
International Journal of Computing & Information Sciences Vol. 4, No. 3, December 2006, On-Line  145 
Genetic Algorithms for Multi-Criterion Classification and Clustering in Data Mining  

Satchidananda Dehuri, Ashish Ghosh and Rajib Mall  

Pages 145 – 156  

Genetic Algorithms for Multi-Criterion 

Classification and Clustering in Data Mining  
 

Satchidananda Dehuri         

Department of Information & Communication Technology 

 Fakir Mohan University, 

Vyasa Vihar, Balasore-756019, India. 

Email: satchi_d@yahoo.co.in 

 

Ashish Ghosh 

Machine Intelligence Unit and Center for Soft Computing Research 

 Indian Statistical Institute, 

 203, B.T. Road, Kolkata–700108, INDIA. 

Email: ash@isical.ac.in 

 

Rajib Mall 

Department of Computer Science & Engineering 

 Indian Institute of Technology, 

Kharagpur-721302, India. 

Email: rajib@cse.iitkgp.ernet.in 

 

 
Abstract: This paper focuses on multi-criteria tasks such as classification and clustering in the context of data 

mining. The cost functions like rule interestingness, predictive accuracy and comprehensibility associated with rule 

mining tasks can be treated as multiple objectives. Similarly, complementary measures like compactness and 

connectedness of clusters are treated as two objectives for cluster analysis. We have carried out an extensive 

simulation for these tasks using different real life and artificially created datasets. Experimental results presented 

here show that multi-objective genetic algorithms (MOGA)  bring a clear edge over the single objective ones  in the 

case of classification task; whereas for clustering task they produce comparable results.   
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1. Introduction 
 

The commercial and research interests in data mining 

is increasing rapidly, as the amount of data generated 

and stored in databases of organizations is already 

enormous and continuing to grow very fast. This large 

amount of stored data normally contains valuable 

hidden knowledge, which, if harnessed, could be used 

to improve the decision making process of an 

organization. For instance, data about previous sales 

might contain interesting relationships between 

products, types of customers and buying habits of 

customers. The discovery of such relationships can be 

very useful to efficiently manage the sales of a 

company. However, the volume of the archival data 

often exceeds several gigabytes or even terabytes, 

which is beyond the analyzing capability of human 

beings. Thus there is a clear need for developing 

semi-automatic methods for extracting knowledge 

from data.    

 

Traditional statistical data summarization, database 

management techniques and pattern recognition 

techniques are not adequate for handling data of this 

scale. This quest led to the emergence of a field 

called data mining and knowledge discovery (KDD) 

[1] aimed at discovering natural structures/ 

knowledge/hidden patterns within such massive data. 

Data mining (DM), the core step of KDD, deals with 

the process of identifying valid, novel and potentially 

useful, and ultimately understandable patterns in data. 

It involves the following tasks: classification, 

clustering, association rule mining, sequential pattern 

analysis and data visualization [3-7]. 
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In this paper we are considering classification and 

clustering. Each of these tasks involves many criteria. 

For example, the task of classification rule mining 

involves the measures such as comprehensibility, 

predictive accuracy, and interestingness [8,9]; and the 

task of clustering involves compactness as well as 

connectedness of clusters [10]. In this work, we tried to 

solve these tasks by multi-objective genetic algorithms 

[11], thereby removing some of the limitations of the 

existing single objective based approaches.  

 

The remainder of the paper is organized as follows: In 

Section 2, an overview of DM and KDD process is 

presented. Section 3 presents a brief survey on the role 

of genetic algorithm for data mining tasks. Section 4 

presents the new dimension to data mining and KDD 

using MOGA. In Section 5 we give the experimental 

results with analysis. Section 6 concludes the article.  

 

2. An Overview of DM and KDD 
 

Knowledge discovery in databases is the non-trivial 

process of identifying valid, novel, potentially useful, 

and ultimately understandable patterns in data [1]. It is 

interactive and iterative, involving numerous steps with 

many decisions being made by the user.  

 

Here we mention that the discovered knowledge should 

have three general properties: namely, predictive 

accuracy, understandability, and interestingness in the 

parlance of classification [12,13]. Properties like 

compactness and connectedness are embedded in 

clusters. Let us briefly discuss each of these properties.  

 

 Predictive Accuracy: The basic idea is to predict 

the value that some attribute(s) will take in “future” 

based on previously observed data. We want the 

discovered knowledge to have a high predictive 

accuracy.  

 

 Understandability: We also want the discovered 

knowledge to be comprehensible for the user. This 

is necessary whenever the discovered knowledge is 

to be used for supporting a decision to be made by 

a human being.  If the discovered knowledge is just 

a black box, which makes predictions without 

explaining them, the user may not trust it [14]. 

Knowledge comprehensibility can be achieved by 

using high-level knowledge representations. A 

popular one in the context of data mining, is a set 

of IF- THEN (prediction) rules, where each rule is 

of the form  

If    antecedent  then  consequent . 

If the number of attributes is small for the 

antecedent as well as for the consequent clause, 

then the discovered knowledge is understandable. 

 

 Interestingness: This is the third and most difficult 

property to define and quantify. However, there are 

some aspects of knowledge interestingness that 

can be defined in objective ways. The topic of 

rule interestingness, including a comparison 

between the subjective and the objective 

approaches for measuring rule interestingness, 

will be discussed in Section 3; and interested 

reader can refer [15] for more details.     

 

 Compactness: To measure the compactness of a 

cluster we compute the overall deviation of a 

partitioning. This is computed as the overall sum 

of square distances for the data items from their 

corresponding cluster centers. Overall deviation 

should be minimized.  

 

 Connectedness: The connectedness of a cluster is 

measured by the degree to which neighboring 

data points have been placed in the same clusters. 

As an objective, connectivity should be 

minimized. The details of these two objectives 

related to cluster analysis is discussed in Section 

5. 

 

2.2 Data Mining 
 

Data mining is one of the important steps of KDD 

process. The common algorithms in current data 

mining practice include the following. 

 

1) Classification: classifies a data item into one of 

several predefined categories /classes. 

2) Regression: maps a data item to a real-valued 

prediction variable. 

3) Clustering: maps a data item into one of several 

clusters, where clusters are natural groupings of 

data items based on similarity matrices or 

probability density models. 

4) Discovering association rules: describes 

association relationship among different 

attributes. 

5) Summarization: provides a compact description 

for a subset of data. 

6) Dependency modeling: describes significant 

dependencies among variables. 

7) Sequence analysis: models sequential patterns 

like time-series analysis. The goal is to model 

the states of the process generating the 

sequence or to extract and report deviation and 

trends over time. 

 

Since in the present article we are interested in the 

following two important tasks of data mining, namely 

classification and clustering; we briefly describe them 

here. 
  
Classification: This task has been studied for many 

decades by the machine learning and statistics 

communities [16, 17]. In this task the goal is to 

predict the value (the class) of a user specified goal 

attribute based on the values of other attributes, 
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called predicting attributes. Classification rules can be 

considered as a particular kind of prediction rules 

where the rule antecedent (“IF” part) contains 

predicting attribute and rule consequent (“THEN” part) 

contains a predicted value for the goal attribute. An 

example of classification rule is: 

 

IF (Attendance > 75%) and  (total_marks >60%) 

THEN  (result= “pass”). 

 

In the classification task the data being mined is 

divided into two mutually exclusive and exhaustive 

sets, the training set and the test set. The DM algorithm 

has to discover rules by accessing the training set; and. 

the predictive performance of these rules is evaluated 

on the test set (not seen during training). A measure of 

predictive accuracy is discussed in a later section; the 

reader may refer to [18, 19] also.  

 
Clustering: In contrast to classification task, in the 

clustering process the data-mining algorithm must, in 

some sense, discover the classes by partitioning the 

data set into clusters, which is a form of unsupervised 

learning [20,21]. Examples that are similar to each 

other tend to be assigned to the same cluster, whereas 

examples different from each other belong to different 

clusters. Applications of GAs for clustering are 

discussed in [22-24]. 

 

3. GA Based DM Tasks 
 

This section is divided into two parts. Subsection 3.1, 

discusses the use of genetic algorithms for 

classificatory rule generation, and Subsection 3.2 

discusses the use of genetic algorithm for data 

clustering.  

3.1  Genetic Algorithms (GAs) for 

Classification 
 

The Genetic algorithms are probabilistic search 

algorithms. At each steps of such algorithm a set of N 

potential solutions (called individuals Ik  , where  

represents the space of all possible individuals) is 

chosen in an attempt to describe as good as possible 

solution of the optimization problem [29-31]. This 

population P= {I1, I2, . . IN} is modified according to 

the natural evolutionary process. After initialization, 

selection S: I
N
    I

N 
and recombination Я : I

N
    I

N  

are executed in a loop until some termination criterion 

is reached. Each run of the loop is called a generation 

and P (t) denotes the population at generation t. 

 

The selection operator is intended to improve the 

average quality of the population by giving individuals 

of higher quality a higher probability to be copied into 

the next generation.  Selection thereby focuses on the 

search of promising regions in the search space.  The 

quality of an individual is measured by a fitness 

function f: P→ R. Recombination changes the genetic 

material in the population either by crossover or by 

mutation in order to obtain new points in the search 

space.  

 

3.1.1 Genetic Representations 
 
Each individual in the population represents a 

candidate rule of the form “if Antecedent then 

Consequent”. The antecedent of this rule can be 

formed by a conjunction of at most n – 1 attributes, 

where n is the number of attributes being mined. 

Each condition is of the form Ai = Vij, where Ai is the 

i-th attribute and Vij is the j-th value of the i-th 

attribute’s domain. The consequent consists of a 

single condition of the form G = gl, where G is the 

goal attribute and gl  is the l
th
 value of the goal 

attribute’s domain.  

 

A string of fixed size encodes an individual with n 

genes representing the values that each attribute can 

assume in the rule as shown below.  In addition, each 

gene also contains a Boolean flag (fp /fa) except the 

n
th
 gene that indicates whether or not the i

th
 condition 

is present in the rule antecedent. Hence although all 

individuals have the same genome length, different 

individuals represent rules of different lengths.    

 

 

 
Let us see how this encoding scheme is used to 

represent both categorical and continuous attributes 

present in the dataset. In the categorical (nominal) 

case, if a given attribute can take on k-discrete values 

then we can encode this attribute by using k-bits. The 

i
th
 value (i=1,2,3…,k) of the attribute’s domain is a 

part of the rule  if and only if  i
th
 bit is 1.  

 

For instance, suppose that a given individual 

represents two attribute values, where the attributes 

are branch and semester and their corresponding 

values can be EE, CS, IT, ET and 1
st
, 2

nd
, 3

rd
, 4

th 
, 5

th
, 

6
th
, 7

th
, 8

th
 respectively. Then a condition involving 

these attributes would be encoded in the genome by 

four and 8 bits respectively. This can be represented 

as follows: 
   

 

 
to be interpreted as  

 

If (branch = CS or IT) and (semester=2
nd

 or 4
th
). 

 

Hence this encoding scheme allows the 

representation of conditions with internal 

disjunctions, i.e. with the logical ‘OR’ operator 

within a condition. Obviously this encoding scheme 

can be easily extended to represent rule antecedent 

with several conditions (linked by a logical AND).  

 

A1j A2j A3j A4j An-1j gl 

  0 1 1 0  0 1 0 1 0 0 0 
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In the case of continuous attributes the binary encoding 

mechanism gets slightly more complex. A common 

approach is to use bits to represent the value of a 

continuous attribute in binary notation. For instance the 

binary string 00001101 represents the value 13 of a 

given integer-value attribute.  

 

Similarly the goal attribute is also encoded in the 

individual. This is one possibility. The second 

possibility is to associate all individuals of the 

population with the same predicted class, which is 

never modified during the execution of the algorithm. 

Hence if we want to discover a set of classification 

rules predicting ‘k’ different classes, we would need to 

run the evolutionary algorithm at least k-times, so that 

in the i
th
 run, i=1,2,3..,k, the algorithm discovers only 

rules predicting the i
th
 class [32, 33]. 

 

3.1.2 Fitness Function 
 

As discussed in Section 2.1, the discovered rules 

should have (a) high predictive accuracy (b) 

comprehensibility and (c) interestingness. In this 

subsection we discuss how these criteria can be defined 

and used in the fitness evaluation of individuals in 

GAs. 

 

1.Comprehensibility Metric: There are various ways 

to quantitatively measure rule comprehensibility. A 

standard way of measuring comprehensibility is to 

count the number of rules and the number of conditions 

in these rules. If these numbers increase then 

comprehensibility decreases. 

 

If a rule R can have at most M conditions, the 

comprehensibility of a rule C(R) can be defined as: 

 

C(R) = M – (number of condition (R)).    (1) 

 

2.Predictive Accuracy: As already mentioned, our rules 

are of the form IF A THEN C. The antecedent part of 

the rule is a conjunction of conditions. A very simple 

way to measure the predictive accuracy of a rule is  

A

CA
edicAcc

&
Pr   .                                 (2) 

where |&| CA is defined as the number of records 

satisfying both A and C. 
 

3.Interestingness: The computation of the degree of 

interestingness of a rule, in turn, consists of two terms. 

One of them refers to the antecedent of the rule and the 

other to the consequent. The degree of interestingness 

of the rule antecedent is calculated by an information-

theoretical measure, which is a normalized version of 

the measure proposed in [36,37] defined as follows: 

))((log

1

)(

1
2

1

1

Gdom

n

AInfoGain

RInt

n

i

i








    (3) 

 

where ‘n’ is the number of attributes in the 

antecedent and |)(| Gdom  is the domain cardinality 

(i.e. the number of possible values) of the goal 

attribute G occurring in the consequent. The log term 

is included in the formula (3) to normalize the value 

of RInt, so that this measure takes a value between 0 

and 1.  The InfoGain is given by: 
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where mk is the number of possible values of the goal 

attribute Gk, ni is the number of possible values of the 

attribute Ai, p(X) denotes the probability of X and 

p(X|Y) denotes the conditional probability of X given  

Y. 

 

The overall fitness is computed as the arithmetic 

weighted mean as  

                                

3

3

21

21
)(

)(
www

RIntwwRCw
xf






PredAcc

,   (7) 

where w1, w2   and w3 are user-defined weights.  
 

3.1.3 Genetic Operators  
 

The crossover operator we consider here follows the 

idea of uniform crossover [38, 39].  After crossover is 

complete, the algorithm analyses if any invalid 

individual is created. If so, a repair operator is used to 

produce valid individuals.  

 

The mutation operator randomly transforms the value 

of an attribute into another value belonging to the 

same domain of the attribute.  

 

Besides crossover and mutation, the insert and 

remove operators directly try to control the size of the 

rules being evolved; thereby influence the 

comprehensibility of the rules. These operators 

randomly insert and remove, a condition in the rule 

antecedent. These operators are not part of the regular 

GA. However we have introduced them here for 

suitability in our rule generation scheme. 
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3.2 Genetic Algorithm for Data      

Clustering 
 

A lot of research has been conducted on applying GAs 

to the problem of k clustering, where the required 

number of clusters is known [40, 41].  Adaptation to 

the k-clustering problem requires individual 

representation, fitness function creation, operators, and 

parameter values.  

 

3.2.1 Individual Representation 
 

The classical ways of genetic representations for 

clustering or grouping problems are based on two 

underlying schemes. The first one allocates one (or 

more) integer or bits to each object, known as genes, 

and uses the values of these genes to signify which 

cluster the object belongs to. The second scheme 

represents the objects with gene values, and the 

positions of these genes signify how the objects are 

divided amongst the clusters. Figure 1 shows encoding 

of the clustering {{O1, O2, O4}, {O3, O5, O6}} by group 

number and matrix representations, respectively. 

 

Group-number encoding is based on the first encoding 

scheme and represents a clustering of n objects as a 

string of n integers where the i
th
 integer signifies the 

group number of the i
th
 object.  When there are two 

clusters this can be reduced to a binary encoding 

scheme by using 0 and 1 as the group identifiers. 

 

Bezdek et al. [42] used kn matrix to represent a 

clustering, with each row corresponding to a cluster 

and each column associated with an object. A 1 in row 

i, column j means that object j is in group i. Each 

column contains exactly one 1, whereas a row can have 

many 1’s. All other elements are 0’s. This 

representation can also be adapted for overlapping 

clusters or fuzzy clustering.  

 

For the k-clustering problem, any chromosome that 

does not represent a clustering with k groups is 

necessarily invalid: a chromosome that does not 

include all group numbers as gene values is invalid; a 

matrix encoding with a row of 0’s is invalid. A matrix 

encoding is also invalid if there is more than one 1 in 

any column. Chromosomes with group values that do 

not correspond to a group or object, and permutations 

with repeated or missing object identifiers are invalid. 

 

Though these two representation schemes are easier but 

limitation arises if we represent a million of records, 

which are often encountered in data mining. Hence the 

present representation scheme uses an alternative 

approach proposed in [43]. Here each individual 

consists of k-cluster centers such as C1, C2, C3, … CK. 

Center Ci represents the number of features of the 

available feature space. For an N-dimensional feature 

space the total length of the individual is kn as shown 

below. 

   

 
 

3.2.2 Fitness Function 
 

Objective functions used for traditional clustering 

algorithms can act as fitness functions for GAs.  

However, if the optimal clustering corresponds to the 

minimal objective functional value, one needs to 

transform the objective functional value since GAs 

work to maximize the fitness values. In addition, 

fitness values in a GA need to be positive if we are 

using fitness proportional selection. Krovi [22] used 

the ratio of sum of squared distances between clusters 

and sum of squared distances within a cluster as the 

fitness function. Since the aim is to maximize this 

value, no transformation is necessary. Bhuyan et al, 

[44, 45] used the sum of squared Euclidean distance 

of each object from the centroid of its cluster for 

measuring fitness. This value is then transformed 

( ,max fCf   where f is the raw fitness, f’ is the 

scaled fitness, and Cmax is the value of the poorest 

string in the population) and linearly scaled to get the 

fitness value. Alippi and Cucchiara [46] also used the 

same criterion, but used a GA that has been adapted 

to minimize fitness values. Bezdek et al.’s [40] 

clustering criterion is also based around minimizing 

the sum of squared distances of objects from their 

cluster centers, but they used three different distance 

metrics (Euclidean, diagonal, and Mahalanobis) to 

allow for different cluster shapes. 
 

4.3 Genetic Operators 
 

Selection 
Chromosomes are selected for reproduction based on 

their relative fitness. If all the fitness values are 

positive, and the maximum fitness value corresponds 

to the optimal clustering, then fitness proportional 

selection may be appropriate. Otherwise, a ranking 

selection method may be used. In addition, elite 

selection will ensure that the fittest chromosomes are 

passed from one generation to the next. Krovi [22] 

used the fitness proportional selection [31]. The 

selection operator used by Bhuyan et al. [44] is an 

elitist version of fitness proportional selection. A new 

population is formed by picking up the x (a parameter 

provided by the user) better strings from the 

combination of the old population and offspring. The 

remaining chromosomes in the population are 

selected from the offspring.  

 

Crossover 
Crossover operator is designed to transfer genetic 

material from one generation to the next. Major 

concerns with this operator are validity and context 

insensitivity. It may be necessary to check whether 

offspring produced by a certain operator is valid.  

 

C1 C2 C3 Ck 
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Context insensitivity occurs when the crossover 

operator used in a redundant representation acts on the 

chromosomal level instead of the clustering level. In 

this case the child chromosome may resemble the 

parent chromosomes, but the child clustering does not 

resemble the parent clustering. Figure 2 shows that the 

single point crossover is context insensitive for group 

number representation.  

 

Here both parents represent the same clustering, {{O1, 

O2, O3}, {O4, O5, O6}} although the group numbers are 

different.  Given that the parents represent the same 

solution, we would expect the children to also represent 

this solution. Instead, both children represent the 

clustering {O1, O2, O3, O4, O5, O6} which does not 

resemble either of the parents. 

 

The crossover operator for matrix representation is as 

follows:  

 

Alippi and Cucchiara [45] used a single–point asexual 

crossover to avoid the problem of redundancy (Figure 

3).  The tails of two rows of the matrix are swapped, 

starting from a randomly selected crossover point. This 

operator may produce clustering with less than ‘k’ 

groups.  

 

Bezdek et al. [41] used a sexual 2-point crossover 

(Figure 4). A crossover point and a distance (the 

number of columns to be swapped) are randomly 

selected–these determine which columns are swapped 

between the parents. This operator is context 

insensitive and may produce offspring with less than k 

groups. 

  

Mutation 
 

Mutation introduces new genetic material into the 

population. In a clustering context this corresponds to 

moving an object from one cluster to another. How this 

is done is dependent on the representation. 

 

Group number 
Krovi [22] used the mutation function implemented by 

Goldberg [31]. Here each bit of the chromosome is 

inverted with a probability equal to the mutation rate, 

pmut. Jones and Beltramo [46] changed each group 

number (provided it is not the only object left in that 

group) with probability, pmut   = 1/n where n is the 

number of objects. 

 

Matrix 
Alippi and Cucchiara [45] used a column mutation, 

which is shown in Figure 5. An element is selected 

from the matrix at random and set to 1. All other 

elements in the column are set to 0. If the selected 

element is already 1 this operator has no effect. Bezdek 

et al. [41] also used a column matrix, but they chose an 

element and flipped it. 

 

4. Multi-Criteria Optimization by GAs 
 

4.1 Multi-criteria optimization 
 

Multi-objective optimization methods deal with 

finding optimal (!) solutions to problems having 

multiple objectives [47-50]. Thus for this type of 

problems the user is never satisfied by finding one 

solution that is optimum with respect to a single 

criterion. The principle of a multi-criteria 

optimization procedure is different from that of a 

single criterion optimization. In a single criterion 

optimization the main goal is to find the global 

optimal solutions. However, in a multi-criteria 

optimization problem, there is more than one 

objective function, each of which may have a 

different individual optimal solution. If there is a 

sufficient difference in the optimal solutions 

corresponding to different objectives then we say that 

the objective functions are conflicting. Multi-criteria 

optimization with such conflicting objective 

functions gives rise to a set of optimal solutions, 

instead of one optimal solution known as Pareto-

optimal solutions [51].   

 

Let us illustrate the Pareto optimal solution with time 

& space complexity of an algorithm shown in the 

following figure. In this problem we have to 

minimize both times as well as space requirements. 

The point ‘p’ represents a solution, which has 

minimal time but high space complexity. On the 

other hand, the point ‘r’ represents a solution with 

high time complexity but minimum space 

complexity. Considering both the objectives, no 

solution is optimal. So in this case we can’t say that 

solution ‘p’ is better than ‘r’. In fact, there exists 

many such solutions like  ‘q’ that belong to the 

Pareto optimal set and one can’t sort the solution 

according to the performance metrics considering 

both the objectives. All the solutions, on the curve, 

are known as Pareto-optimal solutions. From Figure-

6 it is clear that there exists solutions like ‘t’, which 

do not belong to the Pareto optimal set. 
 
Let us consider a problem having m  objectives (say 

miif ,.....,3,2,1,  and m >1). Any two solutions 

)1(
u  and 

)2(
u

 
(having ‘t’ decision variables each) 

can have one of two possibilities-one dominates the 

other or none dominates the other. A solution 
)1(

u is 

said to dominate the other solution 
)2(

u , if the 

following conditions are true: 

1. The solution 
)1(

u is not worse (say the operator   

denotes worse and   denotes better) than 
)2(

u in all 

objectives, or .....,3,2,1),
)2(

()
)1(

( miuifuif    



Genetic Algorithm for Multi-Criterion Classification and Clustering in Data Mining      151 

2. The solution 
)1(

u is strictly better than 
)2(

u in at 

least one objective, or )
)2(

()
)1(

( uifuif  for at least 

one, i {1,2,3,.. , m }.  

 
If any of the above conditions is violated, the solution 

)1(
u does not dominate the solution 

)2(
u . If 

)1(
u  

dominates the solution 
)2(

u , then we can also say that 

)2(
u  is dominated by 

)1(
u , or 

)1(
u  is non dominated 

by 
)2(

u , or simply between the two solutions, 
)1(

u  is 

the non-dominated solution. 

 

Local Pareto-optimal set 
If for every member u  in a set S,   no solution v  

satisfying  vu , where   is a small positive 

number, that dominates any member in the set S, then 

the solutions belonging to the set S constitute a local 

Pareto-optimal set.  

 

Global Pareto-optimal set 
If there exits no solution in the search space which 

dominates any member in the set S, then the solutions 

belonging to the set S constitute a global Pareto-

optimal set. 

 

Difference between non-dominated set & a 

Pareto-optimal set 
A non-dominated set is defined in the context of a 

sample of the search space (need not be the entire 

search space). In a sample of search points, solutions 

that are not dominated (according to the previous 

definition) by any other solution in the sample space 

constitute the non-dominated set. A Pareto-optimal set 

is a non-dominated set, when the sample is the entire 

search space. The location of the Pareto optimal set in 

the search space is sometimes loosely called the Pareto 

optimal region. 

    
Multi-criterion optimization algorithms try to achieve 

mainly the following two goals:  

1.Guide the search towards the global Pareto-optimal 

region, and  

2.Maintain population diversity in the Pareto-optimal 

front. 

The first task is a natural goal of any optimization 

algorithm. The second task is unique to multi-criterion 

optimization. 

 

Multi-criterion optimization is not a new field of 

research and application in the context of classical 

optimization. The weighted sum approach [52], -

perturbation method [52, 53], goal programming [54, 

55], Tchybeshev method [54, 55], min-max method 

[55] and others are all popular methods often used in 

practice [56]. The core of these algorithms, is a 

classical optimizer, which can at best, find a single 

optimal solution in one simulation. In solving multi-

criterion optimization problems, they have to be used 

many times, hopefully finding a different Pareto-

optimal solution each time. Moreover, these classical 

methods have difficulties with problems having non-

convex search spaces. 

 

4.2  Multi-criteria GAs 
 

Evolutionary algorithms (EAs) are a natural choice 

for solving multi-criterion optimization problems 

because of their population-based nature. A number 

of Pareto-optimal solutions can, in principle, be 

captured in an EA population, thereby allowing a 

user to find multiple Pareto-optimal solutions in one 

simulation. The fundamental difference between a 

single objective and multi-objective GA is that in the 

single objective case fitness of an individual is 

defined using only one objective, whereas in the 

second case fitness is defined incorporating the 

influence of all the objectives. Other genetic 

operators like selection and reproduction are similar 

in both cases. The possibility of using EAs to solve 

multi-objective optimization problems was proposed 

in the seventies. David Schaffer was the first to 

implement Vector Evaluated Genetic Algorithm 

(VEGA) [48,49] in the year 1984. There was 

lukewarm interest for a decade, but the major 

popularity of the field began in 1993 following a 

suggestion by David Goldberg based on the use of 

the non-domination [31] concept and a diversity- 

preserving mechanism. There are various multi-

criteria EAs proposed so far, by different authors and 

good surveys are available in [57-59]. 

 

For our task we shall use the following algorithm. 

 

Algorithm 
 

1. g=1; External (g)=; 

2. Initialize Population P(g); 

3. Evaluate the P(g) by Objective Functions; 

4.  Assign Fitness to P(g) Using Rank Based on 

Pareto Dominance 

5. External (g)   Chromosomes Ranked as 1; 

6. While ( g <= Specified_no_of_Generation) do 

7. P’(g) Selection by Roulette Wheel Selection 

Schemes P(g); 

8. P”(g) Single-Point Uniform Crossover and 

Mutation P’(g); 

9. P”’(g) Insert/Remove Operation P”(g); 

10. P(g+1) Replace (P(g), P”’(g)); 

11. Evaluate P(g+1) by Objective Functions; 

12. Assign Fitness to P(g+1) Using Rank Based 

Pareto Dominance; 

13. External (g+1)  [External (g) + 

Chromosome Ranked as One of P(g+1)]; 

14. g=g+1; 

15.  End while 

16. Decode the Chromosomes Stored in External as 

an IF-THEN Rule 
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5. MOGA for DM tasks 
 

5.1 MOGA for classification 
 

As stated in Section-2, classification task has many 

criteria such as predictive accuracy, comprehensibility, 

and interestingness. These three are treated as multiple 

objectives of our mining scheme.  Let the symbols f1, 

f2, and f3 correspond to predictive accuracy; 

comprehensibility and rule interestingness (need to be 

maximized). 

 

5.1.1 Experimental Details 
 

Description of the Dataset 
 

Simulation was performed using benchmark the zoo 

and nursery dataset obtained from the UCI machine 

repository (http://www.ics.uci.edu/).   

 

Zoo Data 
The zoo dataset contains 101 instances and 18 

attributes. Each instance corresponds to an animal. In 

the preprocessing phase the attribute containing the 

name of the animal was removed. The attributes are all 

categorical, namely hair(h), feathers(f), eggs(e), 

milk(m), predator(p), toothed(t), domestic(d), 

backbone(b), fins(fs), legs(l), tail(tl), catsize(c), 

airborne(a), aquatic(aq), breathes(br), venomous(v) and 

type(ty). Except type and legs, all other attributes are 

Boolean. The goal attributes are type 1 to 7. The type 1 

has 41 records, type 2 has 20 records, type 3 has 5 

records, type 4, 5, 6, & 7 has 13, 4, 8, 10 records 

respectively. 

 

Nursery Data 
This dataset has 12960 records and nine attributes 

having categorical values.  The ninth attributes is 

treated as class attribute and there are five classes: 

not_recom (NR), recommended (R), very_recom (VR), 

priority (P), and spec_prior(SP). The attributes and 

corresponding values are listed in Table 1.   

 

Results 
Experiments have been performed using MATLAB 5.3 

on a Linux server. The following parameters are used 

shown in Table 2.  

 

P: population size 

Pc : Probability of crossover 

Pm  : probability of mutation 

Rm : Removal operator 

RI   : Insert Operator 

 
For each of the datasets the simple genetic algorithm 

had 100 individuals in the population and was run for 

500 generations. The parameter values such as Pc, Pm, 

Rm, and Ri were sufficient to find some good 

individuals. The following computational protocols are 

used in the basic simple genetic algorithm as well as 

the proposed multi-objective genetic algorithm for 

rule generation. The data set is divided into two parts: 

training set and test set. Here we have used 30% for 

training set and the rest are test set. We represent the 

predicted class to all individuals of the population, 

which is never modified during the running of the 

algorithm. Hence, for each class we run the 

algorithms separately and get the corresponding 

rules. 

 

Rules generated by MOGA have been compared with 

those of SGA and all rules are listed in the following 

table. Table 3 and 4 show the results generated by 

SGA and, MOGA respectively from zoo dataset. 

Table 3 has three columns namely class#, mined 

rules, and fitness value. Similarly, Table 4 has five 

columns which includes class#, mined rules, 

predictive accuracy, comprehensibility and 

interestingness measures.  

 
Tables 5 and 6 show the result generated by SGA and 

MOGA respectively from nursery dataset.  Table 5 

has three columns namely class#, mined rules, and 

fitness value. Similarly, Table 6 has five columns 

which includes class#, mined rules, predictive 

accuracy, comprehensibility and interestingness 

measures.  

 

5.2 MOGA for Clustering 
 

Conventional genetic algorithm based data clustering 

utilize a single criterion that may not confirm to the 

diverse shapes of the underlying data. This section 

provides a novel approach to data clustering based on 

the explicit optimization of a partitioning with respect 

to multiple complementary clustering objectives [9]. 

It has been shown that this approach may be more 

robust to the variety of cluster structures found in 

different data sets, and may be able to identify certain 

cluster structures that cannot be discovered by other 

methods. MOGA for data clustering uses two 

complementary objectives based on cluster 

compactness and connectedness. Let us define the 

objective functions separately. 

 

Compactness 
Cluster compactness can be measured by the overall 

deviation of a partitioning. This is simply computed 

as the overall summed distances between data items 

and their corresponding cluster centers as 

 


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
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k k

idScomp ),()(            (12) 

 

where S is the set of all clusters, k  is the centroid of 

cluster ck and d(..) is the choosen distance function 

(e.g. Euclidean distance). As an objective, overall 

deviation should be minimized. This criterion is 

similar to the popular criterion of intra-cluster 

http://www.ics.uci.edu/
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variance, which squares the distance value d(..) and is 

more strongly biased towards spherically shaped 

clusters. 

 

Connectedness 
This measure evaluates the degree to which 

neighboring data points have been placed in the same 

cluster. It is computed as  
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,  

nni(j) is the j
th
 nearest neighbor of datum i and L is a 

parameter determining the number of neighbors that 

contributes to the connectivity measure. As an 

objective, connectivity should be minimized. After 

defining theses two objectives, then the algorithms that 

are defined in Section 4.2 can be applied to optimize 

them simultaneously.  The genetic operators such as 

crossover, mutation is the same as single objective 

genetic algorithm for data clustering.   

 

5.2.1 Experimental Details 
 

Parameters taken for simulations are 8.06.0  c  

and 01.0001.0  m . We have carried out 

extensive simulation using labeled data sets for easy 

validation of our results. Table 7 shows the results 

obtained from both SGA based clustering and proposed 

MOGA based clustering. 

 

Population size was taken as 200. Other parameters 

like selection, crossover and mutation were used for the 

simulation. MOGA based clustering generate solutions 

that are comparable or better than the simple genetic 

algorithm. In the case of IRIS data set both the 

connectivity and compactness achieved a near optimal 

solution, whereas in the other two datasets named as 

wine and WBCD the results of both the objectives were 

very much conflicting to each other.  

 

As expected the computational time requirement 

for MOGA is higher than the single objective 

based ones.    

 

6. Conclusions and Discussion 
 

In this paper we have discussed the use of multi-

objective genetic algorithms for classification and 

clustering from. In clustering, it has been demonstrated 

that MOGA based clustering shows robustness over the 

existing single objective ones. Finding more objectives 

that are hidden in cluster analysis as well as without 

using apriori knowledge of k-clusters is a promising 

research direction. The scalability, which is encounter 

in MOGA based rule mining from large databases/ data 

warehouses, is another major research area. Though 

MOGA is discussed for two tasks of data mining, it 

can be extended to the task like sequential pattern 

analysis and data visualization of data mining. 
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