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application domains like function optimization [25,26], finding

optimal routes [29], scheduling [29], image and data analysis [30].

Different applications have been originated from the study of dif-

ferent types of swarms. The most popular among them are ant

colonies and bird flocks [27]. Ant Colony Optimization (ACO) [29] and

Aggregation Pheromone Systems (APS) [25,26] are computational

algorithms modeled on the behavior of ant colonies. ACO [29] algo-

rithm is designed to emulate ants’ behavior of laying pheromone

on the ground (while moving) to solve optimization problems.

Pheromone is a type of chemical emitted by an organism to commu-

nicate between members of the same species. Pheromone, which

is responsible for clumping or clustering behavior in a species,

brings individuals into closer proximity, is known as aggregation

pheromone. Thus, aggregation pheromone causes individuals to

aggregate around good positions which in turn produces more

pheromone to attract individuals of the same species. In APS [25,26]

(a variant of ACO) such behavior of ants is used to solve real param-

eter optimization problems. A model used for solving continuous

optimization problems [31] was also proposed as an extension of

ant colony optimization (ACO).

Though a large number of techniques exists for ant based

unsupervised classification (i.e., clustering) in the literature [32],

only few attempts have been made for (supervised) classification.

AntMiner is the first of this kind, proposed by Parpinelli et al. [33]

to extract ‘if-then’ classification rule from categorical data. Liu et al.

further extended the algorithm to reduce the computational com-

plexity in AntMiner2 [34] and to increase the classification accuracy

in AntMiner3 [35]. Later Martens et al. in AntMiner+ [36] modified

the existing versions of AntMiner. All the previously proposed ant

based algorithms are based on the extraction of ‘if-then’ classifica-

tion rule.

As mentioned earlier, Aggregation Pheromone Systems [25,26]

are used for continuous function optimization where aggregation

pheromone density is defined by a function in the feature space.

Inspired by the aggregation pheromone system found in ants and

other similar agents, in some of our earlier works, attempts are

made for solving clustering [37], classification [38], image seg-

mentation [30] for gray label bechmark images with encouraging

results. Motivated from the earlier research, in the present article

supervised and unsupervised landuse maps are generated using

aggregation pheromone based techniques [37,30,38].

The rest of the article is organized as follows. Section 2 describes

the detailed descriptions of the proposed methodologies for super-

vised and unsupervised landuse map generation of remotely sensed

images. Details of the experiments are given in Section 3, and finally

conclusions are drawn in Section 4.

2. Proposed methodologies

In this section we will present how landuse map can be

generated from a given multispectral remotely sensed image in

supervised and unsupervised manner using the concept of aggre-

gation pheromone density.

2.1. Supervised method

As mentioned in the previous section, aggregation pheromone

brings individuals into closer proximity. This group formation

nature of aggregation pheromone (found in natural behavior of

real ants) is being used as the basis of the proposed technique.

Here each pixel/data pattern is considered as an ant, and the train-

ing patterns (ants) form several colonies or homogeneous groups

depending on the number of classes present in the data set. Each

ant (in the group) emits pheromone around its local neighbor-

hood. The intensity of pheromone (emitted by an individual ant)

is maximum at the position where the ant is situated and it decays

uniformly with distance from the said position. Hence pheromone

intensity is modeled by the Gaussian function considering the posi-

tion of the ant as the center of Gaussian. When a new test pattern

(ant) comes into the system it tries to join to one of the existing

colonies/groups. A new ant will move towards a colony for which

average aggregation pheromone density (at the location of that new

ant) is higher than that of the other colonies; and hence eventu-

ally the new ant will join that colony. Here average aggregation

pheromone density of a colony is the average of the cumulative

effect of pheromone intensity (at the location of the test ant) emit-

ted by each individual ant belonging to that colony. Thereby each

new individual ant will join a particular colony. This process contin-

ues until all the test patterns (ants) are assigned to some colonies.

As opposed to the other existing ant based classification methods

[33–36], here no ‘if-then’ rule is extracted, rather the proposed algo-

rithm classify each new test (pattern) ant by computing per colony

average aggregation pheromone density deposited by the ants in

the (already formed) colony (training set). Hence the algorithm is

more suited and directly applicable to the data sets with contin-

uous attributes. The proposed supervised aggregation pheromone

density based classification (APC) algorithm for landuse map gen-

eration is described below.

2.1.1. Aggregation pheromone density based classification

Consider a data set with m classes which, by our assumption,

forms m homogeneous groups/colonies of ants or training patterns.

Let x1, x2, x3, . . ., x|Ci |
be the training data patterns in the class Ci.

These patterns are considered as a population of |Ci| number of ants

represented as a1, a2, a3, . . ., a|Ci |
, respectively. These ants form a

group/colony and labeled as Ci. Hence, an ant aj ∈ Ci represents the

training data pattern xj. The intensity of pheromone emitted by an

individual ant aj (located at xj) decreases with its distance from xj.

Thus the pheromone intensity at a point closer to xj is more than

those at other points that are farther from it. To achieve this, the

pheromone intensity emitted by ant aj ∈ Ci is modeled by a Gaussian

distribution. The pheromone intensity deposited at any location x

by an ant aj (located at xj) is thus computed as

��(aj, x) = exp−(d(xj,x)2)/2ı2
(1)

where ı denotes the spread of Gaussian function and d(xj,x) is the

Euclidean distance between xj and x.

Total aggregation pheromone density at x deposited by the

entire population of |Ci| ants belonging to the colony Ci is computed

as

��i(x) =

∑

xj ∈ Ci

exp−(d(xj,x)2)/2ı2
. (2)

Now a new (test pattern) ant at at xt appears in the system. The

average aggregation pheromone density (at the location of that new

ant at) by the colony Ci is given by

��i(xt) =
1

|Ci|

∑

xj ∈ Ci

exp−(d(xj,xt )2)/2ı2
. (3)

The new ant at will move towards a colony for which the average

aggregation pheromone density (at the location of that new ant) is

higher than that of the other colonies. Hence finally the said ant will

join the colony that will be governed by the following equation.

ColonyLabel(xt) = argmax
i

(��̄i(xt)). (4)

If ties occur, i.e. if the (max
i

(��̄i(xt)) is the same for more than

one class (colony) i then the test pattern ant xt is arbitrarily assigned

to any of the colony for which ��̄i(xt) is maximum.
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Thus each of the test ant will join a colony and the corresponding

label of the colony will be the class label of that test pattern (ant).

The proposed supervised aggregation pheromone density based

classification (APC) algorithm is given in Algorithm 1.

Algorithm 1: Aggregation pheromone density based classifier

1: for each new (test) ant at located at xt do

2: for each colony Ci do

3: Calculate the average aggregation pheromone density at location xt

due to all ants in colony Ci using Eq. (3).

4: end for

5: Compute the ColonyLabel(xt ) of the ant at by Eq. (4).//Ties are broken

arbitrarily.

6: end for

2.2. Unsupervised method

We have considered unsupervised land-cover map genera-

tion as a segmentation problem of multispectral remotely sensed

images where segmentation is treated as clustering (grouping) of

pixels in a multidimensional space. Pixels belonging to a particular

cluster are, therefore, spectrally similar.

Clustering is a popular technique for image segmentation [39].

As mentioned in the introduction, aggregation pheromone brings

individuals into closer proximity. This group formation nature of

aggregation pheromone is being used as the basic idea of the pro-

posed algorithm. Here each ant represents a pixel of the input

image. The ants move virtually with an aim to create homogenous

groups of data. The amount of virtual movement of an ant towards

a point is governed by the intensity of aggregation pheromone

deposited by all other ants at that point. This gradual movement of

ants in due course of time will result in formation of groups or clus-

ters of homogeneous pixels (segments). The proposed technique

has two parts. In the first part, from the pixels of the input image,

clusters of homogeneous pixels (segments) are formed based on

ants’ property of depositing aggregation pheromone. The number

of segments (clusters), thus formed, might be more than the desired

number. So, to obtain the desired number of clusters, in the second

part, agglomerative average linkage clustering algorithm is applied

on these already formed clusters. Clusters so formed represent dif-

ferent homogeneous segments of an image.

While performing image segmentation for a given multispec-

tral remotely sensed image, we group similar pixels together to

form a set of spectrally similar coherent image regions. Similar-

ity of pixels can be measured based on feature vectors. Different

gray level values associated with each band corresponding to a

pixel represent the feature vector of a pixel. Clustering is then per-

formed on this set of feature vectors so as to group them. Finally,

clustering result is mapped back to the original spatial domain to

obtain segmented image (landuse map). The proposed unsuper-

vised aggregation pheromone density based clustering (APC) for

landuse map generation is described below.

2.2.1. Aggregation pheromone density based

clustering/segmentation

Consider a data set of n patterns x1, x2, x3, . . ., xn and a popula-

tion of n-ants a1, a2, a3, . . ., an where an ant ai represents the data

pattern xi. Here each pixel of the input image is assumed as a data

point, and hence as an individual ant. Each individual ant emits

pheromone around its neighborhood. Like the classification case,

the pheromone intensity emitted by ant ai is modeled by a Gaussian

distribution. Hence the pheromone intensity ��(ai, x) deposited at

x by an ant ai (located at xi) is computed by Eq. (1).

The total aggregation pheromone density at x deposited by the

entire population of n ants is computed as

��(x) =

n
∑

i=1

exp
−

d(xi ,x)2

2ı2 . (5)

Now, an ant ai which was initially at location xi moves to the new

location x′
i
(which is computed using Eq. (6)) if the total aggregation

pheromone density at x′
i

is greater than that at xi. The movement

of an ant is governed by the amount of pheromone deposited at

different points in the feature space; and is defined as

x
′
i = xi + � ·

Next(ai)

n
(6)

where

Next(ai) =

n
∑

j=1

(xj − xi) · exp
−

d(xj ,xi)
2

2ı2 (7)

with � (a proportionality constant) as the step size. This process

of finding a new location continues until an ant finds a location

where the total aggregation pheromone density is more than its

neighboring points. Once the ant ai finds out such a point x′
i
, then

the point x′
i
is assumed to be a new potential cluster center, say ZC+1

(C being number of already formed clusters; note that, C is initially

set to zero when no cluster exists); and the data point with which

the ant was associated earlier (i.e., xi) is assigned to the cluster so

formed with center ZC+1. Also the data points which are within a

distance of ı/2 from ZC+1 are assigned to the newly formed clus-

ter. On the other hand, if the distance between xi and the existing

cluster center Zj (j = 1,2,. . .,C) is less than 2ı and the ratio of their

densities is greater than threshold density (a predefined parame-

ter), then the data point xi is allocated to the cluster having cluster

center Zj. Higher value of density ratio indicates that the two points

are of nearly similar density and hence should belong to the same

cluster. The proposed unsupervised aggregation pheromone based

clustering (APC) algorithm is given in Algorithm 2.

Algorithm 2: Aggregation pheromone density based clustering

1: Initialize ı, threshold density, �, C = 0

2: for i = 1 to n do

3: if (the data pattern xi is not already assigned to any cluster) then

4: Compute ��(xi) using Eq. (5).

5: label 1:

6: Compute new location x′

i
using Eq. (6)

7: Compute ��(x′

i
).

8: End of label 1

9: if (��(x′

i
) > ��(xi)) then

10: Update the location of ant ai (at xi) to x′

i
and goto label 1.

11: end if

12: if (C == 0) then

13: //If no cluster exist

14: Consider x′

i
as cluster center Z1 and increase C by one.

15: Assign all the data points within a distance of ı/2 from x′

i
to the

newly formed cluster with center Z1 .

16: else

17: for j = 1: C do

18: if (min(��(x′

i
), ��(Z j))/max(��(x′

i
), (��(Z j)) >

threshold density and d(x′

i
, Z j) < 2ı) then

19: Assign x′

i
to Zj .//Zj already exists.

20: else

21: Assign x′

i
as a new cluster center say, ZC+1 and increase C by

one.

22: Assign all the data points that are within a distance of ı/2

from x′

i
to the newly formed cluster with center ZC+1 .

23: end if

24: end for

25: end if

26: end if

27: end for
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2.2.2. Merging of clusters/segments

In the proposed method (described in Section 2.2.1), we have

applied the APC algorithm on the whole data set in only one pass

(iteration). Depending on the parameter values, the number of clus-

ters produced, may be more than the desired number of clusters.

To obtain the desired number of clusters, we applied the average

linkage agglomerative hierarchical clustering algorithm (average

linkage, in short) [40] for merging them.

3. Experimental evaluations

To study the performance of the proposed methodologies, three

multispectral remotely sensed image data have been used. They are

described below along with the details of the experiments carried

out and analysis of results.

3.1. Data sets used

The SATIMAGE data set [41] was generated from Landsat Multi

Spectral Scanner image data listed as Statlog (Landsat Satellite).

The data patterns used for the present investigation are a sub-area

of a scene of 82 × 100 pixels. Each pixel value contains informa-

tion from four spectral bands. The aim is to predict six different

landuse classes present in the data set. The data set contains 6435

patterns with 36 attributes (4 spectral bands multiplied by 9 pixels

in each neighborhood). In our experiment we have used four fea-

tures (17–20) only as recommended by the database designer (i.e.,

the four spectral values of each pixel). As the data is completely

labeled we can use this label information for evaluating the algo-

rithms. Note that, this remotely sensed data is given in random

order and certain lines of data have been removed by database

designer. As a result reconstructing the original image from this

data set is not possible.

IRS-1A Calcutta image (of dimension 512 × 512 pixels) was

acquired by Indian Remote Sensing Satellite (IRS) [42]. The image

used in this article is taken from Linear Imaging Self Scanner

(LISS-II). LISS-II has a spatial resolution of 36.25 m × 36.25 m and

the wavelength range 0.45–0.86 �m. The whole spectrum range

is decomposed into four spectral bands, namely, blue, green, red,

and near infrared (NIR) corresponding to bands 1, 2, 3, and 4, hav-

ing wavelength 0.45–0.56 �m, 0.52–0.59 �m, 0.62–0.68 �m, and

0.77–0.86 �m, respectively. The image covers an area around the

city of Calcutta (now Kolkata) with six major land-cover classes:

pure water (PW), turbid water (TW), concrete area (CA), habitation

(HAB), vegetation (VEG), and open spaces (OS). Few regions like

Dum Dum Airport, Hooghly river, Salt Lake area, Fisheries are also

labeled in the original image (Fig. 1(a)) for typical illustration.

The SPOT Calcutta image (of dimension 512 × 512 pixels) was

obtained by Systeme Pour d’Observation de la Terre (SPOT) satellite

[43] which carries an imaging device High Resolution Visible (HRV)

that uses the wavelength range 0.50–0.89 �m. The whole spec-

trum range is decomposed into three spectral bands, namely, green

band (band1), red band (band2) and near infrared band (band3)

of wavelengths 0.50–0.59 �m, 0.61–0.68 �m and 0.79–0.89 �m,

respectively. In this case also the same six different classes for

the landuse classification of the SPOT image are considered. These

are pond or fishery water (PW), turbid water (TW), concrete area

(CA), habitation (HAB), vegetation (VEG) and open spaces (OS) as

mentioned above. In this image also few landmark regions such

as, Hooghly river (TW), Rabindra Sarobar lake (PW), Gardenrich

(PW), Santragachi lake (PW), Khidderpore dock, Race Course area

are labeled.

The IRS image of Bombay (of dimension 512 × 512 pixels) was

also acquired by the LISS-II sensor. Similar to IRS-1A Calcutta image,

the IRS Bombay image is also available in four bands, viz., blue,

Fig. 1. Histogram equalized images of: (a) IRS-1A Calcutta in NIR (band4), (b) SPOT

Calcutta in NIR (band3), and (c) IRS Bombay in NIR (band4).

green, red, and NIR. The image covers an area of city Bombay (now

Mumbai) with six major land-cover classes as follows. They are

concrete area (CA), habitation (HAB), vegetation (VEG) and open

spaces (OS) and turbid water 1 (TW1) and turbid water 2 (TW2).

Since the water body of Arabian Sea has two distinct regions with

different spectral signature, we considered so two types of turbid

water.

The elongated city area is surrounded on three sides by the Ara-

bian Sea. Towards the bottom right of the image, there are several
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Table 1

Experimental results for SATIMAGE data obtained by supervised methods (classifi-

cation) with 10% training data.

Methods used % OA Kappa S dbw ˇ Time

APC (ı = 5.2) 84.49 0.81 0.31 11.81 1.99

MLP (N1 = 6, N2 = 5) 77.44 0.73 0.39 8.85 39.97

SVM (� = 0.35, C = 500) 81.80 0.77 0.29 11.57 42.02

Table 2

Experimental results for IRS-1A Calcutta image obtained by supervised methods

(classification).

Methods used Training with labeled data 10-Fold cross-validation

S dbw ˇ Time % OA Kappa Time

APC (ı = 5) 0.33 8.73 36.82 92.14 0.90 5.20

MLP (N1 = 7, N2 = 6) 0.35 7.59 42.82 89.87 0.86 11.59

SVM (� = 0.27, C = 325) 0.38 7.98 48.62 90.52 0.88 14.88

islands including the well-known Elephanta islands. The dockyard

is situated on the south eastern part of Bombay which can be seen

as a set of three finger like structure.

The original images of (IRS-1A Calcutta, SPOT Calcutta and IRS

Bombay) have poor illumination, very low contrast and are not

properly visible. Therefore, we have shown the corresponding (his-

togram equalized based) enhanced spectral (NIR band) images in

Fig. 1 instead of showing their original versions. However, all the

investigations are carried out using (feature values of the) original

images.

3.2. Description of experiments

The experiments carried out on the four remotely sensed

data/images are described below.

3.2.1. Experiments with supervised methods

It is mentioned earlier that the SATIMAGE data is completely

labeled. We have randomly chosen 10%, 20%, and 30% training data

for the classifier and the rest as test data in three different simula-

tions. For typical illustration of the experimental outcome, we have

reported only the results using 10% training data. However, we have

observed similar findings considering 20% and 30% training data

also.

IRS-1A Calcutta, SPOT Calcutta and IRS Bombay images con-

sidered here are labeled partially. 375, 362 and 152 pixels only

are labeled for IRS-1A Calcutta, SPOT Calcutta and IRS Bombay

images respectively. Labeled pixels are distributed in the six lan-

duse classes mentioned earlier. These labeled pixels act as training

patterns and the rest are considered as test patterns for the first kind

of experiments (shown as Training with labeled data in Tables 2–4).

In the second kind of experiments (shown as 10-fold cross valida-

tion in Tables 2–4) the labeled data sets are randomly divided into

10 mutually exclusive and (nearly) equal sized subsets. For each

subset, considered as the test set, the classifiers are trained on the

union of all other subsets. Then cross validation is run (10 times)

for each training and test set pair and average results are reported.

Table 3

Experimental results for SPOT Calcutta image obtained by supervised methods

(classification).

Methods used Training with labeled data 10-Fold cross-validation

S dbw ˇ Time % OA Kappa Time

APC (ı = 5.2) 0.23 10.04 30.39 94.14 0.92 4.96

MLP (N1 = 5, N2 = 4) 0.27 9.50 32.39 87.87 0.84 10.45

SVM (� = 0.15, C = 300) 0.35 12.78 52.07 94.30 0.92 13.80

Table 4

Experimental results for IRS Bombay image obtained by supervised methods

(classification).

Methods used Training with labeled data 10-Fold cross-validation

S dbw ˇ Time % OA Kappa Time

APC (ı = 5.2) 0.23 10.74 28.14 92.94 0.88 5.26

MLP (N1 = 6, N2 = 5) 0.29 11.22 32.39 89.87 0.83 10.17

SVM (� = 0.25, C = 328) 0.42 9.73 52.07 88.54 0.80 13.96

(i) Evaluation measures: To evaluate the results quantitatively we

have used some evaluation measures and they are provided

below.

Performance of the algorithms obtained using supervised

methods are compared using percentage of overall accuracy

(OA) [44], Kappa measures [44] and two internal cluster valid-

ity indices namely S dbw [45] and ˇ [2] for the SATIMAGE data.

OA and Kappa measures require the class label information of

all pixels/patterns. Higher the value of these measures, better is

the land-cover prediction. S dbw and ˇ are unsupervised mea-

sures, do not require the class label information; rather they

measure the fit between the partition imposed by an algorithm

and data itself. Lower the value of S dbw and higher the value

of the ˇ index, better is the partitioning.

For other three data sets (IRS-1A Calcutta, SPOT and IRS

Bombay images) we have used S dbw [45] and ˇ [2] for the

experiments requiring training or label data. In the experi-

ments with 10-fold cross validation (done on the training set)

OA and Kappa measure have been used.

(ii) Comparison with other supervised methods: We have compared

the proposed (supervised) classifier APC with two other super-

vised state of the art techniques namely, Multilayer Perceptron

(MLP) using back propagation algorithm [46] and Support Vec-

tor Machine (SVM) [47]. For MLP we have taken two hidden

layers and experimentally determined the number of hidden

neurons in each layer to get the optimum result. The number

of neurons in the first and the second hidden layers (denoted

as N1 and N2) are put within bracket in Tables 1–4. The initial

synaptic weights are randomly assigned in the range [−1,1].

For SVM, libsvm package [48] has been used. In SVM we have

taken radial basis function. The kernel radius � and C (control-

ling parameter for the tradeoff between model complexity and

training error) of the SVM are determined experimentally as

follows. For complectly labeled SATIMAGE data the parameter

values are chosen such that the overall accuracy (OA) is maxi-

mum. For other three data sets, parameters are determined for

which OA is maximum in 10-fold cross validation, and these

parameter values are set for other experiments training with

10%, 20%, 30% training data. Note that for the present inves-

tigation one against all multi class decision criteria has been

used. The selected parameters C and � are shown in bracket in

Tables 1–4. The value of the only parameter ı (shown in bracket

in Tables 1–4) used in the proposed algorithm APC is deter-

mined experimentally for which OA is maximum in 10 fold

cross validation and that ı value is set for other experiments.

(iii) Experimental results and analysis: For SATIMAGE data the per-

formance of the proposed supervised method (APC), MLP and

SVM are summarized in Table 1. It is seen from the table that

APC performs better with all evaluation indices except S dbw.

In terms of S dbw, SVM outperformed the other methods.

The landuse maps of IRS-1A Calcutta image generated by the

APC, MLP and SVM are shown in Fig. 2(a)–(c), respectively.

Careful observation of the generated landuse maps reveals that

there are misclassified pixels in the Hooghly river when MLP and

SVM methods are used. In case of APC there seems to be no or very
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Fig. 2. Landuse maps of IRS-1A Calcutta image generated by supervised methods:

(a) APC, (b) MLP, and (c) SVM.

less such misclassification. In general all the supervised algorithms,

particularly APC, and MLP appeared to perform well. However, con-

trary to the actual Calcutta image, open space (OS) detected by the

SVM is predominant, and vegetation (VEG) area is infrequent.

For IRS-1A Calcutta image, the performance of the supervised

methods in terms of evaluation measures and execution time (in s)

are also shown in Table 2. From the quantitative measures also, APC

is seen to outperform the other two in both kinds of experiments

(Training with labeled data and 10-fold cross validation).

The landuse maps of SPOT Calcutta image generated by super-

vised methods are shown in Fig. 3(a)–(c). Though all the algorithms

seem to perform equally good, minute observations reveal that MLP

and SVM fail to detect various concrete area (CA); whereas APC can

detect such portions. For example, in the upper left portion of the

SPOT Calcutta image the concrete area (CA) determined by the APC

seems to be better than those obtained using MLP and SVM. Also the

misclassification around the Hooghly river bank is lesser in APC and

SVM as compared to MLP. Different regions nearby the Race Course

area seem to be better identified by APC.

The performance of the supervised methods for SPOT Calcutta

image in terms of various performance measures and execution

time (in seconds) are put in Table 3. Performance of the APC method

is the best in terms of S dbw measures. However for all other cases

SVM marginally outperforms the APC.

The landuse map of IRS Bombay image generated by supervised

methods are shown in Fig. 4(a)–(c). From the experimental observa-

tions it is seen that there are lots of misclassification in the turbid

water (TW1 and TW2), particularly in the bottom portion of the

Arabian sea region when MLP (Fig. 4(b)) and SVM (Fig. 4(c)) are

used. The problem is even predominant for the SVM method. On

the other hand in case of APC, (Fig. 4(a)), the misclassification is

very less in such region.

The performance of the supervised methods for IRS Bombay

image in terms of various performance indices and execution time

(in s) are shown in Table 4. Performance of the APC method is bet-

ter (for both kinds of experiments) compared to other methods in

terms of all the performance measures except ˇ. Execution time is

also the least for the APC.

3.2.2. Experiments with unsupervised methods

Here, the same remotely sensed data/images, as used in super-

vised methods, are considered for investigation purpose.

(i) Evaluation measures: As in the supervised methods, here also

for all the data sets we have used two internal cluster valid-

ity indices namely, S dbw [45] and ˇ [2]. In addition to these

internal measures we have used two external cluster validity

indices, namely, Rand and Jaccard [40] for (completely labeled)

SATIMAGE data. Note that, range of the Rand and Jaccard is [0,1].

More is the value of Rand or Jaccard, better is the partition.

(ii) Comparison with other unsupervised methods: We have com-

pared the proposed method with two popular clustering based

image segmentation techniques namely k-means (KM) method

[40] and mean shift (MS) [49] method. In the present inves-

tigation MS algorithm presented in [30] is adopted. Here we

have used Epanechnikov kernel [50]. Note that the proce-

dure automatically detects the number of segments depending

upon the value of the two parameters ‘bandwidth’ (radius) and

‘stop threshold’. For uniform comparison in this article we have

set the ‘bandwidth’ and ‘stop threshold’ for each data, such that

the number of detected clusters (segments) is the same as that

of other methods. We have reported the average (quantita-

tive) results of 10 runs and one typical image with the same

parameter setting. Selected ‘andwidth’ and ‘stop threshold’ are

put within bracket with the MS method in Tables 5–8
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Fig. 3. Landuse maps of SPOT Calcutta image generated by supervised methods: (a)

APC, (b) MLP, and (c) SVM.

Fig. 4. Landuse maps of IRS Bombay image generated by supervised methods: (a)

APC, (b) MLP, and (c) SVM.
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Table 5

Experimental results for SATIMAGE data obtained by unsupervised methods

(clustering).

Methods used Rand Jaccard S dbw ˇ Time

APC (ı = 0.37) 0.85 0.39 0.13 6.43 1.06

KM 0.83 0.38 0.16 7.79 0.89

MS (bandwidth = 0.25;

stop threshold = 3.17)

0.79 0.28 0.26 8.27 4.71

Table 6

Experimental results for IRS-1A Calcutta image obtained by unsupervised methods

(clustering).

Methods used S dbw ˇ Time

APC (ı = 0.11) 0.25 8.58 7.28

KM 0.40 4.80 5.04

MS (bandwidth=0.15; stop threshold = 2.52) 0.54 3.92 80.62

Table 7

Experimental results for SPOT Calcutta image obtained by unsupervised methods

(clustering).

Methods used S dbw ˇ Time

Proposed APC (ı = 0.15) 0.15 12.85 1.01

KM 0.26 5.00 1.85

MS (bandwidth = 0.15; stop threshold = 2.74) 0.22 8.52 10.26

(iii) Selection of parameters: It is evident from Algorithm 2 that

the proposed method has three parameters namely �, thresh-

old density and ı. Here � is the step size. The smaller the step

size, more will be the time taken to explore the feature space.

The performance of the algorithm in terms of validity mea-

sures is found to remain almost constant for a wide range

[0.1–1.9] of �. We have reported the results of the experi-

ments with step size � = 1, as the performance is found to

be constant over a wide range around it. If the ratio of the

pheromone density of a data point and an already formed

cluster center (within distance 2ı) is higher than the thresh-

old density then the data point is assigned to the said cluster.

This assumes that two closer points having nearly similar

pheromone densities should belong to the same cluster. High

threshold density value indicates that pheromone densities of

two points (within distance 2ı) should be very similar (assign

to the same cluster) whereas, less threshold density value indi-

cates that the two closer points may reside in the same cluster

even if their pheromone densities are not very similar. If the

threshold density value is high, it is likely to form large num-

ber of clusters in the initial phase (before merging the clusters);

and if it is less, the number of clusters thus formed (in the initial

phase) may be less. We have executed the algorithm consider-

ing different values of threshold density over the range [0.5–0.9]

and on an average the value of 0.9 has been found to be a suit-

able one. The algorithm is executed for different ı (spread of

the Gaussian) values in the range (0–0.9]; and experimentally

determined ı (shown within bracket in Tables 5–8 with APC

method) is used to produce the optimum results in terms of

validity measures.

Table 8

Experimental results for IRS Bombay image obtained by unsupervised methods

(clustering).

Methods used S dbw ˇ Time

Proposed APC (ı = 0.14) 0.1772 11.3306 1.25

KM 0.3094 4.8271 1.65

MS (bandwidth = 0.23; stop threshold = 2.5) 0.2850 5.4356 11.37

Fig. 5. Landuse maps of IRS-1A Calcutta image generated by unsupervised methods:

(a) APC, (b) KM, and (c) MS.
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Fig. 6. Landuse maps of SPOT Calcutta image generated by unsupervised methods:

(a) APC, (b) KM, and (c) MS.

Fig. 7. Landuse maps of IRS Bombay image generated by unsupervised methods: (a)

APC, (b) KM, and (c) MS.
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(iv) Experimental results and analysis: Experimental results on

SATIMAGE data obtained by the proposed unsupervised

method (APC) compared to KM and MS methods are summa-

rized in Table 5. Among all the evaluation measures, except

ˇ index, performance of APC is found to be better compared

to other algorithms. In terms of ˇ, MS method outperformed

others.

For visual illustration, the landuse maps of IRS-1A Calcutta

image generated by APC, KM and MS methods are shown in

Fig. 5(a)–(c), respectively. From the generated landuse maps it is

seen that different regions are better identified by the proposed

APC method. For example, runway of Dum Dum Airport (CA), two

bridges in the Hooghly river (CA), and Hooghly river (TW) itself is

clearly identified by the APC method as compared to those using

KM and MS. There are lots of misclassification in the landuse map;

particularly concrete area (CA) near the Hooghly river are wrongly

identified as turbid water (TW) by KM and MS methods; whereas

APC detected these regions properly.

The performance of the proposed unsupervised method (for IRS-

1A Calcutta image) in terms of evaluation measures and execution

time (in s) are summarized in Table 6. Superiority of the proposed

APC algorithm is also seen from the table. However, computational

time requirement of the KM method is the least among the three.

The landuse maps of SPOT Calcutta image generated by APC, KM

and MS methods are shown in Fig. 6(a)–(c), respectively. From the

landuse maps, it is seen that like earlier images lots of misclassifi-

cation occurred in the Hooghly river by the KM method; whereas

it is very less by APC and MS methods. However, MS method failed

to detect the Race Course region properly, but APC and KM could

detect it. Also the concrete area (CA) near the Hooghly river seems

to be infrequently detected by MS.

The performance of the proposed unsupervised method APC as

compared to KM and MS methods (summarized in Table 7) in terms

of evaluation measures and execution time (in s) are also found to

be better.

The landuse maps of IRS Bombay image generated by APC, KM

and MS methods are shown in Fig. 7(a)–(c), correspondingly. From

the landuse maps, it is seen that there are lots of misclassification

in both kinds of turbid water (TW1 and TW2); particularly at the

bottom portion of the sea when KM and MS methods are used. The

misclassification is less in case of APC method.

The performance of the proposed unsupervised method APC for

IRS Bombay image as compared to KM and MS methods (summa-

rized in Table 8) in terms of evaluation measures and execution

time (in s) are also found to be better.

4. Conclusions

Motivated from group forming behavior of real ants, in order to

automatically generate landuse maps from multispectral remotely

sensed images, we have proposed two novel ant colony based

algorithms. One is a supervised method, treating land use map

generation as pattern classification problem assuming few labeled

pixels are available from different landuse regions. The other one

is an unsupervised technique considering landuse map generation

as clustering based image segmentation problem. The proposed

supervised APC algorithm is compared with two other popular clas-

sification algorithms, MLP and SVM. One multispectral remotely

sensed data (SATIMAGE) and three remotely sensed images (IRS-

1A, SPOT Calcutta and IRS Bombay) are used for the investigation

purpose. Results are quantified with overall accuracy (OA), Kappa

measure for SATIMAGE, and & S dbw [45] & ˇ [2] indices for all

the data sets. From experimental results, it is observed that super-

vised APC method outperforms the other two algorithms, MLP and

SVM. The proposed unsupervised APC method is compared with

KM and MS using Rand, Jaccard (for comletely labeled SATIMAGE

data), and two external evaluation indices S dbw and ˇ (for all the

data sets). Superiority of the proposed unsupervised APC algorithm

for landuse map generation/prediction is justified from experimen-

tal outcome. In summary, from the experimental observations it is

seen that both supervised as well as unsupervised APC algorithms

are useful for automatic landuse map generation from mutispec-

tral remotely sensed images. In future we plan to test the proposed

algorithms on other kinds of (hyperspectral) remotely sensed data

as well as compare the results with some other existing method-

ologies.
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Appendix A.

A.1. Formulas of evaluation indices

• Overall accuracy (OA) and Kappa coefficient (Kappa): With

respect to statistical measures for accuracy evaluation, the com-

plete description of the information that comes out from the

comparison of the classification of test samples with the refer-

ence labeled data is given by the confusion (or error) matrix [44]

N. N is a square matrix of size C × C (where C is the number of

information classes in the considered problem). The generic ele-

ment nij of the matrix denotes the number of samples classified

into category i (i = 1, . . ., C) by the supervised classifier that are

associated with label j (j = 1, . . ., C) in the reference data set. From

the confusion matrix, different indices can be derived to sum-

marize the information with a scalar value. Let us consider the

sum of the elements of row i, ni+ =
∑C

j=1
nij (which is the num-

ber of samples classified into category i in the classification map),

and the sum of the elements of column j, n+j =
∑C

i=1
nij (which is

the number of samples belonging to category j in the reference

data set). Two commonly adopted indices are the overall accu-

racy (OA) [44] and the kappa coefficient of accuracy (Kappa) [44],

which are defined as

OA =

∑C

i=1
nii

n
(A.1)

Kappa =
n
∑C

i=1
nii −

∑C

i=1
ni+n+i

n2 −
∑C

i=1
ni+n+i

(A.2)

where n =
∑C

i=1

∑C

j=1
nij is the total number of test samples. OA

represents the ratio between the number of samples that are

correctly recognized by the classification algorithm and the total

number of test samples. The Kappa coefficient of accuracy is a

measure based on the difference between the actual agreement

in the confusion matrix (as indicated by the main diagonal) and the

chance agreement, which is indicated by the row and column totals

(i.e., the marginals). The Kappa coefficient is widely adopted, as it

uses also off-diagonal elements of the error matrix and compen-

sates for chance agreement. The value of Kappa coefficient lies in

the range [−1, +1]. More close the value of Kappa to +1, better is the

classification.
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• S dbw: S Dbw index with C number of clusters is based on the

cluster compactness in terms of intra-cluster variance and inter-

cluster density [45]. It is defined as

S Dbw(C) = Scat(C) + Den(C), (A.3)

where Scat(C) represents the intra-cluster variance and is defined

as

Scat(C) =
1

C

C
∑

i=1

||�(Zi)||/||�(X)||; (A.4)

the term �(X) is the variance of the data set X = {x1, x2, . . ., xN} and

�(Zi) is the variance of cluster Ci. Inter-cluster density, Den(C), is

defined as

Den(C) =
1

C(C − 1)

C
∑

i=1





C
∑

i=1,i /= j

den(uij)

max{den(Zi), den(Zj)}



 (A.5)

where Zi and Zj are centers of clusters Ci and Cj, respectively and

uij is the mid point of the line segment joining Zi and Zj. The term

den(u) is defined as

den(u) =

∑

x ∈ Ci∪Cj

f (x, u). (A.6)

The function f(x, u) is defined as

f (x, u) =

{

0, if d(x, u) > stdev;

1, otherwise;
(A.7)

where stdev is the average standard deviation of C clusters and is

defined as

stdev =
1

C

√

√

√

√

C
∑

i=1

||�(Zi)|| (A.8)

and d(x, u) is the Euclidean distance between x and u.

Lower the value of S Dbw, better is the clustering.

• Beta index (ˇ): It computes the ratio of total variation and within

class variation [2], and is defined as

ˇ =

∑C

i=1

∑ni
j=1

(X ij − X̄)
2

∑C

i=1

∑ni
j=1

(X ij − X̄ i)
2

(A.9)

where X̄ is the mean of all the data points and X̄ i is the mean of

the data points that belong to cluster Ci, Xij is the jth data point of

ith cluster and ni is the number of data points in cluster Ci. Since

the numerator is a constant for a given data set, the value of ˇ is

dependent only on the denominator. The denominator decreases

with homogeneity in the formed clusters. Therefore, for a given

data set, higher the value of ˇ, better is the clustering.

• Rand coefficient (R): It determines the degree of similarity

between the known correct solution reflecting its class label

(group) and the solution obtained by a clustering algorithm [40].

It is defined as

R =
SS + DD

SS + SD + DS + DD
. (A.10)

SS, SD, DS, DD represent the number of possible pairs of data points

i and j where,

SS: both the data points belong to the same cluster and same group.

SD: both the data points belong to the same cluster but different

groups.

DS: both the data points belong to different clusters but same

group.

DD: both the data points belong to different clusters and different

groups.

Value of R is in the range [0,1] and higher the value of R, better is

the clustering.

• Jaccard coefficient (J): It is the same as rand coefficient except

that it excludes DD and is defined as

J =
SS

SS + SD + DS
. (A.11)

Value of J lies in the interval [0,1] and higher the value of J, better

is the clustering.

A.2. Typical results in terms of confusion matrix for SATIMAGE

using supervised methods (classification)

Here we provide some typical results in terms of confusion

matrix for SATIMAGE using supervised methods (proposed APC,

MLP, and SVM). Please note that the reported results are obtained

using the same set of training (with 10%) and test set pair for every

method (APC, MLP, and SVM). Obtained results are reported below.

by APC =













1318 5 4 3 50 0

0 565 0 0 9 0

30 0 1091 94 3 17

8 19 124 425 22 309

24 42 0 2 503 32

0 2 4 40 50 1000













% of OA and Kappa coefficient for the particular confusion matrix

given above are 84.59 and 0.81, respectively.

by MLP =













963 6 1 1 47 0

0 554 0 0 6 0

123 0 1099 96 13 19

105 34 119 407 35 284

128 32 0 1 432 18

61 7 4 59 104 1037













% of OA and Kappa coefficient for the particular confusion matrix

given above are 77.51 and 0.72, respectively.

by SVM =













1202 5 1 2 61 0

0 559 0 0 7 0

56 0 1111 96 6 21

28 26 107 413 29 295

92 38 0 1 462 18

2 5 4 52 72 1024













% of OA and Kappa coefficient for the particular confusion matrix

given above are 82.33 and 0.78, respectively.
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