sense� because they
are from the same relation� however� the last string must be restricted from
competing with the other two strings� since it belongs to a di
erent relation�
The thresholding selection avoids such competition to some extent� Typical
mGA implementations use thresholding based tournament selection ��� ����
The following section describes the mGA cut and splice operator�

	���� Cut and Splice operation

The cut and splice operation simulates the behavior of crossover for strings of
di
erent lengths� Consider the strings ��� ���	 ���� 	�� and ��� ���� 	��	 ���� ����
The cut operation randomly picks two points� one for each string� Let us say
that it picks � and � for the �rst and second string� respectively� The cut opera�
tion then splits the �rst string into ��� ���	 ��� and ��� 	��� The second string is
also divided into the strings ��� ���� 	��	 ��� and ��� ���� The splice operation
swaps the split parts and generates new strings� In the current example� splice
operation generates the strings ��� ���	 ���� ��� and ��� ���� 	��	 ���� 	���
The following section describes the overall organization of the mGA�

	�� Organization of the messy GA

The messy GA works by iterating within two loops�the outer and inner loops�
The variable of the outer loop is the order of the partitions under consideration�
The inner loop searches for appropriate schemata of order de�ned by the outer
loop variable and produces solutions by combining these schemata using the
cut and splice operations� The overall mechanism is described in the following�

� Outer loop begins� The outer loop iterates over the order of the partition ��
At the initial iteration of the outer loop� � may be chosen as � if no other
prior information is available� Initially� the template is randomly generated�

� Inner loop�
��� Initialization� The population is initialized deterministically with strings

of length �� It contains all the ��
�
�
�

�
order�� schemata� The objective

function values of all these strings are evaluated by �rst �lling up the
missing genes from the template�

��� Primordial phase� The primordial phase applies thresholding selection
alone for detecting the appropriate schemata� Once the good schemata
are detected by applying selection for certain number of generations� this
phase stops�
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��� Juxtapositional phase� During this phase both thresholding selection and
cut�#�splice operators are used� Good strings are picked� cut� and then
spliced to generate better strings� As string lengths continued to grow and
become either exactly speci�ed or over�speci�ed strings� the population
accordingly started to represent more the sample space� rather than the
schema space�

�
� Inner loop ends� The template is set to the best solution found at the end
of the juxtapositional stage of the previous iteration of the inner loop�

� Outer loop ends� The algorithm stops when the order of partitions consid�
ered exceeds a certain value or some other stopping criterion is satis�ed�

The mGA organization was very di
erent from the previous linkage learning
e
orts in the sense that it decomposed the search into two explicit stages� one
for detecting better schemata and the other for exploiting them for searching
the problem domain� Although the mGA did not explicitly use the Walsh
framework to detect the signi�cant partitions� interpreting the mGA schema
evaluation in terms of the Walsh representation may provide us useful insight�
Let us consider evaluation of schemata de�ned over a certain partition j
p��
Let us write all the partitions that do not involve any variable contained in the
partition j
p� in a column matrix form and denote it by the symbol Wp� Let
Wp be the column matrix of all other Walsh coe�cients that are not in Wp�
We can now write the �goodness� of a schema H� evaluated in the context of
a template �G� as�

f�H�� G� � W T
p �p�H�� G� "W T

p �p�H�� G� �
�

where �p and �p are the corresponding column matrices of the Walsh func�
tions� The term �H�� G� denote the string generated by schema H� with the
rest of the genes �lled using the template G� Let us now consider the expres�
sion of another competing schema� H�� de�ned over the same partition j
p��
Since both H� and H� are de�ned over the same partition� only the sign of �p

changes� Therefore

f�H�� G�� f�H�� G� �W T
p ��p�H�� G�� �p�H�� G�� ���

The thresholding selection operator of the mGA essentially makes a decision
based on this di
erence when schemata from the same partition are compared
to each other� If the expression on the right side of the equation � is greater
than zero� schema H� is considered better than H�� Although this does not
tell us speci�cally about the signi�cance of the speci�c partition j
p�� it tells us
the contribution of all the partitions that involve variables from j
p�� Schemata
that e
ectively manipulate the Walsh functions for optimizing the objective
functions grow during the primordial stage� If none of the partitions involving
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any variable from j
p� has signi�cant Walsh coe�cients then the term W T
p of

equation � will also be insigni�cant compared to that of the signi�cant parti�
tions� However� note that since the Walsh coe�cients may have di
erent signs�
the mGA schema evaluation will mistakenly conclude a Wp to be insigni�cant
if the large WC�s cancel themselves out�

Several e
orts have been made to extend this work on both abstract and ap�
plication grounds� Merkle ��	� developed a parallel implementation of original
messy GA� He ��
� also addressed data distribution strategies for the parallel
implementation of mGA� Additional work on parallel mGA can be found else�
where ����� Although the population size in the primordial stage grows poly�
nomially with problem size �� O��k� is a fairly large number for any reasonable
value of k� Plevyak ���� investigated the possibility of smaller population size
in the primordial stage� Mohan ���� applied mGAs for clustering� A hierar�
chical controller based on messy GAs is reported elsewhere ��	�� Whitley ����
reported an application of mGA for feature subset selection�

However� the mGA have some problems as described in the following�

��� Template based schema evaluation� The mGA used the template guided
schema �tness for comparing classes and relations� As noted earlier� this
template based evaluation does not necessarily correctly tell us about the
signi�cant partitions and it can be misleading�

��� Expensive enumerative search for schemata� The explicit enumeration of
all order�k schemata is very expensive �O�	k�k���

��� Lack of mechanism for exploiting implicit parallelism� Since di
erent rela�
tions simply divide the sample space in di
erent classes� the same sample
set can be used to evaluate di
erent relations� Traditionally in the GA
literature� it is called implicit parallelism� The mGA does not exploit the
computational bene�ts of implicit parallelism�

The following section describes a major extension of the mGA that tries to
address the second and third problems listed above�

� The Fast Messy GA

The fast messy GA �fmGA� proposed elsewhere ���� ��� made an e
ort to
reduce the cost of deterministic initialization by using the so called prob�
abilistically complete initialization �PCI� and building�block �ltering �BBF�
techniques� Each of them is brie�y described in the following sections�
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�� Probabilistically complete initialization

The basic idea behind the probabilistically complete initialization is that all
the �k

�
�
k

�
schemata can be de�ned using a much smaller number of strings�

when the string length is higher than k� In other words� strings represent
multiple schemata over di
erent partitions at the same time� The number
of ways a string of size �� 
 k contains a gene combination of size k may
be calculated by assigning k genes to the string and then choosing the total
number ways ���k genes can be created from ��k genes� This is simply

�
��k
���k

�
�

Note that the total number of strings of size �� created with � genes is
�
�
��

�
�

Thus if we take ng �
�
�
��

�
�
�
��k
���k

�
string samples each of length �� randomly� on

average there will be one string that will have the desired gene combination
of size k� ng decreases exponentially as the string length �

� increases� Further
details can be found elsewhere �����


�� Building�Block �ltering

During the primordial phase of fmGA� thresholding selection increases the
proportion of the better strings� However� in addition to that� the string
length needs to be gradually reduced from length �� to k� Gradual reduc�
tion of string length is accomplished by increasing the number of copies of
the strings by applying thresholding selection� followed by random deletion of
genes� This process of detecting the good schemata by thresholding selection
and gene deletion is called building�block �ltering� Consider the sequences of
string lengths generated by successive applications of gene deletion� denoted by
	
��� 	
��� � � �	
i� � � �	
N �� The initial string length 	
�� � �� and the �nal string
length 	
N � are chosen to be some number close to k� Selection continues for
some number of generations with constant string length 	
i� to produce more
copies of the better strings� Note that these are selection�only generations and
therefore no new function evaluation is needed� This is followed by random
deletion of genes which reduce the string length to 	
i���� These shorter strings
are then evaluated and the same process of thresholding selection and gene
deletion continues until 	
i� � 	
N �� Since gene deletion is applied only after a
certain number of applications of the thresholding selection� the exact sched�
ule for string reduction needs to be carefully designed� Kargupta ���� proposed
one way to do that� However� this process turned out to be somewhat unsta�
ble and success depended on the tuning of the schedule� In order to overcome
this problem� Kargupta ���� proposed an iterative process that applied the
fmGA multiple times for every order in order to assure better performance�
The following section presents the overall organization�
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�� Organization of the fmGA

Like the original messy GA� the fmGA goes through a level�wise processing
of schemata� The selection�only primordial stage is replaced by a primordial
stage that uses thresholding selection and gene deletion for �ltering out the
good schemata along with the probabilistic initialization of population� The
working of the fmGA is very similar to that of the original messy GA� The
main di
erences of the fmGA are the following� ��� probabilistically complete
initialization� ��� gradual reduction of string length by random deletion of
genes during primordial stage� and ��� multiple iteration within the each level�
The following section presents some experimental results�


�� Experimental results

The fmGA was tested on di
erent classes of problems ����� This paper reports
only a small fraction of the results� It reports the performance for boundedly
deceptive problems that require only k�bit interactions using the modi�ed BBF
scheduling technique proposed elsewhere ����� The deceptive trap ��� function
is de�ned as� f�x� � k if u � k� f�x� � k���u otherwise� where u is the
unitation variable� or the number of ��s in the string x� and k is the length of
the sub�function� This function is widely reported to be di�cult for simple GA
since low order partitions lead sGA toward the wrong direction� If we carefully
observe this trap function� we shall note that it has two peaks� One of them
corresponds to the string with all ��s and the other is the string with all 	�s� For
� � �		� and k � �� the overall function contains 
	 sub�functions� therefore�
an order�� bounded �		�bit problem has �
� local optima� and among them�
only one is globally optimal� As the problem length increases� the number of
local optima exponentially increases�

Problems comprised of order��ve trap functions are constructed by concate�
nating non�overlapping order�� sub�functions� Figures � and 
 show the per�
formance of the fmGA for �		�bit and ��	�bit problems respectively� The
population is kept to ���		 and ���		 respectively� This was done following
the population sizing equation for fmGA described elsewhere ���� ���� The
total number of function evaluations for the �		�bit and ��	�bit problems are
�		� �			 and 
��� 			 respectively� Note that the number of function eval�
uations for the �		�bit problem is larger than that for the ��	�bit problem
because in the former case� the fmGA found the best solution after several
iterations� on the other hand� the fmGA could not improve the best solution
of the �rst iteration using additional iterations� Since these are relatively big
problems and population sizes are quite large� only order�� level of the fmGA
is run with a locally optimal template in order to reduce the computation time�
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The following section summarizes the conceptual strengths and weakness of
the fmGA�


�� Strengths and weaknesses of the fmGA

The fmGA replaced the enumerative initialization �O��k�� of the original messy
GA by an O��� probabilistically complete initialization� Since the building�
block �ltering schedule can have at most O��� steps� the overall sample com�
plexity of the primordial phase is O����� This computational bene�t is fun�
damentally based on the fact that the fmGA exploits the power of implicit
parallelism� de�ned earlier� This is the main conceptual contribution of the
fmGA�

However� the fmGA has some weak points too� The main problem is that the
fmGA assumes that the thresholding selection is perfectly capable of restrict�
ing the schema competition to only those that belong to a single partition� It
turns out that thresholding selection cannot maintain that reliably for the pe�
riod of time needed to reduce the string length to O�k� from �� ����� Although
Kargupta ���� suggested a multiple iteration based approach to reduce this ef�
fect� this resulted in an increased number of function evaluations� So� although
the population sizing in fmGA is drastically reduced by using strings of length
O���� the detection of schemata from the strings using thresholding selection
and gene deletion appears to be di�cult� Merkle ���� has proposed a frame�
work to analyze fmGA�like linkage learning algorithms that use tournament
selection with thresholding� and building�block �ltering� He posed the prob�
lem of selecting BBF �ltering schedule and other parameters as a constrained
optimization problem in which the objective function is directly related to
the expected e
ectiveness� He also derived the Kuhn�Tucker conditions for
the optimality of a parameter set of a generalized version of the fmGA� Par�
allel implementations of the fmGA have also been developed and discussed
elsewhere ���� ����

The fmGA can also be understood in the light of Walsh representation� The
fmGA uses an initial string of length close to the problem length� Therefore
the contribution of the templates is initially minimal and� as the BBF process
continues� the role of the template in schema evaluation continues to increase�
Since the string length is greater than that of the schema of length k �as in the
case of mGA�� the size of W T

p decreases and that of W T
p increases� However

for any pair of two di
erent strings the number of Walsh functions that take
di
erent value is exactly ����� Therefore the total number of non�zero terms
in equation � remains the same� As the string length gets reduced by gene
deletion� di
erent subsets of elements in the Walsh di
erence matrix �right
hand side of equation �� take non�zero values� As a result the �tness of a
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schema� embedded in a string� changes� Clearly� this results in evaluation of a
schema based on di
erent members of the schema� however� it is not clear how
this approach can be used for more precise information regarding signi�cant
partitions�

The following section describes a gene expression based messy GA that keeps
the string length to the problem size �� however it replaces fmGA schema
detection technique by a more e�cient and scalable technique�

�� Gene Expression Based Messy GAs

The recent past has witnessed a series of e
orts on the development of a new
class of messy GAs� called the Gene Expression Messy Genetic Algorithm
�GEMGA� �
� �
� 
	� ��� ��� ��� ��� ��� 
��� The GEMGA tries to detect
signi�cant partitions using a scalable approach motivated by the natural pro�
cess of gene expression� This paper reports the latest version of the GEMGA
described in detail elsewhere �
� ��� ��� 
���

���� Population sizing and representation

In order to detect a schema� the GEMGA requires that the population con�
tain at least one instance of that schema� The population size in GEMGA is
therefore� m � c	k� where c is a constant and 	 is the alphabet size� Although
we treat c as a constant� c is likely to depend on the variation of �tness values
of the members of the schema� Note that the population size is independent
of the problem size �� For all the experiments reported in this paper� the
population size is kept constant�

In GMEGA� the strings are always exactly speci�ed� A GEMGA gene is a data
structure that contains the locus� value� and capacity� The capacity �eld is used
facilitating the schema detection process in the GEMGA� The chromosome
also contains a dynamic list of lists called the linkage set� It is a list of weighted
lists� Each member of this collection of lists� called locuslist� de�nes a set of
genes that are related� Each locuslist also contains three factors� the weight�
goodness� and trials� The weight is a measure of the number of times that the
genes in locuslist are found to be related in the population� The goodness value
indicates how good the linkage of the genes is in terms of its contribution to
the �tness� The trial �eld indicates the number of times the linkage set has
been tried�
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���� Linkage learning in the GEMGA

Linkage learning in the GEMGA is accomplished using three processes� namely�
��� Transcription and ��� PreRecombinationExpression� and ��� Recombina�
tionExpression�

The GEMGA Transcription operator detects local symmetry in the �tness
landscape by noting the relative invariance of the �tness values of chromo�
somes under transformations that change the value of one dimension� one at
a time� It changes the current value of a gene to a di
erent value� randomly
chosen from the alphabet set� and notes the change in �tness value� If the �t�
ness deteriorates because of the change in gene value� that gene is identi�ed as
the symmetry breaking dimension� On the other hand� if the �tness improves
or does not change at all� the gene is marked as a symmetry preserving 


dimension� Finally� the value of that gene is set to the original value and the
�tness of the chromosome is set to the original �tness� This process contin�
ues for all the genes and �nally all the genes that are tentatively marked as
symmetry breaker are collected in one set� called the initial linkage set� The
mechanism of the transcription operator can be understood in terms of the
WCs� Since any two unique binary strings have exactly ���� Walsh functions
with di
erent values� identifying the contribution of half of all the Walsh coef�
�cients requires only one bit di
erence between the strings� In other words� if
we subtract the �tnesses of two strings X� and X� �where they di
er only in
one position� the di
erence gives us the contribution of all partitions involving
that position� The GEMGA explicitly notes the �tness di
erence by changing
the value only along that dimension� If �f�X��� f�X��� is very close to zero�
we can neglect the contribution of all the Walsh coe�cients in the matrix
Wp to the �tness of string X�� If �f�X�� � f�X��� is a large number� then
Wp signi�cantly contributes to the �tness value of the string� This partitions
can be implicitly listed to be signi�cant by simply marking the dimension
under observation� The GEMGA only marks the �tness symmetry breaking
dimensions� therefore� only those dimensions that decrease the �tness upon
changing the value in only one dimension are marked� Since this information
is imprecise� the GEMGA adopts two other steps for identifying the signi�cant
partitions precisely�

The PreRecombinationExpression �nds the signi�cant partitions and schemata
more precisely by collecting population wide statistics� An � 	 � conditional
probability matrix is formed by collecting initial linkage set information from


 Increase in �tness for maximization problem is not considered 
symmetry�

breaking� since it does not contradict the objective of the optimization� Moreover�

we choose to use the word symmetry since its de�nition directly alludes to trans�

formations of the state�
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di
erent randomly selected chromosomes of the population� The i� j�th entry
of this matrix indicates the probability of the occurrence of gene i� when gene
j is present in a linkage set� This matrix is usually constructed using a user
given NoOfLinkageExpt times� For each row i of the conditional matrix� its
maximum value is computed� and the genes that have their probability values
close to the maximum value are included in the linkage set for i�

After the PreRecombinationExpression phase� the GEMGA Recombination
operator is applied iteratively on pairs of chromosomes� The GEMGA recombi�
nation uses the linkage sets for selecting regions of the parent chromosomes to
be exchanged during the crossover� Linkage sets of the o
springs are modi�ed
based on the change in �tness from the parent to the children chromosomes�

Details about the algorithm can be found elsewhere �
� 
��� The population size
in GEMGA is required to be O�	k�� The overall complexity of the GEMGA
is estimated to be O�	k��� The following section demonstrates the linear time
performance of the GEMGA for di
erent classes of additively decomposable
problems� where each subproblem is comprised of � variables�

���� Organization of the GEMGA

The overall structure of the GEMGA is summarized below�

��� Randomly initialize the duly sized population�
��� Execute primordial expression stage� Detect schemata that capture local

�tness symmetry by the so called transcription operator� Since population
size m � c	k� this can be done in time O�	k���

��� PreRecombinationExpression� Identify schemata that capture �tness sym�
metry over a larger domain� This only requires comparing the chromo�
somes with each other and no additional function evaluation is needed�

�
� Execute recombination expression stage�
�a� GEMGA recombination� The GEMGA uses a recombination opera�

tor� designed using motivation from cell meosis process that combines
the e
ect of selection and crossover� Reconstruct� modify schema link�
age sets and their parameters�

�b� Mutation� Low probability mutation like simple GA� All the experi�
ments reported in this paper used a zero mutation probability�

The following section presents the test results�
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���� Test Results

The performance of GEMGA is tested for �ve di
erent problems� namely i�
Deceptive trap �Trap�
 ii� M�uhlenbein �MUH�
 iii� Goldberg�Wang function �
�GW��
 iv� Goldberg�Wang function � �GW�� and v� Massively�Multimodal
function �MULTI�� Each of the functions is constructed by concatenating
order�� sub�functions �both overlapping and non�overlapping versions are con�
sidered�� Functions MULTI and GW� are de�ned in Table ��MULTI is a mas�
sively multimodal function of unitation where the global optima is a string of
all ��s �assuming that length of the sub�function is odd�� Functions GW� and
MUH are de�ned in Table �� Functions GW� and GW� are discussed in detail
elsewhere �
	�� In MUH The global optima is the string of all 	�s while all the
strings having a number of trailing ��s constitute the local optima� Unlike the
case for Trap� here the building block corresponding to the global optima has
a signi�cant amount of overlap with the local optimas�

������ Results � Uniform scaling and non�overlapping sub�functions

Figures ����left� show the number of sample evaluations needed to �nd the
globally optimal solution for problem sizes ranging from �		 to �			� The
results are the average values obtained over ten runs when the problem sizes
range from �		 to �		� and over �ve runs for problem sizes beyond �		 to
�			� For these test problems the sub�functions are uniformly scaled and non�
overlapping� The population size is �		� chosen as described earlier in this
paper� It is kept constant for all the problem sizes� In each case we see that
the number of function evaluations required for attaining the optimal value
linearly depends on the problem size�

������ Results � Non�uniform scaling and non�overlapping sub�functions

Scaling o
ers di�culty to any BBO algorithm that uses a selection like oper�
ator for selecting better solutions from the search space� The problem is that
any such sample is an instance of many di
erent classes de�ned over the search
space� and the contribution of di
erent classes in the overall objective func�
tion value may be di
erent� Some classes may contribute higher than other
classes� For large problems with a large degree of scaling e
ect� this can lead
to a suboptimal convergence for the less scaled optimization variables�

The e
ect of scaling on the performance of GEMGA is investigated for Trap

MUH and GW� functions� for problem sizes of �		� �		� �		� and �		� As
earlier� each function is a concatenation of order � sub functions� A linearly
increasing scaling factor for each set of � sub�functions is taken� For example �
a �		 bit problem has �		 sub�functions� The �rst � sub functions �bits 	 � �
�

��



are scaled by �� next � sub�functions �bits �� � 
�� are scaled by �� and so on�
Figures ��right��� show the results obtained for ten independent runs of the
algorithm for the non�uniformly scaled Trap� MUH� and the GW� functions�
The GEMGA is found to solve all the problems successfully in linear time�

������ Results � Uniform scaling and overlapping sub�functions

This section presents preliminary test results for two overlapping test func�
tions Fc� and Fc� developed elsewhere ����� These functions are constructed
as follows� Fc��x� �

PL��
j	� MUH�sj� where the sj�s are overlapping ��bit sub�

strings of x� The �rst bit does not contribute to the �tness value� Function
Fc� is de�ned as follows� Fc��x� �

PL��
j	� MULTI�sj� Figure � presents the ex�

perimental results for Fc� and Fc�� Population size is kept at �		� The results
are averaged over ten runs�

���� Strengths and Weaknesses of the GEMGA

The main contribution of the GEMGA is the new scalable technique for de�
tecting good partitions and schemata� Although the GEMGA transcription
operator does not precisely identify the signi�cant WCs� it does �lter out the
signi�cant bits individually that participate in signi�cant partitions� More�
over� the PreRecombinationExpression and Recombination Expression stages
further �lter out the good schemata using population�wide statistics�

The GEMGA representation is also rich enough to handle this partial in�
formation about the signi�cant partitions and gradually improve the linkage
estimation� The experimental results presented in the previous section clearly
demonstrate the linear time performance of the GEMGA for a wide range of
problems� A comparison between the number of function evaluations needed
for solving the trap function by the fmGA and the GEMGA will make the
progress obvious�

However� the GEMGA performance can be further improved by establishing
the signi�cant partition detection process on a solid foundation� The current
GEMGA primordial stage does not provide precise information about the sig�
ni�cant partitions� This issue needs to be formally investigated� The following
section suggests one possible approach to do that�
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�� Other Recent E
orts And Future Directions

The fundamental importance and potential of linkage learning algorithms have
gradually started drawing serious attention of several researchers� There ex�
ists several dimensions of the current linkage learning research� This section
presents a brief overview of the current e
orts�

Harik recently introduced the Linkage Learning GA �LLGA� ���� ���� The
LLGA tries to learn linkage by exploiting the so called exchange crossover
operator and the probabilistic expression based representation� The LLGA ap�
pears to work nicely particularly for problems in which construction of a linear
ordering among the partitions is not so di�cult� In a recent work �
�� rela�
tions between compressed introns and the LLGA representation is discussed�
Smith and Fogarty ���� reported a technique for evolving genetic linkage and
to exploit it for adapting the recombination strategy� They reported superior
performance of their linkage learning evolutionary algorithm over traditional
GA�

A linkage learning approach similar to the GEMGA can be found elsewhere
�

�� This approach makes use of a GEMGA�like �ltering approach to detect
the good partitions and schemata� In a recent work ��	� a new linkage learning
algorithm LINC is proposed� The LINC algorithm works by checking second
order non�linearity� It considers feature pairs and performs O���� experiments�
Let us de�ne �fi � f����xi���� � f����xi����� �fj � f�����xj��� � f�����xj���� and
�fij � f����xixj����f����xixj���� where xi is a boolean variable and xi � ��xi�
The LINC algorithm detects linkage by exploiting the fact that if two features
i and j have pair�wise non�linearity then j�fij � �fi � �fjj 
 
� where 
 is a
constant�

A principal component analysis based construction of representation for per�
forming evolutionary optimization has been developed elsewhere ����� Kazadi
�
�� proposed a similar approach to explicitly detect generalized schemata�
that he calls conjugate schemata� His approach proposed a second order non�
linearity detection technique in the continuous space� similar to what the re�
cently proposed LINC algorithm uses in the discrete boolean space� A di
er�
ent technique for detecting the signi�cant relations using a dependency tree
based approach has been proposed elsewhere ���� This approach also exploits
the second order non�linearity and estimates a second order approximation
of the underlying relations� they reported superior performance of their algo�
rithm over other techniques that do not explicitly try to search and exploit
relations� A new algorithm called RGDA is developed elsewhere ���� ��� that
again considers only second order non�linearity and o
ers O���� performance�
Although linkage learning by detecting second order interaction may work
well for many problems� it is not di�cult to construct a problem where this
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may not be su�cient and in fact can be misleading� Therefore� more compre�
hensive approaches for detecting most of the signi�cant partitions need to be
investigated�

One possible approach is to detect the signi�cant partitions by explicitly ap�
proximating the WCs� This approach is currently being investigated by the
�rst author and his students� Note that the WCs can be grouped into di
erent
subsets by de�ning schema like equivalence classes over the space of all indices
of the WCs� For example� we can de�ne the sets w�� � fw��� w��� w��� w��g�
w�� � fw��� w��� w��� w��g� and similarly w��� w��� De�ne� S� �

P
�����k w�

���
where $ is the alphabet set of the representation� Now note that if any of the
individual w���s has a magnitude greater than some threshold value �� then
S� must have a value greater than ��� Therefore� if S� � ��� then none of
the Walsh coe�cients with an index string starting with � has a signi�cant
magnitude� Figure �	 schematically illustrates the �ow of the algorithm� At
every node of the tree we compute S�� and if S� at the i�th node is less than
�� then none of its children can have an S� value greater then �

� and therefore
the subtree can be discarded� If the number of non�zero Walsh coe�cients is
bounded by a polynomial� we should be able to discard many such sub�trees
just by checking the S� at the root of the sub�tree� Using this idea� a poly�
nomial time algorithm has been developed elsewhere �
�� for learning certain
classes of boolean functions� Their approach is based on approximate compu�
tation of S� using a randomly chosen sample set� A similar approach is also
being explored by Thierens ����� The following section answers some of the
common criticisms against linkage learning algorithms�

�� Discussions

Linkage learning or� in general� searching for relations and classes� plays an
important role in blackbox optimization� Unfortunately� there has been a ten�
dency to consider linkage learning as an esoteric research issue that may not
have any relevance to the GA practitioners� This paper clearly pointed out
that this is not true� Detection of linkage in GAs plays a critical role since
GAs are fundamentally based on induction� Linkage learning research some�
times also faces another line of criticism� Sometimes it is argued that linkage
learning may be important in GAs but not in other evolutionary algorithms�
It is true that the linkage learning problem has been traditionally de�ned in
the context of a relation space� comprised of similarity based equivalence rela�
tions� However� the need for detecting relations and classes is universal for all
BBO algorithms� So if any other model of evolutionary computation aspires
to perform scalable optimization� it has to de�ne its relation space and there
must exist a counterpart of linkage learning for that relation space�

��



Yet another common criticism is that the linkage learning GAs are time con�
suming� complex� and do not give satisfactory performance� Before addressing
this issue� we must realize that even approximate detection of the signi�cant
partitions is a di�cult problem� and a good algorithm for that will revolution�
ize many di
erent �elds such as signal processing� machine learning� cryptog�
raphy� and others� There do not exist very many �elds of science and engi�
neering that have addressed this issue of approximate and e�cient detection
of signi�cant partitions� While the early linkage learning e
orts were primarily
designed for breaking the ground and understanding the basic research issues�
linkage learning evolutionary algorithms are starting to get more realistic and
more e�cient� A comparison among the performances of the di
erent messy
GAs will clearly demonstrate the evolution of one class of linkage learning
GAs� Although the recent linkage learning GAs typically o
er sub�quadratic
performance for problems that can be solved using order�k delineable relations
and several real�life applications in large scale data mining �
�� and optimiza�
tion �
�� are currently under way� the authors believe that the linkage learning
algorithms are still in the exploratory stage� We need a lot of hard work on
both theoretical and experimental ground� However� there is no doubt that the
scalable evolutionary algorithms of the ��st century are going to need e�cient
mechanisms for relation and class search� The following section concludes this
paper�

�� Conclusions

This paper presented a conceptual foundation of linkage learning� described
some of the earlier linkage learning GAs� and identi�ed the relatively new
state�of�the�art e
orts� It started by noting that intelligent guessing plays an
important role in non�enumerative inductive BBO� Scalable success of such al�
gorithms require inducing patterns from the sampled data� Relations de�ned
through the representation o
er one way to capture such patterns� Linkage
learning addresses the issue of e�cient� scalable detection of appropriate re�
lations� Therefore the designers of future evolutionary algorithms should pay
careful attention to linkage learning� Since the relation space for even moder�
ately interesting cases is extremely large and designing a measure for relations
evaluation is quite di�cult� there are plenty of tough challenges in this research
area� So far the research has resulted in� ��� sub�quadratic�time approximate
algorithms for problems� that can be solved using order�k delineable similarity
based relations� ��� di
erent techniques for evaluating relations� ��� di
erent
approaches to preserve and disseminate the information regarding good re�
lations and classes among the population members of a GA� These results
await immediate applications and they can be incorporated in the current GA
practice for enhanced� scalable performance�

��



We should realize that the simple GA is unlikely to o
er scalable performance
unless the related feature variables de�ning good delineable relations are rep�
resented adjacently in the chromosome� This essentially implies availability
of signi�cant knowledge about the problem� If such knowledge is not avail�
able a priori and the problem is reasonably large enough then linkage learning
techniques should be employed in order to adaptively detect the appropriate
delineable relations� A spectrum of di
erent sub�quadratic techniques listed
in this paper may serve as the starting point for such purpose� In addition�
techniques for preserving� updating� and propagating the linkage information
should be employed� The current state�of�the�art linkage learning algorithms
can also o
er help in doing so� Although we have just began to scratch the
surface� an increasing number of linkage learning techniques for improving the
scalability of the existing evolutionary algorithms are starting to be available�
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Table �

�left� Massively multimodal function and �right� GW�� u denotes the number of ��s

in the string� The symbol � denotes the don�t care position�

Multi�modal GW�

MULTI�x� � u�� � f��x� GW��x� � � if x � � � � � 	

where� � � if x � � � 	 � 	

f��x� � � if odd�u� � �	 if x � 	 � � � 	

� 	 otherwise � 	 if x � 	 � � � 	

Table �

�left� MUH and �right� GW�� functions odd�	� and even�	� return true if the number

of 	�s in x are odd and even respectively� odd��� and even��� are analogously de�ned�

M�uhlenbein GW�

MUH�x� � � if x � 					 GW��x� � �	 if u�	

� 
 if x � 				� � � if u�k

� � if x � 			�� � � if u�� and odd�	�

� � if x � 		��� � � if u�� and even���

� 	 if x � 	���� � � if u�k�� and odd���

� 
�� if x � ����� � 
 if u�k�� and even���

� 	 otherwise� � 	 otherwise�


	


