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1. Introduction

The task of classification occurs in various ranges of human activities. A classification problem includes

the assignment of an object to a predefined class according to its characteristics [7]. At its broadest,

the term could cover any context in which some decision or forecast is made on the basis of currently

available information, and a classification procedure is a formal method for repeatedly making such

judgments in new situations.

A wide variety of techniques exists in the literature [7, 12, 14, 18] since several decades for pattern

classification. Broadly, three classes of classifiers exist [14] in the literature. They consist of classifiers

that depend on (i) similarity maximization methods, (ii) probabilistic methods, and (iii) geometric meth-

ods. The first class of classifiers have some similarity metrics and assign class labels for maximizing the

similarity. Minimum distance classifier, K-NN classifier [3] are the most common examples of that type.

Probabilistic methods, for which the Bayesian classifier is the most known, depend on the prior prob-

abilities of classes and class-conditional densities of the instances. In addition to Bayesian classifiers,

logistic classifiers which is based on maximum likelihood approach, belong to this type of classifiers.

The third category of classifiers is the geometric classifiers, which build decision boundaries by directly

minimizing the error criterion. Neural networks [29], Fishers linear discriminant methods are examples

of geometric classifiers.

Apart from these above mentioned three categories of classifiers there are various kinds of classifiers

such as decision trees [30], support vector machine [32], fuzzy set based classifiers [19] etc.

In this article, an aggregation pheromone density based classifier is proposed which is inspired by

the natural behavior found in real ants and other social insects. The social insects’ behavior such as

finding the best food source, building of optimal nest structure, brooding, protecting the larva, guarding

etc. show intelligent behavior on the swarm level [8, 15]. A swarms’ behavior is not determined just

by the behavior of itself, but the interactions among individuals play a vital role in shaping the swarm

behavior [8, 15]. Computational modeling of swarms’ behavior is found to be useful in various applica-

tion domains like, function optimization [35, 36], finding optimal routes [4], scheduling [6], image and

data analysis [37]. Different applications originated from the study of different types of swarms. Among

them, most popular ones are ant colonies and bird flocks [8]. Ant Colony Optimization (ACO) [5, 6] and

Aggregation Pheromone Systems (APS) [35, 36] are computational algorithms modeled on the behavior

of ant colonies. ACO [5, 6] algorithms are designed to emulate ants’ behavior of laying pheromone on

the ground while moving to solve optimization problems. Pheromone is a type of chemical emitted by

an organism to communicate between members of the same species. Pheromone, which is responsible

for clumping or clustering behavior in a species and brings individuals into closer proximity, is known as

aggregation pheromone. Thus, aggregation pheromone causes individuals to aggregate around positions

which in turn produce more pheromone to attract individuals of the same species. In APS [35, 36], a

variant of ACO, this behavior of ants is used to solve real parameter optimization problems. A model

for solving continuous optimization problems [33] was also proposed as an extension of ant colony op-

timization (ACO) problem.

In the present article an aggregation pheromone density based algorithm, APC is proposed for pattern

classification. In order to show the effectiveness of the proposed algorithm we have considered a number

of real life benchmark data sets and various kinds of synthetic data sets. Results are compared with other

standard popular classification algorithms. Experimental results justify the potentiality of the proposed

APC method in terms of the classification accuracy for most of the data sets.



A. Halder et al. / Aggregation Pheromone Density Based Pattern Classification 347

Rest of the paper is organized in four sections. In Section 2 motivation for the work and other related

research is described. Proposed method is demonstrated in Section 3. In Section 4, we illustrate the

experimental outcome, describe the data sets used, other classification techniques compared with, theo-

retical details of the performance evaluation measures and analysis of the experimental results. Finally,

in Section 5 conclusions are drawn.

2. Motivation and Related work

Several species of ants group their corpses into “cemeteries” in an effort to clean up their nests. Exper-

imental work illustrates that ants group corpses, which are initially randomly distributed in space, into

clusters, within a few hours. It seems that some feedback mechanism (using local density or similarity

of data items) determines the probability that an ant will pick up or drop a corpse. This concept was

generalized by numerous researchers and proposed various algorithm for unsupervised classification or

clustering. A comprehensive survey can be found in [13].

Inspired by the ants’ property of piling up the corpses to clean the nest various ant based clustering

algorithms are proposed. Besides nest cleaning, many functions of aggregation behavior have been

observed in ants and ant like agents [1, 24, 34]. These include foraging-site marking and mating, finding

shelter and defense. For example, after finding safe shelter, cockroaches produce a specific pheromone

with their excrement, which attracts other members of their species [34]. Based on the similar property

i.e., ants need to find comfortable and secure environment to sleep, Chen et al. [2] proposed Ant Sleeping

Model which makes ants to group with those that have similar physiques. They defined a fitness function

to measure the ants’ similarity with their neighbors. They stated that when an ant’s fitness is low, it

has a higher probability to wake up and stay in active state. Thus an ant will leave its original position

to search for a more secure and comfortable position to sleep. Since each individual ant uses only a

little local information to decide whether to be in active state or sleeping state, the whole ant group

dynamically self organizes into distinctive, independent subgroups. Using similar concept Tsutsui et al.

[35, 36] used Aggregation Pheromone Systems for continuous function optimization where aggregation

pheromone density is defined by a density function in the search space.

As mentioned above, many functions of aggregation behavior have been observed in ants and ant

like agents. Inspired by the aggregation pheromone system found in ants and other similar agents, in

earlier works, attempts are made for solving clustering [9, 16], image segmentation [11, 10], and change

detraction [17] problems with encouraging results. As mentioned earlier, here in this article, our work

on pattern classification is based on aggregation pheromone.

Though a large number of techniques exist for ant based unsupervised classification (i.e clustering)

in the literature, only few attempts have been made for (supervised) classification. AntMiner is the first

of this kind, proposed by Parpinelli et al. [27] to extract if-then classification rule from categorical data.

Each rule in AntMiner contains a condition part as the antecedent and a predicted class. The condition

part is a conjunction of attribute-operator-value tuples. A rule condition is added to the current partial

rule that the ant is constructing with some defined probability value.

In AntMiner, the heuristic value is taken to be an information theoretic measure for the quality of the

term to be added to the rule. Here in this case the quality is measured in terms of entropy for preferring

this term to others. As soon as the rule construction part is over, rule pruning is undertaken to increase the

comprehensibility and accuracy of the rule. Rule pruning procedure iteratively removes the term whose
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removal will cause a maximum increase in the (defined) quality of the rule. After the pruning step, the

rule may be assigned a different predicted class based on the majority class in the cases covered by the

rule antecedent. After each ant completes the construction of its rule, pheromone updating is carried out.

Liu et al. further extended the algorithm to reduce the computational complexity in AntMiner2 [20] and

to increase the classification accuracy in AntMiner3 [21]. Martens et al. in AntMiner+ [22] modified the

existing versions of AntMiner by (i) implementing better performing MAX-MIN Ant System, (ii) using

directed acyclic graph for the environment to choose more effective path by the ants with the inclusion of

the class variable to handle multi-class problems and (iii) applying early stopping criteria to prevent the

rule base from the effect of noisey training data. Moreover, system parameters are set in an automated,

dynamic manner in this version.

3. Proposed Methodology

As mentioned in the previous sections, aggregation pheromone brings individuals into closer proximity.

This group formation nature of aggregation pheromone (found in natural behavior of real ants) is being

used as the basic idea of the proposed technique. Here each data pattern is considered as an ant, and

the training patterns (ants) form several colonies or homogeneous groups depending on the number of

classes present in the data set. Each ant (in the group) emits pheromone around its local neighborhood.

The intensity of pheromone (emitted by an individual ant) is maximum at the position where the ant

is situated and it decays uniformly with the distance from the position of the ant. Hence pheromone

intensity is modeled by the Gaussian function keeping the ant at the center. When a new ant (test pattern)

comes in the system it tries to join to one of the existing colonies/groups. A new ant will move towards

a colony for which average aggregation pheromone density (at the location of that new ant) is higher

than that of the other colonies; and hence eventually the new ant will join that colony. Here average

aggregation pheromone density of a colony is the average of the cumulative effect of pheromone intensity

(at the location of the test ant) emitted by each individual ant belonging to that colony. Thus each

individual new ant will join a particular colony.

3.1. Aggregation pheromone density based classification

Consider a data set with m classes, which (by our assumption) forms m homogeneous groups/colonies

of ants or training patterns. Let x1, x2, x3, . . . , x|Ci| be the training data patterns in the class Ci and

considered as a population of |Ci|-ants a1, a2, a3, ..., a|Ci| which forms a group/colony Ci; where an ant

aj ∈ Ci represents the training data pattern xj . The intensity of pheromone emitted by an individual ant

aj (located at xj) decreases with its distance from xj . Thus the pheromone intensity at a point closer to

xj is more than those at other points that are farther from it. To achieve this, the pheromone intensity

emitted by ant aj ∈ Ci is modeled by a Gaussian distribution. The pheromone intensity deposited at x

by an ant aj (located at xj) is thus computed as

∆τ(aj,x) = exp−
d(xj,x)2

2δ2 (1)

where, δ denotes the spread of Gaussian function and d(xj,x) is the Euclidian distance between xj

and x.
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Total aggregation pheromone density at x deposited by the entire population of |Ci| ants belonging

to the colony Ci is computed as.

∆τi (x) =
∑

xj∈Ci

exp−
d(xj ,x)2

2δ2 . (2)

Now a new (test pattern) ant at at xt appears in the system. The average aggregation pheromone

density (at the location of that new ant at) deposited by the colony Ci is given by

∆τ i (xt) =
1

|Ci|

∑

xj∈Ci

exp−
d(xj,xt)2

2δ2 . (3)

The new ant at will move towards a colony for which average aggregation pheromone density (at the

location of that new ant) is higher than that of other colonies. Hence finally that ant will join the colony

determined by the following equation.

ColonyLabel(xt) = arg max
i

(∆τ i(xt)). (4)

Thus each of the test ants will join a colony and that colony label will be the class label of that test

pattern (ant).

The proposed aggregation pheromone density based classification algorithm is given below.

Algorithm 1 : Aggregation pheromone density based classifier

for each new (test) ant at located at xt do

for each colony Ci do

Calculate the average aggregation pheromone density at location xt due to (all ant in) colony Ci

using equation 3.

end for

Compute the ColonyLabel(xt) of the ant at by equation 4. // Ties are broken arbitrarily.

end for

4. Experimental Evaluation

For the purpose of our study, we used ten real life benchmark data sets from the UCI repository [23]

and [25] (for Indian Telugu Vowel data) as well as 5 synthetic data sets. Experiments were carried in

two different ways in order to test the classification accuracy. In the approch, from a data set, a certain

percentage of data is taken out randomly to make the training set and the rest is considered as the test

set. This process is repeated 20 times. In the second approach, k (=10) fold cross validation is used. The

whole data set is randomly divided into k mutually exclusive and (nearly) equal sized subsets. For each

subset, considered as the test set, the classifier is trained on the union of all other subsets. Then, cross

validation is run (10 times) for each training and test set pair.
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4.1. Description of the data sets

Out of the 10 real life data sets 9 data sets are taken from UCI repository [23] and one from [25] (for

Indian Telugu Vowel data). Also we have used 5 different kinds of synthetic data. A summary of the

data sets is given in Table 1.

Table 1. Summary of the data sets used. N is the total number of data, D and C represent dimensionality and

number of classes, respectively.

Real Life data

Data Set N D C

Iris 150 4 3

WBC 683 9 2

Sonar 208 60 2

Thyroid 215 5 3

Glass 214 9 6

Balance scale 625 4 3

Telugu vowel 871 3 6

English vowel 990 10 11

Diabetes 768 8 2

Ionosphere 351 34 2

Synthetic data

Data Set N D C

Annular 1400 2 4

Ellipse 3000 2 3

Pat1 880 2 3

Pat2 880 2 3

Spiral 1000 2 2

Real life data sets:

To start with, as a toy problem, we have chosen perhaps the most common Iris data with 150 in-

stances, 4 features (sepal length, sepal width, petal length, petal width) and distributed into 3 types of

Iris plant. Wisconsin Breast Cancer (WBC) data contains 699 instances distributed in two categories

described by nine features of which 16 instances with the missing values are ignored. Sonar data has 208

instances described by sixty attributes distributed in two classes. Thyroid data set has 215 instances of

patients with five features describing whether patient has euthyroidism, hypothyroidism and hyperthy-

roidism (three classes). Glass data set has 214 instances describing six categories of glass on the basis

of nine features. Balance scale data was generated to model the psychological experimental results. It

has 625 instances described by four features, distributed in three classes. The Indian Telugu vowel data

[25] is the formant frequency of sounds in consonant-vowel-consonant context uttered by three speakers

in the age group 30-35 years. The data set consist of 871 instances with 3 formant frequencies (features)

which were obtained through the spectrum analysis of the speech data. The data patterns are distributed
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(a) (b) (c) (d) (e)

Figure 1. (a) Annular data, (b) Ellipse data (c) Pat1 data (d) Pat2 data (e) Spiral data

in six overlapping classes and their boundaries are ill-defined. English vowel (deterding data) having

990 instances with 10 features is a data set for speaker independent recognition of the eleven steady

state vowels of British English. Diabetes data set has 768 instances, 8 attributes and is distributed in two

classes “tested positive” and “tested negative”. Several constraints were placed on the selection of these

instances from a larger database. In particular, all patients here are females of at least 21 years old of

Pima Indian heritage. Ionosphere is a radar data which consist of 351 instances each with 34 continuous

features distributed in two classes namely “good” and “bad”. This radar data was collected by a system

in Goose Bay, Labrador. This system consists of a phased array of 16 high-frequency antennas with a

total transmitted power of the order of 6.4 kilowatts. The targets were free electrons in the ionosphere.

“Good” radar returns are those showing evidence of some type of structures in the ionosphere. “Bad”

returns are those that do not; their signals pass through the ionosphere.

Synthetic data sets

The classifiers are tested with 5 different kinds of artificially generated data sets also. First we

have generated and experimented with annular data having 1400 instances and 2 features. The data

is distributed in 4 concentric rings of different radius. The annular data is shown if Fig. 1 (a). Next

ellipse data (shown in Fig. 1 (b)) is considered which has 3000 data points distributed in 3 classes with

2 features. Pat1 data [26] (shown in Fig. 1 (c)) having 880 instances in 3 classes and 2 features is used

next. Part 2 data [26] (shown in Fig. 1 (d)) has 880 instances, 2 features and distributed in 3 classes.

Spiral data (shown in Fig. 1 (e)) contains 1000 data points distributed in two spirals with 2 features. It is

worth mentioning that all the synthetic data sets considered here are non linearly separable. Note that all

the synthetic data sets in Fig. 1 are shown with different color and symbol for (data points in) different

classes.

4.2. Comparison with other methods

The proposed method is compared with 4 other standard classification techniques, namely, (i) K near-

est neighbor [3] (with k=5 and k=7 are taken as representative), (ii) Minimum distance classifier, (iii)

Multi layer perception (MLP) [29], and (iv) Support vector machines (SVM) with sequential minimal

optimization (SMO) [28, 32]. We have used Weka package [38] for MLP and SVM (SMO).

4.3. Performance evaluation measures

In order to evaluate the performance of the proposed classifier, in this article we have used following

three kinds of performance measures.
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Percentage accuracy

Here we have reported the results on test case accuracy only; that is percentage of correctly classified

test patterns out of total test patterns.

Macro averaged F1 measure

Macro averaged F1 is derived from precision and recall [31]. The precision of a class i is defined as

precisioni(pi) =
# patterns correctly classified into class i

# patterns classified into class i
, (5)

and recall of class i is defined as

recalli(ri) =
# patterns correctly classified into class i

# patterns that are truly present in class i
. (6)

Then F1, the harmonic mean between precision and recall, of class i is defined as

(F1)i =
2 × pi × ri

pi + ri

. (7)

F1 measure gives equal importance to both precision and recall.

The macro-averaged F1 measure is computed by first computing the F1 scores for each category

(class) and then averaging these per-category scores to compute the global means. Macro−averaged F1

(or Macro F1 in short) is defined as

Macro averaged F1 =
1

m

m∑

i=1

(F1)i, (8)

where m is the number of category (class). Macro-averaged F1 gives equal weight to each category.

The value of Macro-averaged F1 lies between 0 and 1. More close the value of macro-averaged F1 to 1,

the better is the classification.

Micro-averaged F1 measure

The micro-averaged F1 measures are computed by first creating a global contingency table whose

cell values are the sum of the corresponding cells in the per-category contingency tables. Then use this

global contingency table to compute the micro-averaged performance scores. Micro-averaged F1 gives

equal weightage on each sample (test case). Micro− averaged F1 (or Micro F1 in short) is defined as

Micro averaged F1 =
2 × 1

m
Σm

i=1
pi ×

1

m
Σm

i=1
ri

1

m
Σm

i=1
pi + 1

m
Σm

i=1
ri

, (9)

The value of Micro-averaged F1 lies between 0 and 1. More close the value of micro-averaged F1 to

1, the better is the classification.

4.4. Experimental results

The proposed aggregation pheromone density based classifier has only one parameter δ (spread of the

Gaussian). For the optimal performance of the proposed classifier, we have experimented with wide

range of δ for each data set. The δ value for which best result, in terms of performance evaluation

measures, occurs is reported in Table 2 and Table 3. That selected δ value is put within bracket with APC
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Table 2. Experimental evaluation on real life data for APC, K-NN, MDC, MLP and SVM classifiers using 10

percent of total data as training set and rest of the data as test set

Data Method % Accuracy Macro F1 Micro F1 Time (in ms)

APC 93.666672 #1 0.936044 #1 0.939927 #1 3.95 #3

(δ=0.4) (2.655067) (0.027495) (0.023075) (6.84)

K=5 90.333336 #3 0.901006 #3 0.910622 #3 1.55 #2

(3.493870) (0.039162) (0.028172) (5.48)

K-NN K=7 89.222214 0.890289 0.897831 2.30

Iris (2.203316) (0.023724) (0.017741) (4.65)

MDC 91.814819 #2 0.917606 #2 0.921039 #2 0.00 #1

(1.994162) (0.020370) (0.018701) (0.00)

MLP 82.66668 0.82136 0.8478 386

(11.74583) (0.121781) (0.095351) (33.2265)

SVM 71.25924 0.64342 0.70794 404

(7.157253) (0.109071) (0.120788) (38.78144)

APC 96.5397 #1 0.96164 #1 0.96166 #1 24.95 #3

(δ=3.2) (0.509428) (0.005809) (0.005622) (7.83)

K=5 96.128250 0.957060 0.957364 18.75 #2

(0.521697) (0.005987) (0.005761) (6.37)

K-NN K=7 95.852280 0.953874 0.954325 18.87

WBC (0.382357) (0.004439) (0.004208) (6.27)

MDC 96.217545 #3 0.958094 #3 0.958324 #3 3.15 #1

(0.531270) (0.006068) (0.005861) (6.30)

MLP 93.77778 0.92988 0.93066 2674

(1.28327) (0.015179) (0.01481) (0.561514)

SVM 96.355515 #2 0.959629 #2 0.959856 #2 176

(0.726681) (0.007993) (0.00798) (93.0806)

APC 65.00 #3 0.642357 #3 0.650773 #3 3.90 #3

(δ=0.43) (2.655067) (0.027495) (0.023075) (6.84)

K=5 58.111702 0.566007 0.581504 3.85 #2

(3.965799) (0.044301) (0.038698) (6.67)

K-NN K=7 57.686176 0.559964 0.577353 3.87

Sonar (4.948453) (0.056456) (0.052228) (6.67)

MDC 59.893616 0.592969 0.601412 2.25 #1

(4.055829) (0.042072) (0.040189) (5.36)

MLP 66.8439 #2 0.6667 #2 0.67493 #2 15050

(7.62616) (0.07573) (0.07969) (164.3168)

SVM 68.40422 #1 0.6821 #1 0.69526 #1 210

(3.237267) (0.03187) (0.030342) (125.698)

APC 85.438148 #1 0.769650 #1 0.791321 #1 5.45 #3

(δ=1.6) (3.762797) (0.065778) (0.059440) (7.43)

K=5 76.056702 0.498423 0.582944 1.55 #1

(3.893289) (0.121202) (0.108642) (6.84)

K-NN K=7 69.587639 0.273556 0.273556 3.95

Thyroid (0.000008) (0.000000) (0.000000) ( 4.65)

MDC 83.505150 0.750875 #2 0.770221 #3 2.30 #2

(4.309599) (0.072063) (0.064120) (5.48)

MLP 85.30928 #2 0.704933 0.715933 685

(3.480186) (0.109706) (0.117456) (44.3113)

SVM 84.43296 #3 0.72368 #3 0.7756 #2 434

(4.69497) (0.095615) (0.072271) (58.51495)

APC 53.116722 #1 0.400773 #1 0.420660 #1 9.40 #3

(δ=0.13) (2.729592) (0.054025) (0.064672) (7.68)

K=5 43.086739 0.190268 0.205177 1.60 #1

(4.806423) (0.048741) (16.525463) (6.30)

K-NN K=7 38.750004 0.145445 0.153085 3.15

Glass (4.205626) (0.024202) (0.065397) (4.80)

MDC 13.775511 0.040359 0.040359 4.65 #2

(0.000001) (0.000000) (0.000001) (7.11)

MLP 51.9862 #2 0.35362 #2 0.370433 #2 1851.667

(7.1085) (0.064148) (0.060149) (49.1313)

SVM 49.84456 #3 0.26172 #3 0.30714 #3 1988

(3.380186) (0.03415) (0.05251) (156.256)
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Table2 Continued..

Data Method % Accuracy Macro F1 Micro F1 Time (in ms)

APC 76.336281 0.594873 0.596314 25.80 #3

(δ=0.30) (2.40545) (0.019518) (0.018957) (7.41)

K=5 80.336281 0.571284 0.586133 14.00 #2

(1.959652) (0.022120) (0.031176) (4.69)

K-NN K=7 80.911499 #3 0.565143 0.576407 14.85

Balance- (1.930970) (0.017209) (0.036716) (5.99)

scale MDC 69.796455 0.598410 #3 0.631183 #2 3.85 #1

(3.117897) (0.027168) (0.033910) (6.67)

MLP 88.21788 #1 0.7553 #1 0.764483 #1 1535

(2.128149) (0.05264) (0.05467) (72.7438)

SVM 86.99824 #2 0.603 #2 0.60392 #3 464

(1.091485) (0.007208) (0.00686) (52)

APC 77.91242 #1 0.754243 #1 0.757838 #1 74.80 #3

(δ=11.8) (1.114165) (0.030467) (0.030069) (6.40)

K=5 76.176834 #3 0.729180 #2 0.734841 #2 23.40 #2

(2.253696) (0.022419) (0.021028) (7.81)

K-NN K=7 74.293877 0.700342 0.709387 29.70

Telugu (2.015436) (0.024606) (0.022805) (6.72)

Vowel MDC 69.465645 0.675203 0.682223 8.65 #1

(1.827815) (0.020818) (0.020702) (7.83)

MLP 77.277351 #2 0.70745 #3 0.729083 #3 3445

(1.172304) (0.01204) (0.017214) (65.2559)

SVM 68.75 0.56984 0.61218 2176

(7.44663) (0.089007) (0.068327) (89.57678)

APC 65.841751 #1 0.660388 #1 0.668256 #1 100.70 #3

(δ= 0.50) (2.939633) (0.029055) (0.029404) (12.48)

K=5 47.957355 #3 0.471048 #3 0.493678 #2 39.30 #2

(2.462776) (0.023784) (0.022325) (7.71)

K-NN K=7 45.342308 0.442498 0.468215 41.40

English (2.096394) (0.023811) (0.023263) (7.43)

Vowel MDC 48.383842 #2 0.482557 #2 0.489458 #3 15.75 #1

(2.278892) (0.021116) (0.020410) (0.43)

MLP 46.03816 0.45588 0.47706 32462

(2.257424) (0.01586) (0.018125) (327.6828)

SVM 25.97084 0.24794 0.28068 8256

(1.218338) (0.00865) (0.01679) (459.9826)

APC 69.703751 #3 0.654223 #3 0.657159 #3 32.65 #3

(δ=16.8) (3.663801) (0.031438) (0.029830) (4.79)

K=5 68.208084 0.622328 0.641612 24.30 #2

(2.668094) (0.034729) (0.023075) (6.84)

K-NN K=7 69.205208 0.619605 0.645976 24.40

Diabetes (2.406525) (0.037236) (0.031250) (9.23)

MDC 66.950859 0.630764 0.632433 7.05 #1

(3.809962) (0.047395) (0.046946) (7.80)

MLP 70.1589 #2 0.67125 #1 0.67265 #2 671.25

(3.82767) (0.04237) (0.042589) (42.37628)

SVM 72.45666 #1 0.66994 #2 0.67972 #1 198

(2.79107) (0.040233) (0.03612) (129.213)

APC 80.615135 #3 0.750431 #3 0.792146 #3 10.15 #3

(δ=0.80) (5.758697) (0.106371) ( 0.057387) (7.46)

K=5 73.769714 0.617905 0.721410 4.65 #2

(6.954584) (0.144472) (0.070467) (7.11)

K-NN K=7 70.914833 0.560510 0.680493 7.00

Ionosphere (6.522116) (0.141594) (0.092459) (7.75)

MDC 76.876976 0.746983 0.751699 0.75 #1

(5.344280) (0.051898) (0.054081) (3.27)

MLP 82.0886 #2 0.7815 #2 0.8057 #2 9500

(1.956914) (0.021089) (0.02448) (41.95235)

SVM 83.03798 #1 0.78732 #1 0.82098 #1 232

(3.316587) (0.051897) (0.031353) (74.13501)
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Table 3. Experimental evaluation on synthetic data for APC, K-NN, MDC, MLP and SVM classifiers using 10

percent of total data as training set and rest of the data as test set

Data Method % Accuracy Macro F1 Micro F1 Time (in ms)

APC 98.464279 #1 0.985941 #1 0.986097 #1 102.30 #3

(δ=0.40) (1.281758) (0.012746) (0.012504) (9.23)

K=5 91.194443 #2 0.921799 #2 0.923134 #2 54.70 #2

(3.526837) (0.030936) (0.030281) (7.91)

K-NN K=7 86.916664 0.882359 0.884641 68.60

Annular (4.237551) (0.036768) (0.035331) (7.79)

MDC 28.222218 0.252424 0.267402 10.15 #1

(2.975650) (0.023999) (0.021159) (7.46)

MLP 84.58732 #3 0.83166 #3 0.86374 #3 831.66

(6.893613) (0.10865) (0.06685) (108.6524)

SVM 33.20636 0.15676 0.1611 928

(2.964732) (0.03461) (0.03776) (102.0588)

APC 99.812973 #2 0.998128 #2 0.998134 #2 386.70 #3

(δ=0.35) (0.175866) (0.001761) (0.001756) (8.36)

K=5 99.887039 #1 0.998870 #1 0.998874 #1 236.20 #2

(0.136824) (0.001368) (0.001362) (4.62)

K-NN K=7 99.833336 0.998334 0.998338 282.90

Ellipse (0.196853) (0.001968) (0.001960) (4.72)

MDC 81.996292 0.817814 0.818785 23.40 #1

(0.498130) (0.004231) (0.004754) (7.81)

MLP 90.5037 #3 0.90236 #3 0.91072 #3 5030

(4.439360) (0.04565) (0.043436) (54.40588)

SVM 82.71852 0.8238 0.82576 502

(0.331782) (0.00373) (0.003383) (91.9565)

APC 77.345520 #1 0.719335 #1 0.721196 #1 75.70 #3

(δ=4.4) (1.838376) (0.034793) (0.034889) (7.56)

K=5 69.268600 #2 0.565623 #2 0.576096 #2 29.00 #2

(2.530912) (0.028308) (0.027571) (4.60)

K-NN K=7 66.948288 0.491452 0.521020 29.75

Pat1 (3.124440) (0.060469) (0.065949) (5.48)

MDC 32.036572 0.249202 0.332992 7.75 #1

(6.634942) (0.034747) (0.033403) (7.76)

MLP 55.42932 0.43884 #3 0.44898 #3 1530

(3.497248) (0.22571) (0.23028) (67.8233)

SVM 56.31312 #3 0.26224 0.2659 450

(4.179266) (0.032992) (0.04031) (62.92853)

APC 80.756615 #1 0.803176 #1 0.804466 #1 78.90 #3

(δ=0.0050) (2.472527) (0.026302) (0.026496) (3.25)

K=5 72.061790 #2 0.707022 #2 0.710232 #2 22.65 #2

(3.104161) (0.032179) (0.031780) (7.87)

K-NN K=7 67.875153 0.656549 0.662427 30.45

Pat2 (2.887981) (0.029284) (0.029878) (6.06)

MDC 47.679695 0.482760 #3 0.512758 4.75 #1

(2.599657) (0.024480) (0.020395) (7.26)

MLP 56.46462 #3 0.46974 0.52598 #3 1530

(3.636202) (0.052524) (0.049856) (49.3963)

SVM 53.28284 0.26284 0.26504 548

(1.628742) (0.06669) (0.071089) (96.41577)

APC 99.400009 #1 0.993997 #1 0.994102 #1 100.75 #3

(δ=0.04) (0.847218) (0.008480) (0.008238) (7.67)

K=5 85.972237 #2 0.859307 #2 0.861510 #2 29.70 #2

(3.711656) (0.037474) (0.036477) (4.75)

K-NN K=7 77.127777 0.770620 0.772976 34.35

Spiral (3.292017) (0.032862) (0.033630) (6.33)

MDC 63.427776 #3 0.633872 #3 0.634552 #3 8.65 #1

(1.722142) (0.017464) (0.017145) (7.83)

MLP 59.9111 0.56958 0.6116 1306

(5.208443) (0.08277) (0.04462) (77.3563)

SVM 60.62222 0.5968 0.60872 194

(1.712132) (0.01712) (0.013036) (73.648)
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method. Note that for a wide range of δ values, the performance measures are observed to be fixed at

nearly constant value or varies a little.

The CPU (execution) time, in milliseconds, needed by the algorithms are also given in the table for

comparison. Rank of each algorithm is given depending on its performance measures and the execution

time (separately) using ‘#’ symbol followed by corresponding rank (from 1 to 3). For example ‘#1’

indicates the best result with respect to either the corresponding performance measure or execution time.

4.4.1. Analysis of results of first kind of experiments (training with 10% data):

As mentioned earlier, for the first kind of experiments, 10% of data is taken out randomly to make the

training set and the rest amount is considered as the test set. This process is repeated 20 times. Average

result in terms of performance measures and execution time together with standard deviation (shown

in bracket) of these 20 runs is reported in Table 2 and Table 3. Following section gives the detailed

illustration and experimental outcome. The proposed aggregation pheromone density based classification

method is compared with four other popular classification algorithms.

It is apparent from Table 2 that for real life data sets, in terms of percentage accuracy, macro aver-

aged F1 measure and micro averaged F1 measure, the proposed APC performed the best for 6 data sets

(Iris, WBC, Thyroid, Glass, Telugu Vowel and English Vowel) and the third best for 3 data sets (Sonar,

Diabetes and Ionosphere), whereas SVM performed better for Sonar, Diabetes and Ionosphere data sets.

Only in one case (Balancescale data) MLP outperformed other methods in terms of all performance

measures.

For synthetic data sets, the proposed APC performed better for four out of five cases (except Ellipse

data) in terms of all the performance measures compared to other classifiers. Only in case of Ellipse data

K-NN outperformed others.

In terms of execution time, performance of minimum distance classifier (MDC) is the best, whereas

K-NN and the proposed APC performed the 2nd best and the 3rd best respectively for all the data sets

except Thyroid data. For Thyroid data K-NN (K=5) takes the least execution time.

On an average for most of the real life data sets considered, performance of the proposed APC is the

best or is very close to the best one in terms of classification performance measures; and it takes less

execution time than that of MLP and SVM, but more than MDC and K-NN.

4.4.2. Analysis of results of for the kind of experiments (k-fold cross validation):

In the second approach, k (=10) fold cross validation is used. The whole data set is randomly divided

into k mutually exclusive and (nearly) equal sized subsets. For each subset, considered as the test set,

the classifier is trained on the union of all the other subsets. Then, cross validation is run (total 10 times)

for each training and test set pair. The results are averaged over all test set and training set pair in terms

of performance measures and execution time together with standard deviation (shown in bracket). The

results are reported in Tables 4 and 5.

From Table 4, it can be seen that the performance of the proposed APC method is the best for

6 data sets (namely Iris, WBC, Thyroid, Glass, Telugu Vowel, and Ionosphere) and the 2nd best for

Balancescale data, whereas it performed the 3rd best for 3 data sets (Sonar, English Vowel, Diabetes). In

case of Sonar, English Vowel and Balancescale data sets MLP outperformed other methods. For 4 data

sets (Thyroid, Diabetes, Glass, Ionosphere) performance of the MLP is the 2nd best and the 3rd best for
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Table 4. Experimental evaluation on real life data for APC, K-NN, MDC, MLP and SVM classifiers using 10

fold cross validation

Data Method % Accuracy Macro F1 Micro F1 Time (in ms)

APC 96.666672 #1 0.962399 #1 0.966399 #1 1.50 #3

(δ=0.2) (3.265985) (0.038586) (0.304879) (4.50)

K=5 96.666664 #2 0.953933 0.958891 1.02 #2

(3.333332) (0.038478) (0.034205) (0.57)

K-NN K=7 96.00 0.961976 #2 0.966029 #2 1.60

Iris (3.333332) (0.038851) (0.034539) (4.80)

MDC 92.000000 0.914886 0.921216 0.00 #1

(6.531973) (0.063683) (0.060490) (0.0000)

MLP 96.4 #3 0.96134 #3 0.96146 #3 428

(0.5333) (0.00268) (0.00262) (44.899)

SVM 96.40002 0.96394 0.96454 428

(0.326615) (0.00326) (0.00326) (52.6877)

APC 97.472890 #1 0.974002 #1 0.974394 #1 20.40 #3

(δ=2.9) (2.229890) (0.025074) (0.035915) (7.17)

K=5 97.075874 0.967985 0.968359 12.50 #2

(2.253604) (0.024345) (0.023970) (6.26)

K-NN K=7 97.220802 #2 0.969560 #2 0.969868 #2 15.60

WBC (2.304891) (0.024754) (0.024511) (6.95)

MDC 96.489769 0.961090 0.961387 3.2000 #1

(2.173517) (0.023392) (0.023348) ( 6.4000)

MLP 95.27898 0.94776 0.94778 2716

(3.350445) (0.0338) (0.03379) (94.78)

SVM 96.82402 #3 0.96498 #3 0.965 #3 164

(0.107043) (0.001144) (0.0012) (34.9857)

APC 76.92306 #3 0.76734 #3 0.768 #3 7.90 #3

(δ=0.76) (6.055346) (0.063898) (0.059777) (7.91)

K=5 81.238098 #2 0.805798 #2 0.818402 #2 7.70 #2

(3.996597) (0.039728) (0.027983) (7.71)

K-NN K=7 75.928574 0.749916 0.762828 9.60

Sonar (5.857771) (0.056770) (0.050302) (4.80)

MDC 68.214294 0.673079 0.679201 1.05 #1

(5.435662 ) ( 0.101016) (0.101306) (0.746)

MLP 83.26922 #1 0.83168 #1 0.83178 #1 15316

(1.53244) (0.01546) (0.01544) (79.39)

SVM 75.880959 0.742555 0.762994 200

(0.860036) (0.00817) (0.00872) (80)

APC 96.09306 #1 0.94748 #1 0.954424 #1 4.60 #2

(δ=1.1) (5.167178) (0.063673) (0.306456) (7.03)

K=5 92.142860 #3 0.872105 #3 0.884973 #3 1.50 #1

(5.836174) (0.108553) (0.103134) (4.50)

K-NN K=7 90.735939 0.837893 0.860782 1.60

Thyroid (4.120293) (0.088872) (0.086944) (4.80)

MDC 85.129875 0.777132 0.793752 4.60 #2

(7.756683) (0.105355) ( 0.108443) (7.0314)

MLP 95.865799 #2 0.946259 #2 0.94784 #2 698

(4.37208) (0.04505) (0.04519) (41.66)

SVM 89.3023 0.83344 0.85276 428

(5.294155) (0.055660) (0.05411) (48.7442)

APC 68.744591 #1 0.573391 #1 0.596075 #1 4.70 #3

(δ=0.24) (3.856398) (0.037313) (0.052334) (3.18)

K=5 64.523811 #3 0.460668 #3 0.481694 #3 3.10 #2

(10.154930) (0.085411) (0.097158) (6.20)

K-NN K=7 61.796532 0.430365 0.449541 4.80

Glass (10.626472) (0.104615) (0.115375) (7.33)

MDC 39.199135 0.350505 0.381075 1.50 #1

(8.481120) ( 0.120826) (0.128135 ) (4.50)

MLP 66.93925 #2 0.4924 #2 0.510125 #2 1797.5

(4.337086) (0.046921) (0.053051) (10.89725)

SVM 57.1028 0.3203 0.34542 2276

(0.68674) (0.003758) (0.00404) (141.929)
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Table 4 Continued..

Data Method % Accuracy Macro F1 Micro F1 Time (in ms)

APC 87.987239 #2 0.749494 #2 0.757700#2 20.20 #3

(δ=8.1) (5.246451) (0.092133) (0.254812) (7.30)

K=5 84.308754 0.697587 0.699380 9.30 #2

(4.247334) (0.021098) (0.020356) (7.60)

K-NN K=7 87.985153 #3 0.713029 #3 0.713865 #3 14.00

Balance- (3.505145) (0.018146) (0.018215) (4.69)

scale MDC 74.528938 0.678964 0.760272 1.50 #1

(5.277471) (0.049212) (0.043933) (4.5000)

MLP 91.104 #1 0.82148 #1 0.82432 #1 1640

(3.45929) (0.02968) (0.02012) (87.4)

SVM 87.904 0.60996 0.60996 490

(2.34465) (0.012394) (0.02039) (68.4105)

APC 85.991379 #1 0.846151 #1 0.851242 #1 65.50 #3

(δ=11.6) (3.775894) (0.043551) (0.272442) (6.52)

K=5 85.876434 #2 0.839221 #2 0.844289 #2 32.90 #2

(4.338057) (0.054833) (0.053589) (11.02)

K-NN K=7 85.419266 0.832156 0.839496 36.50

Telugu (2.570991) (0.037082) (0.037432) (7.10)

Vowel MDC 71.068436 0.685577 0.698672 2.74 #1

(3.583662) (0.048609) (0.044490) ( 1.647)

MLP 83.05394 #3 0.80662 #3 0.80996 #3 3454

(1.3452) (0.02443) (0.02416) (13.56)

SVM 78.87488 0.73016 0.7487 2090

(1.145243) (0.011515) (0.011915) (144.361)

APC 70.606064 #3 0.692361 0.728935 #3 67.20 #3

(δ= 1.2) (2.409467) (0.028975) ( 0.231738) (7.08)

K=5 90.909081 #2 0.904888 #2 0.910257 #2 34.20 #2

(3.226002) (0.029228) (0.028137) (6.16)

K-NN K=7 85.050514 0.847239 0.858285 40.40

English (3.187824) (0.027575) (0.026106) (7.68)

Vowel MDC 60.101006 0.568240 0.583804 1.50 #1

(6.408372) (0.067130) (0.067154) (4.50)

MLP 92.8283 #1 0.9281 #1 0.92908 #1 33514

(2.75588) (0.0277) (0.02744) (346.2)

SVM 70.40404 0.70266 #3 0.70382 8380

(1.20026) (0.01065) (0.01089) (507.661)

APC 72.399185 #3 0.707209 #3 0.715370 #3 26.90 #3

(δ=14.3) (2.677361) (0.032043) (0.228262) (7.15)

K=5 69.926521 0.660209 0.662434 12.50 #2

(3.265679) (0.048316) (0.047569) (6.26)

K-NN K=7 71.871155 0.677057 0.679883 17.20

Diabetes (3.973670) (0.043629) (0.044213) (4.62)

MDC 63.672253 0.591258 0.595100 1.58 #1

(6.262702) (0.067712) (0.067762) (4.27)

MLP 74.89582 #2 0.71788 #2 0.71896 #2 2800

(2.896056) (0.0123) (0.01163) (66.6)

SVM 77.21354 #1 0.72934 #1 0.73866 #1 212

(1.184173) (0.01248) (0.01226) (68.527)

APC 89.473016 #1 0.893275 #1 0.8979 #1 12.50 #3

(δ=0.60) (4.527817) (0.049275) (0.044130) (6.26)

K=5 83.198410 0.788803 0.815330 4.70 #2

(5.890584) (0.072114) (0.061963) (7.60)

K-NN K=7 82.626984 0.777142 0.806473 6.20

Ionosphere (5.755850) (0.081009) (0.068577) (7.18)

MDC 71.769844 0.701233 0.712467 0.0000 #1

(8.762713) (0.088937) (0.083369) (0.0000)

MLP 88.7983 #2 0.874877 #2 0.878668 #2 9600

(0.72635) (0.0084) (0.00821) (76.5)

SVM 88.37608 #3 0.86558 #3 0.87418 #3 240

(0.33225) (0.00412) (0.00374) (67.5278)
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Table 5. Experimental evaluation on synthetic data for APC, K-NN, MDC, MLP and SVM classifiers using 10

fold cross validation

Data Method % Accuracy Macro F1 Micro F1 Time (in ms)

APC 100.00 #1 1.00 #1 1.00 #1 85.90 #3

(δ=0.40) (0.00) (0.00) (0.00) (7.91)

K=5 100.00 #1 1.00 #1 1.00 #1 37.50 #2

(0.00) (0.00) (0.00) (7.76)

K-NN K=7 100.00 #1 1.00 #1 1.00 #1 47.00

Annular (0.00) (0.00) (0.00) (7.76)

MDC 25.214289 0.211035 #3 0.221697 #3 1.6000 #1

(4.078940) (0.029748) (0.029450) (4.8000)

MLP 94.5714 #2 0.94686 #2 0.94842 #2 3346

(1.3462) (0.0133) (0.0121) (76)

SVM 35.7143 #3 0.1316 0.1316 902.5

(0) (0) (0) (46.5698)

APC 99.100006 #2 0.990936 #2 0.991059 #2 386.00 #3

(δ=0.35) (0.472582) (0.004641) (0.313417) (10.00)

K=5 100.00 #1 1.00 #1 1.00 #1 209.30 #2

(0.00) (0.00) (0.00) (7.52)

K-NN K=7 100.00 1.00 1.00 267.10

Ellipse (0.00) (0.00) (0.00) (4.66)

MDC 81.833328 0.815729 0.816876 1.6000 #1

(1.815061) (0.020001) ( 0.020231) (4.8000)

MLP 98.30002 #3 0.983 #3 0.9831 #3 5442

(0.4967) (0.005) (0.005) (35.4)

SVM 82.1 0.82005 0.820175 502.5

(0.062365) (0.000642) (0.000642) (113.880)

APC 92.159088 #1 0.924101 #1 0.926410 #1 72.00 #3

(δ=4.4) (3.600677) (0.051472) (0.049274) (10.26)

K=5 89.772728 0.851910 0.854222 15.60

(2.095351) (0.085776) (0.086123) (6.95)

K-NN K=7 91.409088 #2 0.919219 #2 0.924744 #2 26.60

Pat1 (2.124440) ( 0.047815) (0.040493 ) (7.17)

MDC 31.249996 0.226164 0.261131 0.0000 #1

(7.262955) (0.048951) (0.052608) (0.0000)

MLP 62.2443 #3 0.4033 #3 0.403725 #3 1552.5

(0.903286) (0.010202) (0.009932) (32.6917)

SVM 58.9773 0.2473 0.2473 503.333

(4.179266) (0) (0) (65.9966)

APC 94.545456 #2 0.944518 #2 0.947499 #2 76.40 #3

(δ=0.005) (1.818183) (0.019194) (0.017672) (4.80)

K=5 96.136368 0.959809 0.960424 22.00 #2

(1.915035) ( 0.019588) (0.019116) (7.56)

K-NN K=7 97.045456 #1 0.969734 #1 0.970206 #1 28.30

Pat2 (2.500001) ( 0.024594) (0.024268) (6.17)

MDC 49.545452 0.497767 0.531423 0.0000

(6.144775) (0.065957) (0.065048) (0.0000)

MLP 64.34088 #3 0.5703 #3 0.614 #3 1614

(0.2203) (0.0033) (0.0026) (52.8)

SVM 56.47728 0.37948 0.40742 452

(0.592657) (0.00961) (0.007053) (70.2567)

APC 100.00 #1 1.00 #1 1.00 #1 92.10 #3

(δ=0.05) (0.00) (0.00) (0.00) (8.57)

K=5 100.00 #1 1.00 #1 1.00 #1 21.90 #2

(0.00) (0.00) (0.00) ( 7.65)

K-NN K=7 100.00 #1 1.00 #1 1.00 #1 27.70

Spiral (0.00) (0.00) (0.00) (6.25)

MDC 64.900002 #3 0.644116 #3 0.644927 #3 0.0000 #1

(4.205948) (0.042975) (0.042825) ( 0.0000)

MLP 62.9 0.628175 0.6296 1126

(1.71610) (0.017257) (0.017183) (565.7419)

SVM 65.9 #2 0.659 #2 0.659 #2 194

(0.126491) (0.001265) (0.001265) (71.4423)
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Iris and Telugu Vowel data. SVM outperformed other methods for only Diabetes data; and for WBC and

Ionosphere data it’s performance is the 3rd best.

In case of considered synthetic data sets (refer Table 5), for Annular and Spiral data sets APC and

K-NN both performed the best and they are 100% percent accurate. K-NN outperformed other methods

for Ellipse and Pat2 data; in these cases APC performed the 2nd best, whereas for Pat1 data APC and

K-NN performed the best and the 2nd best respectively. It is obvious from the experimental outcome

that for Pat1, Pat2 and Spiral data sets MDC, MLP, and SVM failed to perform satisfactorily (as that of

APC and K-NN). For Annular data also, performance of MDC and SVM is very poor; in this case MLP

performed the 2nd best after APC and K-NN.

In terms of execution time MDC, K-NN and APC performed the best, the 2nd best, and the 3rd best

respectively for both the real life and synthetic data sets except Thyroid data set. In case of Thyroid data

set K-NN (K=5) takes the least execution time whereas APC and MDC takes 2nd least time.

In summary, using both kinds of experiments (discussed above), for the chosen real life as well

as synthetic data sets, the proposed method, APC either performed the best or very close to the best

performance produced by other classifiers with moderate execution time.

5. Conclusions

In this article we have proposed a computationally simple yet effective algorithm for pattern classification

based on aggregation pheromone density, which is inspired by ants’ property to accumulate around points

with higher pheromone density. Performance of the proposed method is evaluated on 10 benchmark real

life data sets as well as five synthetic data sets using three performance evaluation measures.

Comparative study of the experimental results on ten real life and synthetic data sets shows the

potentiality of the proposed APC method. Time requirement is moderate.

Future work of the proposed method may be directed towards solving real world problems like land

cover classification of remote sensing images, micro array gene classification, web-page classification

and also to handle classification tasks for categorical data.
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