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Differencing – VID) [2,20], etc. Tasseled Cap Transformation [21] is

also a popular method. The most popular of these is the CVA and

is used in our study. We have chosen CVA because by using this

technique reflectance properties of various land cover types can be

combined.

After performing the above two steps (pre-processing and image

comparison and thereby generating the DI) change detection (step

(iii)) is done on the DI. Either context-insensitive or context-

sensitive procedure is adopted [4] for this. Histogram thresholding

[16] is of the first kind. The threshold value may be detected by

manual trial-and-error (MTET) process or by automatic techniques

by analyzing the statistical distribution of the DI. In these cases

spatial correlation between the neighboring pixels is not taken

into account. Most of the context-sensitive techniques [10,15] are

based on MRF, require the selection or estimation of a model for the

statistical distributions of changed and unchanged classes, and can

overcome the drawbacks of context-insensitive approaches men-

tioned earlier. Algorithms (like Expectation-Maximization (EM)

[22]) are required for estimating the class distributions assuming

different standard distributions e.g. Gaussian, generalized Gaussian

[10] and mixture of Gaussians. A few context-sensitive techniques

using neural networks are also suggested recently [4,5,23,24].

Relevance of fuzzy set theoretic methods in pattern recognition

and image analysis problems has adequately been addressed in the

literature [25–35]. Fuzzy clustering incorporating local informa-

tion for change detection in remotely sensed images has not been

reported in the literature. So, in order to overcome the limitations

imposed by the need of selecting or estimating a statistical model

for changed and unchanged class distributions, we propose unsu-

pervised, distribution free and context-sensitive change detection

techniques based on fuzzy clustering [26] approach. Normally the

pixels of the DI belonging to two clusters changed and unchanged are

not separable by sharp boundaries (as they are highly overlapped).

As fuzzy clustering techniques are more appropriate and realistic

to separate overlapping clusters [19], we have chosen fuzzy clus-

tering techniques to have a better judgement of the two groups. In

this regard we have used two fuzzy clustering algorithms namely

fuzzy c-means [26] and Gustafson–Kessel [36]. There are several

fuzzy cluster validity indexes available in the literature to evaluate

fuzzy clustering results. We have used two of them. The first one

is proposed by Xie and Beni [37] and the second one is by Gath

and Geva [38]. They consider both intra cluster compactness and

inter cluster separation. While evaluating the outcome of GK-type

clustering using Xie–Beni validity index we have used Mahalanobis

norm as in [39].

In image clustering applications FCM or GKC can be treated dif-

ferently from data clustering. Pixels are normally highly correlated

to their neighbors in the image space. This should be exploited

for more efficiency. Also the homogeneous and nonhomogeneous

regions (in context with gray values of pixels) in one image do not

bear the same information. So instinct suggests that the amount

of local information should vary from zone to zone, and better if

varied from pixel to pixel. A pre-computation is done to incorpo-

rate the local neighborhood information in a variable fashion to the

pixels of the DI. After generating the patterns they are subjected to

clustering for identifying their class labels (changed or unchanged).

Local information is incorporated here in such a way that its amount

can vary from pixel to pixel automatically depending on the degree

of homogeneity of its surrounding pixels (over a fixed window).

It makes this method more robust for small changes and experi-

mental results show that this technique is very efficient than the

existing ones.

Two well known other optimization techniques namely genetic

algorithms (GAs) [40] and simulated annealing (SA) [41] have been

used to minimize the objective functions of the above mentioned

clustering techniques to yield better results.

To assess the proposed technique, experiments are carried out

on two real world data sets and compared the results with those

obtained by already published techniques [4] for solving the same

problem of change detection on the same data sets. We also com-

pared the result of hard clusterings to show the effectiveness of the

fuzzy ones. The proposed techniques have an edge with respect to

both error and time requirements.

This paper is organized as follows: Section 2 provides a brief

description of a few crisp and fuzzy clustering algorithms. The next

section is about validity measures for fuzzy clustering. The pro-

posed change detection technique has been described in Section 4.

The data sets used in the experiments and the results obtained are

described in Sections 5 and 6, respectively. Finally, in Section 7,

conclusions are drawn.

2. Clustering

The clustering algorithms [42] (both fuzzy and non-fuzzy) used

in the present investigation are described here in brief.

2.1. Hard c-means (HCM) clustering

The HCM [42] algorithm minimizes the following objective func-

tion to divide the data set into c clusters.

J(X; V) =

c∑

i=1

n∑

k=1

Dik, (1)

where X = [x1, x2, . . ., xn] is the set of n patterns, xk is the kth pat-

tern ∈ X and Dik = ||xk − vi||
2 (Euclidean norm) is the dissimilarity

measure between the sample xk and the ith cluster center vi and

V = [v1, v2, . . ., vc].

2.2. Fuzzy clustering

2.2.1. Fuzzy c-means (FCM) clustering

FCM [26] attempts to find fuzzy partitioning of a given data set

by minimizing the objective functional

Jm(X; U, V) =

c∑

i=1

n∑

k=1

(�ik)mDik, (2)

where U = [�ik] ∈ Mfcn, fuzzy partition matrix of X, and

vi =

∑n

k=1
(�ik)mxk

∑n

k=1
(�ik)m

(3)

with �ik (degree of belonging of pattern xk to the ith cluster) is

expressed as

�ik =
1

∑c

j=1
(dik/djk)2/(m−1)

, (4)

where dik =
√

Dik and m (>1) is a parameter, called fuzzifier, which

controls the fuzziness of the patterns. During optimization of the

functional Jm(X; U, V), following two constraints must be satisfied:

(i)
∑c

i=1
�ik = 1 and (ii) �ik ∈ [0, 1].

2.2.2. Gustafson–Kessel clustering (GKC)

Gustafson and Kessel introduced [36] adaptive distance norm

to measure the distance between clusters using fuzzy covariance

matrix (Fi). Each cluster has its own norm-inducing matrix Ai, a pos-

itive definite symmetric one, for automatically adapting its shape.

Fi for the ith cluster is expressed as

Fi =

∑n

k=1
(�ik)m(xk − vi)(xk − vi)

T

∑n

k=1
(�ik)m

. (5)
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The distance dikAi
is computed as

dikAi
=

√

(xk − vi)
T Ai(xk − vi), (6)

where the norm inducing matrix Ai = [�ideterminant(Fi)]
1/�F−1

i
, �

is the dimension of input patterns. �i is a predefined constant which

controls the shape of the ith cluster. Thus

�ik =
1

∑c

j=1
(dikAi

/djkAi
)2/(m−1)

. (7)

The objective function Jm will now be of the form

Jm(X; U, V, A) =

c∑

i=1

n∑

k=1

(�ik)mDikAi
, (8)

where DikAi
= d2

ikAi
.

3. Validity measures for fuzzy clustering

3.1. Xie–Beni validity measure

A popular index to validate the outcome of a fuzzy clustering

proposed by Xie and Beni [37], known as Xie–Beni index, is used

widely by many researchers and is described as

vXB =

∑c

i=1

∑n

k=1
(�ik)2||xk − vi||

2

n( min
︸︷︷︸

i /= j
||vi − vj||

2)
. (9)

For a good partitioning, the index stated here should be min-

imum. The index uses Euclidean norm in its numerator. So, we

have used this to evaluate the outcome of FCM-type clusterings

(FCM and RFCM, discussed later in Section 4.1) as FCM employs

Euclidean norm for clustering purpose. For GK-type (GKC and RGKC,

discussed later in Section 4.1) clustering we have changed this norm

to a scaled Mahalanobis one as in [39] to evaluate the outcome of

the process and this is denoted by vXBe. The subscript ‘e’ is used to

indicate ellipsoidal nature of clusters.

3.2. Fuzzy hypervolume validity measure

Based on the hypervolume and density of clusters, Gath and

Geva proposed the fuzzy hypervolume validity [38] measure. The

index is defined as

vFHV =

c∑

i=1

[determinant(Fi)]
1/2. (10)

A fuzzy partition is expected to have a low vFHV value if the

partition is tight. We have used this to validate all FCM-type and

GK-type clusterings for our application.

4. Proposed change detection technique

In our experiments we have used two data sets of the described

format where every pixel is of a gray shade between 0 and 255 (0

represents black and 255 white).

Let us consider two coregistered and radiometrically corrected

multispectral images X1 and X2 of size p × q, acquired over the same

geographical area at two different time instants t1 and t2, and let

DI = {l(m,n), 1 ≤ m ≤ p, 1 ≤ n ≤ q} be the difference image obtained by

applying the CVA technique as follows:

PDI(m,n)
=

√
√
√
√

num∑

i=1

(PX1(m,n) bi
− PX2(m,n) bi

)2, (11)

where PDI(m,n)
is the gray value of the (m, n)th pixel in the difference

image generated from corresponding pixels of the images X1 and

X2 having num bands b1, b2, . . ., bnum. A specific section of the elec-

tromagnetic spectrum (of the order of micrometer in our case) is

called a band. Generating a difference image by using several bands

allows us to combine the information about reflectance properties

of the land cover types (soil, vegetation, water, etc.) at different

wavelengths.

To exploit the spatio-contextual information, the pixel-pattern

values (at the time of clustering) in the difference image (DI) are

modified by considering the influence of its immediate spatial

neighborhood Nd of order d. For a given spatial position (m, n), Nd(m,

n) is defined as follows: Nd(m, n) = {(m, n) + (i, j), (i, j) ∈ Nd}. Fig. 1(a)

and (b) depicts the second (N2) and third (N3) order neighborhood

systems of a pixel at position (m, n).

4.1. Incorporation of neighborhood information

Incorporation of local information can be done in various ways

and several methods are suggested to do so [43,44]. The present

work is inspired by the method proposed by Cai et al. [44]. A local

similarity measure (Skr, described later) has been introduced, which

is varied from pixel to pixel to incorporate the local statistics of the

image. Using this measure the input image is converted to a linearly

transformed image as follows:

�k =

∑

r∈Nk
Skrxr

∑

r∈Nk
Skr

, (12)

where �k is the processed gray value incorporating the local con-

straint corresponding to the input gray value of pixel xk (window

center).

Cai et al. have defined Skr in such a way that it can adopt the

variation in shape of window. For square window (of fixed size for

all the pixels) we can ignore this constraint and can consider only

what they have called as gray level relationship (i.e. the spatio-

contextual relation) which takes care of intensity inhomogeneity

within the local window. In this case Skr can be expressed as

Skr = exp

[

−||xk − xr ||
2

�g × �2
g k

]

(13)

where �g k as

�g k =

√
∑

r∈Nk
||xr − xk||2

NR
; (14)

�g denotes the global scale factor of the spread of Skj. Parameter

�g k is a function of the local density surrounding the central pixel

and its value reflects the gray value homogeneity of local window

[44].

After generating patterns using Eq. (12) (instead of using gray

levels) we have clustered them by taking c = 2 by HCM, FCM, and

GKC and named the processes as RHCM, RFCM and RGKC respec-

tively, where ‘R’ denotes “Robust”. The pixel corresponding to the

position (m, n) of DI is thought as the center pixel of the 8 neigh-

bors in N2 i.e. neighbors those are within a distance of 2 from the

center pixel of the system. We may work upon some higher order

(d > 2) neighborhood system (like N3) to do this also; but in those

cases computational cost will be more. Since each pixel generates

a pattern, the total number of patterns will be p × q.

After generating two clusters by a clustering algorithm, one clus-

ter has to be marked as changed and the other as unchanged. For this

purpose we have calculated the mean values of the two clusters and

the cluster whose center is closer to the origin (of the feature space)

is labeled as unchanged and the other one as changed. The pixels
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Fig. 1. Neighborhood of the pixel at position (m, n). (a) N2 and (b) N3 .

corresponding to changed ones are marked as black (gray level 0)

and the unchanged ones are marked as white (gray level 255) in

the generated change detection map. For comparison purpose and

to establish the effectiveness and applicability of the incorporation

of the local neighborhood information, in the present context we

have applied all the basic clustering models (HCM, FCM and GKC) on

the pixels of DI treating them as patterns (i.e. detecting changes by

clustering in a context-insensitive manner) and have called them

as context-insensitive clusterings.

To overcome the pitfalls of clusterings (hard/fuzzy) like get-

ting stuck at some suboptimal points in their search spaces due

to initial configurations, we have hybridized them with GA and

SA. The used fuzzy clustering algorithms show better performance

for some values of the parameters (m for FCM-type, m and �i for

GK-type and �g for the robust clusterings). While combining them

with GA or SA, we have considered those values of the parame-

ters only. This attempt is to study how GA or SA can enhance the

performances of the fuzzy clustering algorithms under the same

environment to detect changes for remotely sensed data. While

combining HCM with GA we call it G HCM (Genetic HCM) and that

with SA as SA HCM (Simulated Annealing HCM) in the rest of the

work. For fuzzy clustering also we have named the processes in a

similar way, combining FCM with GA results in G FCM and with SA,

SA FCM. For GK-type we only worked upon combining with SA and

not with GA. Section 6 will highlight the practical difficulties behind

it. While combining our proposed methods (context-sensitive clus-

tering models) with the optimization methods, the hybridization is

named in a similar way as in the case of context-insensitive clus-

terings with the optimization methods (e.g. RHCM with GA will be

called as G RHCM or with SA as SA RHCM and so on).

When dealing with clusterings combined with GA the chro-

mosomes are binary representations of the two cluster centers

(changed and unchanged) in some specific order. Our remotely

sensed images are of 8-bit. So, when dealing with context-

insensitive clusterings a center is represented by 8 bits and thus a

chromosome is of 16 bits. When working with our proposed model

the same is a real number. We have represented this by 11 bits

where first 8 bits are to represent the integer part and last 3 bits

are for floating part of the same for a better precision. So a chromo-

some is of 22 bits (11 bits representing a cluster center). As better

clustering promises the corresponding functional to be minimized,

we have chosen the fitness function as the functional itself.

Similarly, using SA a set of (initially randomly chosen) good

cluster representatives (means for HCM-type and fuzzy means for

FCM-type and GK-type) is determined such that the corresponding

clusters become compact. The set of cluster centers represents the

configuration [41] and the corresponding value of the associated

objective functional (of the concerned clustering model) is the cost

[41] at that moment. To perturb the present configuration a ran-

domly chosen cluster representative (one vi) is changed slightly by

adding a random number from a normal distribution with mean 0

and standard deviation 1.

5. Description of the data sets

In order to carry out the experimental analysis aimed to assess

the effectiveness of the proposed approach, we considered two

multitemporal remote sensing data sets corresponding to geo-

graphical areas of Mexico and Island of Sardinia, Italy. The spatial

resolution of the sensors (ETM+of LANDSAT-7 and TM of LANDSAT-

5) is 30 m. Each pixel thus represents an area of 30 m × 30 m. A

detailed description of each of the data sets is given below.

5.1. Data set related to Mexico area

The first data set used in the experiments is made up of two

multispectral images acquired by the Landsat Enhanced Thematic

Mapper Plus (ETM+) sensor of the Landsat-7 satellite in an area of

Mexico on 18th April 2000 and 20th May 2002. From the entire

available Landsat scene, a section of 512 × 512 pixels has been

selected as test site. Between the two aforementioned acquisition

dates, fire destroyed a large portion of the vegetation in the con-

sidered region.

Fig. 2(a) and (b) shows channel 4 of the 2000 and 2002 images,

respectively. In order to make a quantitative evaluation of the effec-

tiveness of the proposed approach, a reference map was manually

defined (see Fig. 2(d)) according to a detailed visual analysis of

both the available multitemporal images and the difference image

(see Fig. 2(c)). Different color composites of the above mentioned

images were used to highlight all the portions of the changed area

in the best possible way. This procedure resulted in a reference

map containing 25,599 changed and 236,545 unchanged pixels.

Experiments were carried out to produce, in an automatic way, a

change detection map as similar as possible to the reference map
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Fig. 2. Image of Mexico area. (a) Band 4 of the Landsat ETM+image acquired in April 2000, (b) band 4 of the Landsat ETM+image acquired in May 2002, (c) corresponding

difference image generated by CVA technique, and (d) reference map of the changed area.

that represents the best result obtainable with a time consuming

procedure.

5.2. Data set related to Sardinia Island, Italy

The second data set used in our experiment is composed of

two multispectral images acquired by the Landsat Thematic Map-

per (TM) sensor of the Landsat-5 satellite in September 1995 and

July 1996. The test site is a section of 412 × 300 pixels of a scene

including lake Mulargia on the Island of Sardinia (Italy).

Between the two aforementioned acquisition dates, the water

level in the lake increased (see the lower central part of the image).

Fig. 3(a) and (b) shows channel 4 of the 1995 and 1996 images,

respectively. As in the case of Mexico data set, in this case also a

reference map was manually defined (see Fig. 3(d)) according to a

detailed visual analysis of both the available multitemporal images

and the difference image (see Fig. 3(c)). At the end, 7480 changed

and 116,120 unchanged pixels were identified.

6. Experiments and results

To assess the effectiveness of the proposed approach, we have

made both qualitative (visual) and quantitative analyses of the

experimental results. In visual analysis we have compared change

detection map (a binary image) with the ground truth image

(a binary one). We then presented a quantitative analysis with

respect to overall error. We have made a comparative study of

the performances of our proposed algorithms with two context-

insensitive techniques and two context-sensitive techniques. The

first context-insensitive technique is MTET [10]. It produces a min-

imum error change detection map by finding an optimal decision

threshold for DI. The second one is context-insensitive clusterings

as stated previously (refer Section 4). Both the context-insensitive

techniques assume the pixels to be independent in spatial domain.

Context-sensitive techniques compared with are: (i) the technique

presented in [10] where EM is combined with MRF and will be

referred as EM + MRF and (ii) a technique based on “Hopfield Type

Neural Networks” [4] (will be referred as HTNN). In [4] four differ-

ent Hopfield-type network models were used. We have compared

with 2nd order continuous model as we also have used 2nd order

neighborhood information in the present work.

As already discussed, our process considers the local homo-

geneity around the pixels while incorporating local information.

In literature [44] it has been reported that this type of local-

information-incorporation is more “robust” to noise and outliers

than others [43]. In [43], modification of the objective function

of the standard FCM is done. The re-definition of the objective

function is such that incorporation of local information from its

neighborhood region (within a fixed window) is constant for the

whole image space. We have tested this concept for hard as well as

for fuzzy clustering (both for FCM and GK-type) for our application

also. It has been seen that this type is not fruitful for the present

purpose (i.e. change detection) and so is not reported here.

(a)–(c) and those for Sardinia data set are shown in Fig. 6(a)–(c)

respectively. The same by RHCM, RFCM and RGKC for Mexico data

set are shown in Fig. 5

For Mexico data set, the DI is generated using the CVA algo-

rithm by considering band 4 as it is reported to be very effective

to locate burned areas. For Sardinia data set, the DI is generated by

the CVA algorithm using spectral bands 1, 2, 4 and 5. As mentioned

earlier, for all the fuzzy clustering techniques the value of fuzzifier

(m) affects the results. For GK-type clusterings �i also affects the

results. Here we have presented the best results obtained by vary-

ing these parameters. We have varied m starting from 1.1 taking

an incremental step size of 0.1 in case of FCM-type clustering (FCM

and RFCM) and stopped at that point where the performance of the

algorithm started degrading. In case of GK-type (GKC and RGKC),

maintaining the same criterion for varying m, we have fixed one

Fig. 3. Image of Mexico area. (a) Band 4 of the Landsat ETM+image acquired in April 2000, (b) band 4 of the Landsat ETM+image acquired in May 2002, (c) corresponding

difference image generated by CVA technique, and (d) reference map of the changed area.
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�i to 1 and varied the other from 1 taking an incremental step size

of 0.1 and vice versa up to that extent where we have achieved

the best result. Regarding the local-information sensitive processes

(proposed method) we have set the �g also showing best results.

For all the experiments, � is set to 0.0000001.

While working with GA, a population size of 30 was taken. We

have used 2-fold tournament selection [40] to select the two parent

chromosomes to reproduce two offsprings. Here two chromosomes

are randomly sampled from the current population. The one hav-

ing higher fitness is chosen as the first parent. The same procedure

is repeated to select the second one. For better exploration two

point crossover (as two class problem is involved) is performed

as reported in literatures [45]. Crossover probability and mutation

probability are set to 0.9 and 0.01 respectively. Elitist strategy [40]

is adopted to preserve the best solution; and the process termi-

nates when the fitness of the best individual of a population is not

changed for consecutive 50 generations.

In SA only one candidate solution is considered for optimization

purpose, unlike GA. If infinite time is allotted to SA it can find the

global or near global minimum without getting trapped to a local

one. This requires starting from a very high temperature (T → ∞),

a slow reduction of the temperature and a very low (→0) final

temperature. This is the sufficient condition for this technique to

reach to a global optimum [41,46]. To overcome the computational

burden of SA we have followed the concept of acceptance ratio

(	0) which is defined as the ratio of number of accepted transitions

divided by the proposed number of transitions [41] to set the initial

temperature. To cool the system a linear cooling scheme [41] is

adopted. It has been reported in literature [46] that SA is very much

sensitive to the random numbers generated as well as its success

highly depends upon the scaling of the function it tries to optimize

and the current temperature Tt (having dependency on the initial

temperature T0) during iterations [41] because all the factors

control the probability of acceptance when an uphill movement is

made. The approach we have followed is that for some certain set

of random numbers (and minimum T0 as 10) if 	0 falls below 0.8

we doubled the initial temperature T0 to start the process.

Now we will explore the reason why it was not possible to

hybridize GKC and RGKC with GA. In both the optimizations (GA

and SA) we have to evaluate Jm(X; U, V, A) at every iteration. For this

purpose we need U and V both and they must correspond to each

other. In SA we have generated random numbers of small variation

(from a normal distribution with mean 0 and standard deviation

1) and only one fuzzy mean has been perturbed. Thus new vi and

the previous �ik are highly correlated. So, in SA GKC and SA RGKC,

we have evaluated Jm(X; U, V, A) by taking the new vi and previ-

ous values of �ik. As in GA crossover operation is involved, so vi

can get changed drastically and the above mentioned correspon-

dence between �ik and vi may get completely lost. Therefore we

cannot use the evolved vi to calculate the new dikAi
as the scaled

Mahalanobis distance (dikAi
) is a function of the present member-

ship values (�ik) and the corresponding fuzzy means (vi) (can be

verified from Eqs. (5) and (6)) and so the new �ik. Also we cannot

use the previous �ik to compute the value of Jm(X; U, V, A) directly.

So we have ignored this hybridization.

6.1. Visual analysis

The change detection maps obtained for Mexico data set by the

HCM, FCM and GKC are shown in Fig. 4(a)–(c) and those for Sardinia

data set are shown in Fig. 7(a)–(c) respectively.

One can visually compare the change detection maps generated

by the used algorithms with the corresponding ground truth. This

gives a rough idea about the quality of the generated change detec-

tion maps.

Fig. 4. Change detection maps obtained for Mexico data set by (a) HCM, (b) FCM (m = 5.7) and (c) GKC (m = 3 and �1 = 1 and �2 = 2).

Fig. 5. Change detection maps obtained for Mexico data set by (a) RHCM (�g = 6), (b) RFCM (m = 13.5 and �g = 6) and (c) RGKC (m = 10.5, �g = 6 and �1 = 1 and �2 = 3.4).
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Fig. 6. Change detection maps obtained for Sardinia data set by (a) HCM, (b) FCM (m = 1.1) and (c) GKC (m = 2 and �1 = 3.5 and �2 = 1).

Fig. 7. Change detection maps obtained for Sardinia data set by (a)RHCM (�g = 6), (b) RFCM (m = 1.2 and �g = 6) and (c) RGKC (m = 3.1, �g = 6 and �1 = 3.5 and �2 = 1).

The effectiveness of the proposed change detection technique

is evaluated globally by analyzing the change detection map. The

change detection map obtained by HCM seems to be better than

FCM for Mexico data set because of the false alarms (discussed later

in Section 6.2) generated at larger portions by the FCM. But careful

inspection reveals that the extreme bottom-left corner of the scene

is detected much better by FCM, where HCM failed. The same infer-

ence can be drawn for this data set while comparing RHCM and

RFCM. It is very difficult to say visually whether both FCM and GKC

yielded the same result or not. The inference is the same while com-

paring RFCM and RGKC. For Sardinia data set visual inspection of

the change detection map shows that one can hardly find any differ-

ence between the performance of HCM and FCM. But it is clear that

GKC is doing better than FCM. The observation is similar for our pro-

posed method, RGKC is doing better than RFCM and similarly RFCM

is doing better than RHCM for the same data set. This leads us to

judge the effectiveness of our proposed technique quantitatively,

which obviously is better than visual inspection and is presented

in the following section.

6.2. Quantitative analysis

6.2.1. Quantitative evaluation using error measures

Quantitative analysis is carried out in terms of both overall error

(OE), false alarms (i.e. unchanged pixels identified as changed ones –

FA) and missed alarms (i.e. changed pixels categorized as unchanged

ones – MA). It is better to have less MA because it denotes the actual

changes that the algorithm failed to detect. Also OE should be as

small as possible. We have compared the results (different types

of alarms) generated by the basic clustering models (i.e. context-

insensitive clusterings), and our proposed methods (RHCM, RFCM

and RGKC) using the “ground truth” image as the reference map.

Results obtained by all the techniques (existing, context-

insensitive clusterings and proposed methods) are shown in

Tables 1 and 2 for a comparative and thorough discussion. The

tables are divided into three subparts to represent the existing

techniques (MTET, HTNN and EM + MRF), context-insensitive clus-

terings and our proposed methods, respectively.

It is seen from the results that the context-insensitive clus-

terings are not well-suited for our purpose. Though GKC/SA GKC

performed little better in case of our second data set (compara-

ble with MTET and HTNN and worse than EM + MRF); but for the

first one it showed inferior performance. Thus in general this type

(context-insensitiveness) is not useful for the present problem.

Now let us concentrate on our proposed change detection tech-

nique. Let us have a look at the outcome of our proposed methods

(the last subpart of both the tables). From Tables 1 and 2 it is seen

that crisp set based method (RHCM) did not perform well for both

the data sets. Also hybridization of the same with GA and SA did not

show better performance (only SA RHCM performed better than

the existing for the first data set). On the contrary all the fuzzy set

based methods (from RFCM to SA RGKC) are found to be superior

than other techniques.

It is worth noting that with local information GK-type (RGKC)

showed its superiority over FCM-type (RFCM). On the contrary

without local information GK-type (GKC) could not provide rea-

sonable performance. This suggests that the proposed method of

Table 1

Missed alarms, false alarms and overall error for Mexico data set.

Techniques used MA FA OE

MTET 2404 2187 4591

HTNN 558 2707 3265

EM + MRF (ˇ = 1.5) 946 2257 3203

HCM 3860 1251 5111

G HCM 2868 1808 4676

SA HCM 2868 1808 4676

FCM (m = 5.7) 2404 2186 4590

G FCM (m = 5.7) 2404 2186 4590

SA FCM (m = 5.7) 2404 2186 4590

GKC (m = 3, �1 = 1, �2 = 2) 2404 2186 4590

SA GKC (m = 3, �1 = 1, �2 = 2) 2404 2186 4590

RHCM (�g = 6) 3198 665 3863

G RHCM (�g = 6) 2283 873 3156

SA RHCM (�g = 6) 685 2246 2931

RFCM (m = 13.5, �g = 6) 1742 1104 2846

G RFCM (m = 13.5, �g = 6) 1476 1271 2747

SA RFCM (m = 13.5, �g = 6) 1075 1557 2632

RGKC (m = 10.5, �1 = 1, �2 = 3.4, �g = 6) 1095 1531 2626

SA RGKC (m = 10.5, �1 = 1, �2 = 3.4, �g = 6) 1099 1520 2619
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Table 2

Missed alarms, false alarms and overall error for Sardinia data set.

Techniques used MA FA OE

MTET 1015 875 1890

HTNN 1187 722 1909

EM + MRF (ˇ = 2.2) 592 1108 1700

HCM 304 3877 4181

G HCM 304 3877 4181

SA HCM 458 2593 3051

FCM (m = 1.1) 382 3143 3525

G FCM (m = 1.1) 382 3143 3525

SA FCM (m = 1.1) 545 2100 2645

GKC (m = 2, �1 = 3.5, �2 = 1) 1015 874 1889

SA GKC (m = 2, �1 = 3.5, �2 = 1) 1015 874 1889

RHCM (�g = 6) 530 1973 2503

G RHCM (�g = 6) 1993 161 2154

SA RHCM (�g = 6) 634 1503 2137

RFCM (m = 1.2, �g = 6) 659 1414 2073

G RFCM (m = 1.2, �g = 6) 659 1410 2069

SA RFCM (m = 1.2, �g = 6) 881 790 1671

RGKC (m = 3.1, �1 = 3.5, �2 = 1, �g = 6) 1089 489 1578

SA RGKC (m = 3.1, �1 = 3.5, �2 =1,�g = 6) 1096 474 1570

incorporating local information will make GK-type more powerful

than others.

6.2.2. Evaluation in terms of fuzzy cluster validity index

In Section 6.2.1, an analysis was carried in terms of OE. It was

conveyed that less the value of OE, better is the technique. Also

we have shown that incorporation of local information makes the

proposed fuzzy set based techniques more effective than the pre-

suggested techniques. Here we will try to validate the proposed

fuzzy set based techniques in terms of validity indexes as stated

in Section 3. To do so we calculated validity measures proposed

by Xie–Beni (vXB for FCM-type and vXBe for GK-type respectively)

and that by Gath–Geva (vFHV ) and put the results along with the

corresponding OE in Tables 3–6.

One can see the values of vXB with corresponding OE for all the

processes (from FCM to SA RFCM) from Tables 3 and 4. From both

the tables it is observed that less OE ensures lesser or constant

Table 3

Missed alarms, false alarms and overall error for Mexico data set by FCM-type

clustering.

Techniques used OE vXB vFHV

FCM (m = 5.7) 4590 0.09 28.11

G FCM (m = 5.7) 4590 0.09 28.11

SA FCM (m = 5.7) 4590 0.09 28.11

RFCM (m = 13.5, �g = 6) 2846 0.07 21.22

G RFCM (m = 13.5, �g = 6) 2747 0.07 21.22

SA RFCM (m = 13.5, �g = 6) 2632 0.07 21.22

Table 4

Missed alarms, false alarms and overall error for Sardinia data set by FCM-type

clustering.

Techniques used OE vXB vFHV

FCM (m = 1.1) 3525 0.11 43.20

G FCM (m = 1.1) 3525 0.11 43.20

SA FCM (m = 1.1) 2645 0.10 42.97

RFCM (m = 1.2, �g = 6) 2073 0.07 38.58

G RFCM (m = 1.2, �g = 6) 2069 0.07 38.57

SA RFCM (m = 1.2, �g = 6) 1671 0.07 38.14

Table 5

Missed alarms, false alarms and overall error for Mexico data set by GK-type

clustering.

Techniques used OE vXBe vFHV

GKC (m = 3, �1 = 1, �2 = 2) 4590 0.044411 28.11

SA GKC (m = 3, �1 = 1, �2 = 2) 4590 0.044411 28.11

RGKC (m = 10.5, �1 = 1, �2 = 3.4, �g = 6) 2626 0.034798 18.49

SA RGKC (m = 10.5, �1 = 1, �2 = 3.4, �g = 6) 2619 0.034619 18.15

Table 6

Missed alarms, false alarms and overall error for Sardinia data set by GK-type

clustering.

Techniques used OE vXBe vFHV

GKC (m = 2, �1 = 3.5, �2 = 1) 1889 0.041605 38.08

SA GKC (m = 2, �1 = 3.5, �2 = 1) 1889 0.041605 38.03

RGKC (m = 3.1, �1 = 3.5, �2 = 1, �g = 6) 1578 0.032058 35.03

SA RGKC (m = 3.1, �1 = 3.5, �2 = 1, �g = 6) 1570 0.031982 34.95

vXB (i.e. the index did not increase while OE decreased). This is a

good signature. From Tables 5 and 6 one can notice that movement

from GKC to SA RGKC, vXBe value always decreased for less OE. Thus

vXBe showed better results for our purpose to extract the clusters

by assuming them as elliptical as this index employs Mahalanobis

norm.

Similar findings can be corroborated from the response of vFHV

also (see Tables 3–6). For GK-type the index shows lesser value than

FCM-type and for SA RGKC it shows the least value.

From an overall analysis it is felt that while solving the change

detection problem, if we incorporate the knowledge from neigh-

borhood of the pixels with fuzzy clustering the output is improved

(than the pre-suggested techniques and crisp clustering). The exist-

ing techniques require either the assumption of distributions of

classes and are very time consuming (EM + MRF) or need more

time (HTNN). On the other hand the proposed technique does not

require any a priori knowledge of the data distributions and is very

fast. Since GK-type uses Mahalanobis distance and can extract even

non-convex clusters, it produces better results for the used data sets

(since the data mainly contain irregular shaped changed regions).

The value of m used for Mexico data is large whereas for Sardinia

data set it is less. As high value of m suggests more vagueness (and

overlapping of the two clusters) in data, so it would not be incorrect

to infer that the two clusters are more unstructured in Mexico data

set than the other one. Again by varying �i (instead of fixing to 1) in

GK-type, shapes of the corresponding clusters can be approximated

more accurately. The reason being, by varying the parameter (�i)

with respect to each other (i.e. fixing one parameter to 1 and vary-

ing the other) the assumed shapes of the clusters could be varied.

This is one of the major factors for GK-type to work well for this

problem. This suggests that incorporation of the knowledge about

the structures of the changed and unchanged classes may be helpful

while solving change detection problems. It has been seen that the

proposed technique works well within a reasonable range of values

of the parameters (m, �1, �2 and �g).

6.3. Effect of parameters

From the above analysis it is evident that the “robust” versions of

fuzzy clusterings can be more useful for change detection of remote

sensing images. But it is seen experimentally that the performances

Fig. 8. Plot of OE as a function of m.
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Fig. 9. Plot of OE as a function of (a) �2 and (b) �g .

of them are highly influenced by the parameters which include the

fuzzifier (m), the variable to control the clusters’ shapes (�i) and

the variable-local-information incorporation parameter (�g). For a

certain set of these parameter values the performance of a process

may get enhanced. How one can choose the parameter-values? This

section is to deal with the issue of finding out some general solution

of this query.

To analyze the effect of parameters in a better way we have

plotted OE against m in Fig. 8 for both RFCM and RGKC for Mexico

data set. For RGKC the plot is for constant �i (taking �1 = 1 and

�2 = 3.4). Fig. 9(a) shows the plot of OE against �2 for constant �1

(=1) and m (=10.5) for the same data set. Finally we have plotted the

OE against �g for RHCM, RFCM and RGKC taking the other parameter

values (m for RFCM and RGKC and �i for RGKC) constant in Fig. 9(b).

We have tested our technique taking the parameter values also

outside the ranges shown. The graphs are shown for a reasonable

range for which overall error is less.

Let us explain the graphs one by one. Fig. 8 tells us how the value

of the fuzzifier m influences the result. Looking at the graph of RFCM

we can say that when m is increased beyond 2, OE falls exponen-

tially. Up to m = 12 OE reduces at a high rate and from that point

the falling rate is reduced. As seen form the figure, variations of OE

is negligible for m in the range 12–13; and thus one can select any

value of m to have a reasonable performance. The range showing

less variation may be interpreted as linear region of the graph. A

similar behavior can be observed for RGKC also. One can see that if

proper values of �i are chosen then RGKC performs in a well man-

ner. Unlike RFCM, here we can notice that the linear region is more.

From m = 2 to 4, OE falls slowly and then the performance is sus-

tained throughout the range shown i.e. OE is almost constant (of

the order of 2650).

Though the value of the fuzzifier affects the results in the same

manner for both the algorithms RFCM and RGKC, and for both the

cases we are having some linear section, RGKC maintains better

performance than RFCM over the entire range. In case of RGKC

we are having a larger linear range compared to RFCM, with lesser

performance.

From the above analysis it is obvious that RGKC is performing

the best for our data sets. The main reason behind this is we can vary

the relative shapes of the clusters (corresponding to the changed

and unchanged regions) by tuning the parameter �i. It is a vital

issue for this process to perform well. Thus �i should not be chosen

randomly. Let us analyze the behavior of this parameter for Mexico

data set. Fig. 9(a) tells us about the effect of �i for some constant

value of m and �g. We have set m = 10.5 and �g = 6 as these values

gave us the least OE. We have plotted OE versus �2 by fixing �1 = 1.

The reverse i.e. OE versus �1 can also be done. Looking at the graph

one can notice that when �2 is increased beyond 1, OE reduces

rapidly. In the interval 3.2–3.5 we have a stable region (as OE is

constant, 2650). Then if �2 is further increased, OE increases slowly.

So, the choices of this parameter should be from this linear region

and one can accept any value of �2 in this range to have a reasonable

performance.

Fig. 9(b) shows the effect of �g after fixing the other parameters

at those values where they were giving the best (e.g. for RFCM m

at 13.5 and for RGKC m at 10.5, �1 at 1 and �2 at 3.4). It is worth

noting that the nature of all the graphs is similar; which means all

the “robust” techniques are having a resemblance in their perfor-

mances.

Now the question arises why are we interested about the stable

regions of the parameters! The answer is one can use these range

of values for similar types of images. Similar findings can be seen

for other data sets also.

It was observed experimentally that for the context-insensitive

clusterings (and also for constant-local-information incorporation

[43]) it is very hard to find out the linear regions of the parameters.

In Tables 1 and 2 we have put the best results for our proposed

method by tuning the parameter values.

7. Conclusion and discussion

Unsupervised context-sensitive techniques using fuzzy cluster-

ing and local information for detecting changes in multitemporal,

multispectral remote sensing images have been proposed in this

paper. Since the pixels of the difference image belonging to the two

clusters (changed and unchanged) are not separable by sharp bound-

aries (as they are highly overlapped), fuzzy clustering techniques

seem to be a more appropriate and realistic choice to separate

them. Incorporation of local information further enhances the per-

formance of the algorithms and makes the algorithms “robust”.

Among the fuzzy clustering algorithms, only fuzzy c-means and

Gustafson–Kessel (GK) are used in the present experiment. The

fuzzy clustering techniques are combined with genetic algorithm

and simulated annealing to yield better results. As GK-type clus-

tering can extract clusters with different (including non-spherical)

shapes, it is found to be more effective. Two fuzzy cluster validity

indexes namely Xie–Beni and fuzzy hypervolume have been used

to validate the results of the change detection problem.

The proposed fuzzy clustering technique has advantages over

the context-sensitive process (EM + MRF) presented in [10] as they

are distribution free (do not require any explicit assumption about

the underlying two classes, changed and unchanged) as well as

they are less computation intensive. Compared to another context-

sensitive technique proposed in [4], the fuzzy techniques proposed

here are very simple, less costly and showed improved perfor-

mance.

Though it is seen from visual as well as quantitative analy-

sis, that methods based on fuzzy clusterings are well suited for

change detection of remotely sensed data, there are some unavoid-

able problems also – proper selection of the values of fuzzifiers

m, �i and (for the robust versions) �g. Domain knowledge may

be useful in fixing up the parameter values. In future we hope to

explore this issue. Other fuzzy clustering algorithms, like fuzzy c-

varieties/elliptotypes which extract linear substructures in data i.e.
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line-shaped clusters (elongated shapes) may be worth exploring for

this problem also.
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