

S. Dehuri et al. / Applied Soft Computing 11 (2011) 3106–3113 3107

PD

PD

PD

PD

PD

PD

PD

PD

PD

PD

x4

x3

x2

x1

xm-1

xm

Select best performed PDs/stopping criterion

Fig. 1. Basic architecture of PNN model.

densed PNN model, which is a three layer architecture: input layer

contains only the input features, hidden layer contains PDs and

output layer contains only one neuron. We select an optimal set of

PD’s generated in the hidden layer along with the input features

using the discrete PSO (DPSO) technique [8–10]. This optimal set

is fed to the output layer. In conjunction the weights between hid-

den layer and output layer are optimized by PSO for continuous

domain (CPSO). Why both version of PSO is chosen? The reason is

that compared to other evolutionary algorithms (e.g. GAs), DPSO

and CPSO is easy to implement and require very few parameters to

adjust [11].

The rest of the paper is organized as follows. Section 2 describes

the basics of PNN. In Section 3, PSO is discussed. The proposed

model is formulated and discussed in Section 4. In Section 5, simu-

lation result of the model is presented. Section 6 summarizes this

paper with a prospect of future research directions.

2. Polynomial neural network

2.1. PNN architecture

The PNN architecture is based on the Group Method of Data

Handling (GMDH) [12]. GMDH was developed by Ivakhnenko in

late 1960s to identify non-linear relationship between input and

output variables. However, there are several drawbacks associated

with the GMDH such as its limited generic structure and overly

complex network, and hence prompted a new class of polynomial

neural networks (PNNs). In summary, these networks come with

a high level of flexibility as each PD can have a different number

of input variables as well as exploit a different order of polynomial

(say linear, quadratic, cubic, etc.). Unlike neural networks whose

topologies are commonly fixed prior to all detailed (parametric)

learning, the PNN architecture is not fixed in advance but becomes

fully optimized (both structurally and parametrically).

There are various types of PNN topology are developed so far,

however it is worth noting to cover the basic one for getting more

concrete idea in later part of the paper. The PNN architecture uti-

lizes a class of polynomials such as linear, quadratic and cubic. By

choosing the most significant number of variables and an order of

the polynomial among these available forms, we can obtain the best

ones from the extracted PDs according to selected nodes of each

layer. Additional layers are generated until the best performance

of the extended model has been reached. Such methodology leads

to an optimal PNN structure. Let us assume that the input–output

of the data is given in the following form:

(Xi, yi) = (xi1, xi2, ..., xim, yi), where i = 1, 2, 3, . . ., n, n is the number

of samples and m is the number of features. In matrix form we

represent as follows:







x11 x12 ... x1m : y1

x21 x22 ... x2m : y2

.
xn1 xn2 ... xnm : yn







The input–output relationship of the above data by PNN model

can be described in the following manner: y = f(x1, x2, . . ., xm).

The estimated output of variables can be approximated

by Volterra functional series, the discrete form of which is

Kolmogorov–Gabor polynomial [4] and is written as follows.

y = a0 +
∑

1≤i≤m

aixi +
∑

1≤i,j≤m

aijxixj +
∑

1≤i,j,k≤m

aijkxixjxk + · · · (1)

where ak denotes the coefficients or weights of the

Kolmogorov–Gabor polynomial and x vector is the input variables.

The architecture of the basic PNN is shown in Fig. 1.

Each PDs the basic building block of the PNN model is shown in

Fig. 2.

x1

x2

Polynomial of degree 2 215

2

24

2

1322110
xxaxaxaxaxaaPD ++++++

Fig. 2. Basic building blocks of PNN architecture.

3108 S. Dehuri et al. / Applied Soft Computing 11 (2011) 3106–3113

To compute the estimated output y, we construct a PD for each

possible pair of independent variables. For example, if the number

of independent variables is m, then the total number of possible

PDs is mC2. Here one can determine the parameters of PDs by

the least square fit method by using given training samples. Fur-

thermore we choose the optimal set of PDs from the first layer

and construct a new set of PDs for the next layer of PNN and

repeat this operation until stopping criterion is met. Once the final

layer PD has been constructed, the node that shows the best per-

formance is selected as the output node and all remaining are

discarded. Furthermore by back tracking the nodes of the previ-

ous layers that do not have influence on the output node PD are

deleted.

2.2. High-level algorithm of PNN

The high level algorithm of PNN is described as the following

sequence of steps:

1. Determine the system’s input variables and if needed carry out

the normalization of input data.

2. Partition the given samples into training and testing samples:

the input–output dataset is divided into two parts: training and

test part. Training part is denoted as TR and test part is denoted

as TS. Let the total number of samples is n. Then obviously we

can write n = TR + TS. Using training part we construct the PNN

model (including an estimation of coefficients of the PDs of every

layer of PNN) and test data is used to evaluate the estimated

PNN.

3. Select a structure of the PNN: The structure of the PNN is selected

based on the number of input variables and the order of PDs in

each layer. The PNN structures can be categorized into two types,

namely a basic PNN and a modified PNN. In the case of basic PNN

the number of input variables of PDs is the same in every layer,

whereas in modified PNN the number of input variables of PDs

varies from layer to layer.

4. Generate PDs: In particular, we select the input variables of a

node from m input variables x1, x2, . . ., xm. The total num-

ber of PDs located at the current layer differs according to

the number of selected input variables from the nodes of the

preceding layer. This results in c = m !/r ! (m − r) ! nodes, where

r is the number of chosen input variables. The choice of the

input variables and the order of a PD is very important to

select the best model with respect to the characteristics of the

data, model design strategy, non-linearity and the predictive

capability.

5. Estimate the coefficient of the PD: The vector of coefficients �a =

(a0, a1, a2, a3, a4, a5) is derived by minimizing the mean squared

error between yi and ỹji,

E =
1

TR

TR
∑

i=1

(yi − ỹji)
2,

where ỹji = a0 + a1xp + a2xq + a3xp
2 + a4xq

2 + a5xpxq, 1 ≤

p, q ≤ m, j = 1, 2, 3, . . . , m(m − 1)/2.

In order to find out the coefficients, we need to minimize the

error criterion E. Differentiating E with respect to all the coeffi-

cient we get the set of linear equations. In matrix form we can

write as Y = X·A,

Equivalently, XT·Y = XT·X·A

⇒ A = (XT·X)·XT·Y.

This procedure is implemented repeatedly for all nodes of the

layer and also for all layers of PNN starting from the input layer

and moving to the output layer.

Further, the following simple algorithm can find out the index

of the input features for each PD.
1. Let layers be l.

2. Let k = 1,

3. FOR i = 1 to m-1

4. FOR j = i + 1 to m

5. Then PD1
k receives input from the features

6. p = i; & q = j;

7. k = k + 1;

8. END FOR

9. END FOR

6. Select PDs with best predictive capability: Each PD is estimated and

evaluated using both the training and testing data sets. Using

the evaluated values, choose PDs which give the best predictive

performance for the output variable. Normally we use a pre-

specified cutoff value of the performance for all PDs. In order

to be retained at the next generation the PD has to exhibit its

performance above the cutoff value.

7. Check the stopping criterion: Two termination methods can be

exploited.

7.1 The following stopping condition indicates that an optimal

PNN model has been accomplished at the previous layer,

and the modeling can be terminated. This condition reads

as Ec ≥ Ep,where Ec is a minimal identification error of the

current layer, and Ep denotes a minimal identification error

that occurred at the previous layer.

7.2 The PNN algorithm terminates when the number of iter-

ations predetermined by the designer is reached. When

setting up a stopping (termination) criterion, one should

be prudent in achieving a balance between model accuracy

and an overall computational complexity associated with the

development of the model.

8. Determine new input variables for the next layer: If any of the above

two criterion fails then the model has to be expanded.

In this work, the PDs along with the features are selected by

DPSO. Section 3 will describe how DPSO is working in general.

3. Particle swarm optimization

Particle swarm optimization (PSO) introduced by Kennedy and

Eberhart [10] in 1995, is an emerging population based opti-

mization method. PSO has been applied successfully to optimize

continuous non-linear functions [10], neural network [13], non-

linear constraint optimization problems [14], etc. Most of the

applications have been concentrated on solving continuous opti-

mization problems, but the studies of PSO on discrete optimization

problems are relatively few. In this paper both continuous and dis-

crete version of PSO is used for optimization of the proposed model.

Therefore it is worth noting to discuss both continuous and discrete

versions of PSO.

3.1. PSO for continuous domain (CPSO)

In PSO a set of randomly generated solutions (initial swarm)

propagates in the design space towards the optimal solution over

a number of iterations (moves) based on large amount of informa-

tion about the design space that is assimilated and shared by all

members of the swarm. A complete chronicle of the development

of the PSO algorithm form merely a motion simulator to a heuristic

optimization approach is described in [10].

The standard PSO algorithm broadly consists of three computa-

tional steps:

(i) generation of particles’ position and velocities;

(ii) updating the velocity of each particle; and

(iii) updating the position of each particle.

S. Dehuri et al. / Applied Soft Computing 11 (2011) 3106–3113 3109

Here, a particle refers to a potential solution to a problem. A

particle �xk in d-dimensional design space is represented as �xk =

〈xk1, xk2, xk3, . . . , xkd〉, where k = 1, 2, 3, . . ., N, N is the number of

particles in a swarm. Each particle has its own velocity and main-

tains a memory of its previous best position �pk = 〈pk1, pk2, ..., pkd〉.

Let the vector �pg = 〈pg1, pg2, ..., pgd〉 refer to the position found by

the gth member of its neighborhood (i.e., entire swarm) that has had

the best performance so far. The particle changes its position from

iteration to iteration based on velocity updates. In each iteration
�pg and �pk of the current swarm is combined with some weighting

coefficients to adjust the velocity of the particles in the swarm. The

velocity and position of a particle can be updated using Eqs. (2) and

(3) respectively.

�vk(t + 1) = w ⊗ �vk(t) + �c1 ⊗ �r1(t) ⊗ (�pk(t) − �xk(t))

+ �c2 ⊗ �r2(t) ⊗ (�pg(t) − �xk(t)). (2)

�xk(t + 1) = �xk(t) + �vk(t + 1). (3)

The symbol ⊗ denotes point-by-point vector multiplication.

The inertia/momentum factor w (0 < w ≤ 1), the self confidence

factor c1 and swarm confidence factor c2 are non-negative real

constants. Randomness (useful for good state space exploration)

is introduced via the vectors of random numbers �r1 and �r2. They

are usually selected as uniform random numbers in the range [0,1].

Over the years many researchers have fine tuned these parameters

and found out very standard optimized values [15]. The three steps

of velocity update, position update, and fitness computations are

repeated until a desired convergence criterion is met. There are also

other alternative criteria to stop, however convergence and stabil-

ity of the standard PSO has been proposed by many researchers [16].

3.2. PSO for discrete domain (DPSO)

In the above discussion, PSO is restricted in real number space.

However, many optimization problems are set in a space featuring

discrete or qualitative distinctions between variables. To meet the

need, Kennedy and Eberhart [8] developed a discrete version of PSO.

Discrete PSO essentially differs from the original (or continuous)

PSO in two characteristics. First, the particle is composed of the

binary variable. Second, the velocity must be transformed into the

change of probability, which is the chance of the binary variable

taking the value one.

By Eq. (3), each particle moves according to its new velocity.

Recall that particles are represented by binary variables. For the

velocity value of each bit in a particle, Kennedy and Eberhart [8]

claim that higher value is more likely to choose 1, while lower value

favors the 0 choice. Furthermore, they constrain the velocity value

to the interval (0, 1) by using the following sigmoid function:

s(vkd(t)) =
1

1 + exp(−vkd(t))
, (4)

where s(vkd(t)) denotes the probability of bit xkd(t) taking 1. In this

work we extend the DPSO proposed in [9] and used synergistic way

with the proposed method.

4. Proposed method

While simulating the PNN model it is observed that the num-

ber of partial descriptions generated in each layer grows very fast.

As a result, lot of time is consumed in generating the PDs. In gen-

eral the PDs giving poor performance are rejected. But still then

a substantial number of PDs needs to be preserved to get better

result in subsequent layers. It is observed that always PDs giving

best result do not combine to yield improvised result. Very often

we found that PDs giving better result combined with PDs giving

inferior result may improve the performance in subsequent layers.

Therefore it is always essential to preserve substantial number of

PDs in a hope of getting better result in subsequent layers. In turn

huge amount of memory and running time is needed for the process

of generation of a model for a dataset with large scale [17].

Each PD tries to approximate the input output relationship of

the dataset. In the proposed model, we have developed PDs for a

single layer (i.e. hidden layer). The generated PDs along with the

original features are undergone for evaluation. The optimal set of

PDs as well as features obtained after evaluation is given as the

input to the output neuron. For searching such an optimal set of

PDs along with features is accomplished in this paper by discrete

version of the PSO. Additionally the weight vector between hidden

and output neuron is optimized by a continuous version of PSO.

Fig. 3 shows the proposed abstract model.

In our model, m represents the number of features in the dataset

and k represents the number of PDs generated out of m features.

One bias is included to the net at this level. There are m + k + 1

number of weights to be optimized. The following procedure with

synergistic effect of CPSO and DPSO describes the architecture

shown in Fig. 3.

1. DETERMINE the number of input variables and the order of the

polynomial forming a partial description (PD) of the data.

2. ESTIMATE the coefficients for the PDs of the hidden layer.

3. SELECTION the PDs and features with the best predictive accuracy

by DPSO.

4. RANDOMLY INITIALIZE the weights between hidden layer and

output layer.

5. ESTIMATE MSE by comparing the generated outputs with the

desired outputs.

6. CHECK WHETHER THE STOPPING CRITERION is met or not. If not

then go to the step 7 otherwise stop.

7. UPDATE THE WEIGHTS by CPSO and go to the step 5.

4.1. DPSO in proposed method

The DPSO algorithm deals directly with discrete variables

(attributes and PDs), its swarm of candidate solutions contains

particles of different sizes. Potential solutions to the optimization

problem at hand are represented by a swarm of particles. There are

‘N’ particles in a swarm. The size of each particle may vary from 1

to n, where n = k + m is the number of variables – PDs and attributes

in this work. In this context, the length of a particle refers to the

number of different attribute and PDs indices. In this work each

particle is logically partitioned into two parts.

For example, given i, j ∈{1, 2, 3, . . ., N} in DPSO it may occur that

a particle pi in the swarm has size 7 (pi ={* , * , * , * | + , + , +}), ‘*’

represent PDs and ‘+’ represent feature, whereas another particle

pj in the same swarm has size 3 (pj ={* | + , +}) and so forth, or any

other sizes between 1 to m + k.

4.2. Particle representation

The m + k number of features and PDs are represented by a

unique positive integer number or index. These numbers or indices

vary from 1 to m + k. A particle is a subset of non-ordered indices

without representation, for example, pi ={1, 2, 6|10, 7}, i ∈{1, 2, 3,

. . ., N}.

4.3. Swarm initialization

The initial swarm used by the DPSO is always identical to the ini-

tial swarm randomly created by binary PSO (BPSO) [8]. They differ

only in the way in which solutions are represented. The conver-

3110 S. Dehuri et al. / Applied Soft Computing 11 (2011) 3106–3113

w2

wk

w1

wk+m+1

wk+1

wk+2

wk+m

Selection and

training

1

xm

x2

x1

xm

x2

x1

PD1

PD2

PD k

∑

Fig. 3. The proposed model.

sion of every particle in the initial swarm of solutions of the binary

PSO to the discrete PSO initial swarm as follows. The index of every

PDs and features are copied to the new solution of the DPSO initial

swarm.

For example, an initial candidate solution for the binary PSO

algorithm equal to bpi = 〈 1, 0, 1|0, 1, 1 〉 is converted into dpi = 〈 1,

3|5, 6 〉 for the DPSO algorithm. Initializing the particle pi in this way

causes different particle in DPSO, to have different sizes. In the DPSO

algorithm, for simplicity once the size of a particle is determined

at the initialization, the particle will keep the same size during the

entire execution of the algorithm.

4.4. Representation of particle velocity

The DPSO algorithm does not use a vector of velocities as the

standard PSO algorithm does. It works with proportional likeli-

hoods instead. Arguably the notion of proportional likelihood used

in the DPSO algorithm and the notion of velocity used in the stan-

dard PSO are somewhat similar. Each particle in DPSO is associated

with a 2-by-m + k array of proportional likelihoods (denoted as V),

where 2 is the number of rows in this array and m + k is the number

of columns-note that the number of columns in V is equal to the

number of features and PDs of the problem.

This is an example of a generic proportional likelihood array,

V =

(

proportional − likelihood − row

attribute − PDs − index − row

)

.

Each of the n-elements in the first row of V represents the

proportional likelihood that an attribute and PDs be selected. The

second row of V shows the indices of the attributes associated with

the respective proportional likelihoods.

There is a one-to-one correspondence between the columns of

this array and the features and PDs of the problem domain. At the

beginning all elements in the first row of V are set to 1. After the

initial swarm of particles is generated, this array is always updated

before a new configuration for the particle associated to its gener-

ated. The updating of the likelihoods V is based on the current, best

and global best position of the particle and three constant updating

factors namely p˛, pˇ and pı. These updating factors determine the

strength of the contribution of current, best and global best towards

the optimal accuracy. Note that p˛, pˇ and pı are parameters chosen

by the user. The contribution of these parameters to the updating

of V is as follows. All indices present in current position of the par-

ticle have their correspondent proportional likelihood increased

by p˛. In addition to that, all indices present in best position so far

attained by the particle have their correspondent proportional like-

lihood increased by pˇ. The same for global best position for which

the proportional likelihoods are increased by pı. In this work the

values of p˛, pˇ and pı is determined empirically but this can be

fine tuned depending on the complexity of the problem. The new

updated array V replaces the old one and will be used to generate

a new configuration to the particle associated to it as follows.

4.5. Updating particle position

The proportional likelihood array V is then used to update the

position of the particle – the particle associated to V. To complete

the process a series of operations is performed on the array. To start

with, every element of the first row of the array is multiplied by a

uniform random number between 0 and 1. A new random number

is drawn for every single multiplication performed.

A new particle position is then defined by ranking the columns in

V by the values in its first row. That is the elements of the first row of

the array are ranked in a decreasing order of value, and the indices

of the features and PDs – in the second row of the array V – follow

their respective proportional likelihoods. The next operation now

is to select the indices that will compose the new particle position.

The CPSO follows what is described in Section3. Once the algo-

rithmic framework has been explained, the next section describes

the simulation of the proposed model with data set obtained from

University of California, Irvine (UCI) repository [18].

5. Simulations and results

The performance of the model is evaluated using the benchmark

classification databases. Out of these, the most frequently used in

the area of neural networks and of neuro-fuzzy systems are IRIS,

WINE, PIMA, BUPA Liver Disorders. All these databases are taken

S. Dehuri et al. / Applied Soft Computing 11 (2011) 3106–3113 3111

Table 1

Description of datasets used.

Dataset Patterns Attributes Classes Patterns in

class 1

Patterns in

class 2

Patterns in

class 3

IRIS 150 4 3 50 50 50

WINE 178 13 3 59 71 48

PIMA 768 8 2 268 500 –

BUPA 345 6 2 145 200 –

Table 2

Division of dataset and its pattern distribution.

Patterns Patterns in

class 1

Patterns in

class 2

Patterns in

class 3

IRIS

Set 1 75 25 25 25

Set 2 75 25 25 25

WINE

Set 1 89 29 36 24

Set 2 89 30 35 24

PIMA

Set 1 384 134 250 –

Set 2 384 134 250 –

BUPA

Set 1 172 72 100 –

Set 2 173 73 100 –

Table 3

Parameters considered for simulation of RPNSN model using PSO.

Parameters Values

Population size 20

Maximum iterations 100

Inertia weight 0.729844

Cognitive parameter 1.49445

Social parameter 1.49445

Constriction factor 1.0

p˛ , pˇ , pı {0.12, 0.23, 0.27}

from the UCI machine repository [18]. Table 1 presents the sum-

mary of the main features of the datasets used for experimental

studies.

The data set is divided into two parts. The division of datasets

and its class distribution is shown in Table 2.

One part is used for building the model and other part is used

for testing the model. The protocol used for our simulation studies

is given in Table 3.

The average percentage of correct classification obtained for the

test sets is provided in Table 4 for the purpose of comparison. The

measurement of the correct classification of the proposed model

and PNN should be a reliable estimate of how well that model

classifies the test samples – unseen during the training phase. The

confusion matrix is used for the estimation of classification accu-

racy.

In Table 5 the percentage of PDs used in our model is given,

which is also very crucial aspect to obtain an optimum model.

Table 6 shows the processing time of both PNN and proposed

method.

Table 4

Comparison of average percentage of correct classification of test sets with PNN and

proposed model.

Data set PNN Proposed model

IRIS 98.68 99.3333

WINE 94.872 99.4382

PIMA 65.1042 76.823

BUPA 70.196 73.9061

Table 5

Percentage of PDs used by the proposed model to obtain the optimum model.

Data set Total number of

possible PDs

% of PDs used in

optimized model

Set 1 Set 2

IRIS 6 33.33 50.00

WINE 78 32.05 19.23

PIMA 28 21.43 32.14

BUPA 15 33.33 26.67

Table 6

Comparison of processing time performance of PNN with proposed method (in

seconds).

Datasets PNN Proposed method

IRIS

Set 1 129 0.6563

Set 2 125 0.6719

WINE

Set 1 225 4.5625

Set 2 224 4.7031

PIMA

Set 1 783 8.1406

Set 2 793 8.4531

BUPA

Set 1 352 2.2969

Set 2 353 2.4219

The mathematical model obtained by our model for Iris dataset

is presented as an example.

PD1
2 = [−0.96751, −0.25663, 0.65004,

− 0.13994, 0.044319, 0.10067] ∗ poly(x1, x3),

PD1
3 = [1.633, −1.0407, 1.4825, −0.051333, 0.09108,

− 0.067678] ∗ poly(x1, x4);

PD1
1 = [−1.7572, 1.4898, −2.4317, 0.3308, −0.15092,

− 0.018686] ∗ poly(x1, x2);

PD2
16 = [2.0965, 1.4134, −0.84284, 0.046201,

− 0.57289, 0.079276] ∗ poly(PD1
2, x3);

PD2
28 = [2.2683, 1.7305, −1.2497,

− 0.22651, 0.15639, 0.15237] ∗ poly(PD1
3, x2);

PD2
38 = [−1.8284, −0.58075, 0.42213, 0.081458,

− 0.25631, 0.015491] ∗ poly(PD1
1, x3);

PD3
496 = [−0.054529, 0.54087, 0.45923,

− 1.1876, 0.6309, 0.60812] ∗ poly(PD2
16, PD2

28);

PD3
557 = [−0.043133, 0.59432, 0.41454,

− 0.75286, 0.39684, 0.3952] ∗ poly(PD2
28, PD2

38);

3112 S. Dehuri et al. / Applied Soft Computing 11 (2011) 3106–3113

x1

x3

x1

x4

x1

x4

x1

x2

1

2PD

1

3PD

1

1PD

1

3PD

2

28PD

2

28PD

2

38PD

4

332PD

2

16PD

3

496PD

3

357PD

x3

x2

x3

x2

Fig. 4. PNN model for Iris dataset.

y = [0.0057053, 1.158, −0.15925, 5.3642, −2.208, −3.156]

∗poly(PD3
496, PD3

557);

where function ploy(a1, a2) {return [1, a1, a2, a1*a2, a12̂, a22̂]T;}, PDi
j

is the output of layer i and jth partial description, y is the output of

the PNN model and x is the input features.

The architecture of the PNN model generated is given in Fig. 4.

The mathematical model obtained by our model for Iris dataset

presented below.

PD1
1 = [12.265, −27.379, 2.7124, −5.0129, 16.636, 2.6568]

∗poly(x1, x2),

PD1
5 = [3.4633, −0.61437, −4.7075, 3.5712, 0.32404, −0.37042]

∗poly(x2, x4),

y = [0.02099x4 + 0.62292PD1
1 + 0.33345PD1

5 + 0.10778];

The architecture of our model generated is given in Fig. 5.

The confusion matrix is an alternative ways to show the exper-

imental results, which is obtained from our model for the entire

dataset. The confusion matrices for the class 2 datasets are shown

in Table 7 and the confusion matrix for the class 3 datasets are

shown in Table 8.

x1

x2

1

1PD

x2

x4

1

5PD

x2

1

∑

Fig. 5. Proposed model for iris dataset.

Table 7

Confusion matrix for two class datasets.

Actual Predicted

c1 c2

BUPA

C1 85 60

C2 30 170

PIMA

C1 134 134

C2 44 456

Table 8

Confusion matrix for three class datasets.

Actual Predicted

c1 c2 c3

IRIS

c1 50 0 0

c2 1 49 0

c3 0 0 50

WINE

c1 59 0 0

c2 0 70 1

c3 0 0 48

6. Conclusions

In this paper, we have proposed a condensed polynomial neural

network using swarm intelligence for the classification task. Our

model generates PDs for a single layer of the basic PNN model. DPSO

selects the optimal set of PDs and input features, which are fed to

the hidden layer. Further, the model optimizes the weight vectors

using CPSO technique. The experimental studies demonstrated that

our model performs better classification accuracy. In all the cases,

the results obtained with the proposed model proved to be better

than the PNN results. The performance of our model is better in

terms of processing time, which is also treated as one of the crucial

aspects in data mining. The future work includes more fine tuning

of the parameters p˛, pˇ and pı on biological data.

Acknowledgement

Dr. S. Dehuri would like to thank the Department of Science

and Technology, Govt. of India vide letter number SR/BY/E-07/2007

dated 03-01-2008 for financial support under the BOYSCAST fel-

lowship 2007–2008 and Prof. S.-B. Cho, Department of Computer

Science, Yonsei University, Seoul, Korea for providing the Soft Com-

puting Laboratory facilities.

References

[1] T.M. Mitchel, Machine Learning, McGraw Hill, 1997.
[2] Y.H. Pao, Adaptive Pattern Recognition Neural Networks, Addison Wesley, MA,

1989.
[3] R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, John Wiley and Sons

(Asia) Pte. Ltd, 2001.
[4] T.-S. Lim, W.-Y. Loh, Y.S. Shih, A comparison of prediction accuracy, complexity,

and training time of thirty-three old and new classification algorithms, Machine
Learning 40 (2000) 203–228.

[5] A.G Ivakhnenko, Polynomial theory of complex systems, IEEE Transactions on
Systems, Man and Cybernatics-I (1971) 364–378.

[6] A.G. Ivakhnenko, H.R. Madala, Inductive Learning Algorithm for Complex Sys-
tems Modelling, CRC Inc., Boca Raton, 1994.

[7] S.-K. Oh, W. Pedrycz, B.-J. Park, Polynomial neural networks architecture: anal-
ysis and design, Computers and Electrical Engineering 29 (2003) 703–725.

[8] J. Kennedy, R.C. Eberhart, A discrete binary version of the particle swarm algo-
rithm, in: Proceedings of the IEEE International Conference on Systems, Man,
and Cybernetics vol. 5, 1997, pp. 4104–4109.

[9] E.S. Correa, A.A. Freitas, C.G. Jhonson, Particle swarm for attribute selection in
Bayesian classification: an application to protein function prediction, Journal

S. Dehuri et al. / Applied Soft Computing 11 (2011) 3106–3113 3113

of Artificial Evolution and Applications 2008 (2008), doi:10.1155/2008/876746,
12 pages, Article ID 876746.

[10] J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings IEEE
International Conference on Neural Networks IV, Piscataway, NJ, 1995, pp.
1942–1948.

[11] R.C. Eberhart, Y. Shi, Comparison between genetic algorithms and particle
swarm optimization, in: V.W. Porto, N. Saravanan, D. Waagen, A.E. Eiben (Eds.),
Evolutionary Programming VII, Springer, 1998, pp. 611–616.

[12] S.J. Farlow, The GMDH algorithm, in: S.J. Farlow (Ed.), Self-organizating Meth-
ods in Modelling: GMDH Type Algorithm, Marcel Dekker, New York, 1984, pp.
1–24.

[13] F. Van den Bergh, A.P. Engelbrecht, Cooperative learning in neural network
using particle swarm optimizers, South African Computer Journal 26 (2000)
84–90.

[14] A.I. El-Galland, M.E. El-Hawary, A.A. Sallam, Swarming of intelligent parti-
cles for solving the nonlinear constrained optimization problem, Engineering
Intelligent Systems for Electrical Engineering and Communications 9 (2001)
155–163.

[15] Y. Shi, R.C. Eberhart, Parameter selection in particle swarm optimization, in:
V.W. Porto, N. Saravanan, D. Waagen, A.E. Eiben (Eds.), Evolutionary Program-
ming VII, Springer, 1998, pp. 611–616.

[16] Y. Shi, R.C. Eberhart, A modified particle swarm optimizer, in: Proceedings of
the IEEE Conference on Evolutionary Computation, AK Anchorage, 1998.

[17] B.B. Misra, S. Dehuri, P.K. Dash, G. Panda, A reduced and comprehensible poly-
nomial neural network for classification, Pattern Recognition Letters 29 (2008)
1705–1712.

[18] C.L. Blake, C.J. Merz, UCI repository of machine learning databases, 1998,
http://www.ics.uci.edu/∼mlearn/MLRepository.

	1.pdf
	ASC-11-2011-p3106-3113.pdf

