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assigned to a pixel is an average reflectance of different types of land cover classes

present in the corresponding pixel area.

Multispectral remotely sensed images comprise information over a large range of

variation on frequencies (information), and these frequencies change over different

regions (i.e. non-stationary behavior of the signal), which needs to be estimated

properly for improved classification. The multispectral remote sensing image data

have both spectral features with correlated bands and spatial features correlated

in the same band (also known as spatial correlation). An efficient utilization of

these spectral and spatial (contextual) information can improve the classification

performance significantly compared to the conventional non-contextual information

based classical (statistical) and modern (fuzzy, neural, and kernel based techniques

including support vector machines) methods. Most of the conventional multispec-

tral remote sensing image classification systems detect object classes only using

the spectral information of the individual pixel/pattern, while a large amount of

spatial information of neighboring pixels are neglected. Hence, the pixels are clas-

sified based on its spectral intensities and does not give attention to its spatial

dependencies. Important information from neighboring pixels is thus ignored. Such

approaches may be reasonable if spatial resolution is high or when the spectral

intensities are well separated for different classes, which is rarely found in any real

life data. For example, in the urban areas, the densities of the spectral intensities

are seldom well separated, e.g. various classes like concrete structure, vegetation,

habitation, roads, small and narrow water bodies have a lot of overlapping regions

with each other. Thus, it is important to decide whether the spatial arrangements

of data or a transformation of it to a different space where the spatial information

is uncorrelated can be used as features.

Much research effort have been made to take the advantages of neighboring pixel

information1−6 and applied for the classification of remotely sensed data. These

include texture features extracted from angular second moments, contrast, correla-

tion, entropy, variance, etc., computed from the gray level co-occurrence matrices.2

The extracted textural features play an important role and it may increase the per-

formance of the classifier. However, these methods are computationally expensive

due to the estimation of autocorrelation parameters and transition probabilities.

Also, the texture elements are not easy to quantify and it deals with the spatial

distribution of the gray levels over a portion of an image. Later on, Gaussian Markov

random fields (GMRF)7–9 and Gibbs random fields10 were proposed to characterize

textures. Further, local linear transformations are also used to compute textu-

ral features.11 The above-mentioned conventional statistical approaches to texture

analysis are restricted to the analysis of spatial interactions over relatively small

neighborhoods on a single scale.

Normally the multispectral pixel information are usually inefficient in discrim-

inating properly the different land cover classes having ill-defined and overlap-

ping classes. Hence, use of both spectral and textural information in classification

problems is more appropriate. Attempts were made to use both spectral6,12 and

textural features2–5 independently. The conventional textural feature extraction
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methods normally assume the stationarity of the texture within the analysis range

and hence may not be useful. For this reason, the characterization of textures should

be in both spatial and frequency domains, simultaneously.

One efficient way to deal with such problems is to recognize the image by a num-

ber of subsampled approximations of it at different resolutions and desired scales.

This approach is conventionally called multiresolution analysis.13,14 In this regard

Gabor filters and wavelet transform (WT) received a lot of attention.15–18 However,

a major disadvantage in using Gabor transform is that the output of Gabor filter

banks are not mutually orthogonal, which may result in extracting features having

significant correlation between them. Moreover, these transformations are usually

not reversible, which limits their applicability for textural feature extraction. By

using WT, most of these disadvantages can be avoided thereby providing a precise

and unifying framework for the analysis and characterization of a signal at different

scales.15 Another advantage of WT over Gabor filters is that the low pass and high

pass filters used in the WT remain the same between two consecutive scales while

the Gabor approach requires filters of different parameters.16 In other words, Gabor

filters require proper tuning of filter parameters at different scales.

As discussed above, in order to capture the local variations in the orientation

and frequency of texture elements that lead to the large scale frequency varia-

tion behavior of remotely sensed image textures, we need a joint spatial/spatial-

frequency representation. In this regard, WT is found to be a promising tool for

texture analysis in both spatial and spatial-frequency domains19 simultaneously,

as it has the ability to examine the signal at different scales. This means that the

WT provides information in both spatial and spatial-frequency domains. The WT

scheme thus analyzes the coarse image first and gradually increases the resolution to

analyze the finer details. Basically the WT coefficients represent the characteristic

in frequency bands indicating the characteristic like frequency and spatial location

of the original pixel, from where the WT coefficients are originated. Thus, the WT

coefficients extract neighboring pixels information that are uncorrelated in spatial

domain.

Hence, the use of classification methods with these coefficients (pixels with

extracted features) instead of original pixel value is more justifiable. These char-

acteristics of the WT motivated us to use it for extraction of hidden fea-

tures from remote sensing images with non-stationary behavior of the pixels.

Research works related to texture classification using WT has already been car-

ried out.15,17 Use of statistical correlation based features in the WT domain for

classification have also been reported.18,20 In another study, WT has been used

for target classification of remote sensing images.21–25 A comparative study of

multiwavelet,26,27 wavelet, and shape features2 for microcalcification classification

in mammogram has been described in Ref. 28, where it is experimentally shown that

the results of multiwavelet based approach were better compared to wavelet and

statistical based features. However, the computational complexities of multiwavelet

based classification is much higher than the wavelet based one.
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Neural networks (NNs) are aimed to emulate the biological nervous system

with the hope of achieving human-like performance artificially, by capturing the

key ingredients responsible for the remarkable capabilities of the human nervous

system.29–32 Interactions among the neurons is very high in NNs making them suit-

able for making collective decisions. The main characteristics of NNs, namely, adap-

tivity, fault tolerant, robustness and optimality play important roles particularly in

the field of pattern classification. The pattern classification problem becomes more

complex when there is no prior information on class distribution. In such cases,

NN-based systems use adaptive learning procedures that learn from examples and

attempt to find a useful relation between input and output. Similarly, NNs are also

useful to model complex nonlinear boundaries and to discover important under-

laying regularities in the problem domain. In a conventional neural classification

model, number of nodes in the input-layer is equal to the number of features present

in the data pattern and the number of output-layer nodes is equal to the number

of classes. Thus, the importance of different features will automatically be encoded

in the connecting links during training and the nonlinear decision boundaries are

generated to label the assigned classes by making collective decision. Preliminary

attempts to use neural networks for land cover classification of remote sensing

imagery are available.33–37

In the present work, we have tried to explore the advantages of WT instead

of multiwavelet and statistical approaches by incorporating it as a preprocessor in

the classification process. We have considered a conventional feed-forward neural

network (MLP)29,38 based classifier in the proposed scheme for land cover classi-

fication of remote sensing images. In this method, we first extract features of the

input patterns/pixels using WT and use these features for the next step of classifi-

cation. We have evaluated the performance of the proposed wavelet feature (WF)

based neural classification method with different wavelets. The proposed classifier is

tested on three multispectral remote sensing images: two four-band Indian Remote

Sensing 1A (IRS-1A) satellite images and one three-band SPOT satellite image39

for land cover classification. Comparison of results showed that the proposed WF

based neural classification scheme yields superior results compared to spectral fea-

ture based NN classifier. The performance of the proposed neuro-wavelet (NW)

classifier is further increased with bi-orthogonal wavelets.

Organization of the article is as follows. Section 2 describes the wavelet trans-

form based feature extraction method. A brief description of neural classifier is

made in Sec. 3. Section 4 discusses the performance evaluation measures. Compar-

ative results with discussion are included in Sec. 5. Finally concluding remarks and

scope for future work are given in Sec. 6.

2. Wavelet Transformation Based Feature Extraction

To deal with the non-stationary behavior of signals in an appropriate way, much

research effort have been made so that the disadvantages of the Fourier transform
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(FT),14,19 which assumes the signal to be stationary within its total range of analy-

sis, can be compensated. This problem can be sorted out to some extend using short

time Fourier transform (STFT). However, the selection of window is a problem in

STFT, as narrow windows give good time resolution but poor frequency resolu-

tion and wide windows give good frequency resolution but poor time resolution.

Furthermore, wide windows may violate the condition of stationarity. The WT on

the other hand is an extension of these transforms,13,14,19,40 which does not lose

the spatial localization of the signal frequencies and it can be fitted to signals by

translation and dilation of the wavelet basis function (mother wavelet). The basic

difference of the WT from FT is that the time localization of the signal frequencies

will not be lost.

WT extends single scale analysis to multiscale analysis. The multiscale behavior

of the WT analyzes or decomposes the signal in multiple number of scales, where

each scale represents a particular coarseness of the signal, thus, the decomposition

steps divide the signal into a set of signals of varying coarseness ranging from low

frequency to high frequency components. Accordingly, WT tries to identify both

the space and frequency information of the events simultaneously. This makes WT

useful for signal feature analysis. This property is more useful for remote sensing

data analysis where, any characteristic of the scene is first analyzed using low

resolution and then an area of interest is analyzed in detail using an appropriate

higher level resolution.

Since we are dealing with irregular textures of remotely sensed images, the

decomposition of the signal into different scales, which can uncorrelate the data, as

much as possible without losing their distinguishable characteristics, is particularly

more useful when the WT is done with an orthogonal basis.13 The distinguishable

characteristics of the original information preserved in the WT decomposition are

spatio-geometrical information, normally called the signature of the land cover. The

orthogonal basis is more compact in its representation, as it allows the decompo-

sition of the underlying space into orthogonal subspaces, which makes it possible

to ignore some of the decomposed signals. This type of WT is also suitable for

operations like feature extraction,41,42 parameter estimation43,44 and exact recon-

struction of the signal series because of its invertible properties.13,14

WT is identical to a hierarchical subband system, where the subbands are loga-

rithmically spaced in frequency. Wavelets are functions used in the transformation

that act as a basis for representing many functions of the same family. A series

of functions can be generated by translation and dilation of these functions called

mother wavelets ψ(x). The translation and dilation of the mother wavelet can be

done by

ψγ,τ(t) = |γ|−1/2ψ

(

t − τ

γ

)

, γ �= 0 and, γ ε R, τ ε R, (2.1)

where τ and γ are the translation and dilation parameters.
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We have performed classification of remote sensing images using wavelets from

different (Daubechies, Biorthogonal, Coiflets, Symlets) groups.40 However, results

are given for three wavelets as their performances are comparatively (empirically)

better than others. These are Daubechies 3 (Db3), Biorthogonal 3.3 (Bior3.3) and

Biorthogonal 3.5 (Bior3.5) wavelets.40 In Daubechies wavelets, N (3 here) is related

to support width, filter length, regularity and number of vanishing moments for

the wavelets. For example, DbN is having support width of 2N − 1, filter length

(number of filter coefficients) of 2N , regularity about 0.2N for large N and number

of vanishing moments is N . Similarly, 3.3 and 3.5 of biorthogonal wavelets indi-

cate some properties like regularities, vanishing moments, filter length, etc. These

wavelets are implemented with the multiresolution scheme given by Mallat,13 which

is briefly described below.

2.1. Discrete WT and multiresolution analysis

2.1.1. 1-Dimensional

The discrete WT analyzes the signal at different frequency bands with different

resolutions by decomposing the signal into low frequency (approximation) and high

frequency (details) band information. The decomposition of the signal into differ-

ent frequency bands is obtained by successive highpass and lowpass filtering of

the signal. The 1-dimensional (1D) original signal (e.g. sn = [snk]) is decomposed

using a highpass filter hk and a lowpass filter gk, where n = 1, 2, . . . , Q is the num-

ber of decomposition levels and k = 1, 2, . . . , S is the number of signal samples.

The decomposed signals consist of two parts sn−1 and dn−1, called the smooth

or lowpass, and fine or highpass information. The two decomposed signals can be

expressed as

sn−1,j =

S
∑

k=1

snk · gk−2j , (2.2)

dn−1,j =

S
∑

k=1

snk · hk−2j , (2.3)

with j as the length of the convolution mask. The reconstruction of the original

signal from the decomposed wavelet coefficients can be performed as

snk =
∑

j

[sn−1,j · g̃k−2j + dn−1,j · h̃k−2j ], (2.4)

where g̃k and h̃k are the reconstruction filter coefficients. The notation (↓ 2)y in

Fig. 1 denotes the downsampled version of the sequence y by 2, i.e. ((↓ 2)y)k = y2k.

Here the odd-numbered wavelet coefficients are dropped and the even-numbered
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wavelet coefficients are renumbered. The notation (↑ 2)y in Fig. 2 denotes the

upsampled version of the sequence y by 2, i.e.

((↑ 2)y)2k = yk,

((↑ 2)y)2k+1 = 0.

Here, a zero is inserted between each pair of adjacent wavelet coefficients.
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In the reverse process of discrete WT, normally called inverse WT, the recon-

structed signal may not be exactly the same as the original one; however, it will be

a good approximation. Due to these properties, WT is widely used for signal and

more generally in image compression.45,46

The above description is for one step of discrete WT. The multiple levels of

decomposition can be performed as

sn → sn−1,dn−1

sn−1 → sn−2,dn−2

. . . → . . . .

(2.5)

The decomposition operation in the WT halves the spatial resolution, since only

half of the number of samples now characterize the entire signal. However, this oper-

ation doubles the frequency resolution, since the frequency band of the signal now

spans only half the previous frequency band, effectively reducing the uncertainty

in the frequency. The above procedure, which is also known as the subband cod-

ing, can be repeated for further decomposition. At every level, the filtering and

downsampling will result in halving the number of samples (and hence halving the

spatial resolution) and halving the frequency band span (and hence doubling the

frequency resolution). This process of subband coding is also known as multireso-

lution analysis.14,47

2.1.2. 2-Dimensional

The two-dimensional (2D) WT is performed by consecutively applying 1D WT on

rows and columns of the 2D data. A 2D WT, which is a separable filter bank in row

and column directions, decomposes an image into four sub-images.13,14 Figure 1

shows this dyadic 2-level decomposition of a 2D image. H and L in Fig. 1 denote

highpass and lowpass filters, respectively. ↓ 2 denotes the downsampling (decrease

the sample occurrence rate) by a factor of two. Thus in one level decomposition of

the 2D WT, four sub-sampled versions of the original image are obtained. Among

them, one contains the WT coefficients in low frequency range called the approxi-

mation part, i.e. LL (Fig. 1) and three in high frequency range in three directions:

vertical (LH), horizontal (HL) and diagonal (HH), called the detail parts. The

wavelet coefficients in these subbands provide frequency information of the origi-

nal signal in four different frequency bands maintaining their spatial position the

same as in the original. In addition to this, the coefficient values also preserve the

neighborhood information. The decomposition of the wavelet coefficients can be

extended to more than one level. The next level of decomposition can be performed

on the approximation coefficient of the previous level. The other coefficients are

assumed to be redundant as they contain information in the high frequency bands

and normally provide less information. However, the next step of decomposition

can be performed on all the coefficients obtained from the previous level. This

decomposition method is called wavelet packet14 decomposition.
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In the higher level of decomposition, detailed information can be obtained. Thus

the level of decomposition depends on the type of requirement and it varies with

the problem in hand. To have an objective evaluation, we computed the average

entropy,48 which provides a measure of information, of the images for each level. We

found that the average entropy value is not changing significantly after a certain

level of decomposition; and we decided to decompose up to that level. For the

present experiments, we stopped decomposition after only the second level, as the

entropy measure was not changing much after this and thus we were not getting

much extra information after this level of decomposition, even though the cost of

computation kept increasing.

In the present experiment, we decomposed the approximation coefficients (LL

image) of each level into four sub-images iteratively. We used orthogonal wavelet

bases and thus there is hardly any loss or redundancy of information. From these

wavelet coefficients, the corresponding reconstructed images are obtained using

inverse WT, which will be used subsequently as the extracted features of the orig-

inal image for classification purpose. Thus, we will have many extracted features

from the input images and the number of images (features) will depend on the level

of decomposition.

2.2. Feature extraction

As discussed above, the decomposed WT coefficients at different levels in differ-

ent sub-images represent the information of the original pixel values as well as

the information of the neighboring pixels. We have used these coefficients to con-

struct features. In this regard, different bands of images are decomposed into the

desired level (second level for the present experiments) using the 2D WT, which

provides four subband images from each band. As a whole, 16 subband images can

be obtained from a four-band image (original input) after one level of decompo-

sition. It becomes 28 band sub-images with two levels of decomposition, and so

on. The pixels of the sub-images are reconstructed to get the image information

from the corresponding subband. The sub-images are then cascaded as shown in

the Fig. 3 so that the extracted feature vectors of the original multispectral image

can be obtained for the next step of classification. Cascading of different bands for

generation of feature vector with Q-level of decomposition can be performed as

(I1
LL−Q, I1

LH−Q, I1
HL−Q, I1

HH−Q, . . . , I1
LH−1, I

1
HL−1, I

1
HH−1, . . . ,

IB
LL−Q, IB

LH−Q, IB
HL−Q, IB

HH−Q, . . . , IB
LH−1, I

B
HL−1, I

B
HH−1),

where, IB
LH−1 denotes the sub-image at first level for first band with B as the

number of spectral bands of the original image. Hence the feature vector of each

pattern of the above decomposition will be of length B(3Q + 1). Thus, a two-band

multispectral image with three-levels of decomposition creates a feature vector of

length 20. Figure 3 shows the cascading of sub-images of a single band image, which

is the feature vector of a classifier (here a neural network).
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3. Neural Classifier

The WF (wavelet features) generated by WT are used as input to NNs. The

proposed WF based classification method has been implemented using the most

popular feed forward multi-layer perceptron (MLP, shown in Fig. 4) classifier. The

MLP (used in the experiment) has three layers- known as input, hidden and output

layers, respectively. Each processing node, except the input-layer nodes, calculates

a weighted sum of the outputs from the nodes in the preceding layer to which it

is connected. This weighted sum then passes through a transfer function to derive

its own output, which is then fed to the nodes in the next layer. Thus the input to

node v is obtained as

netv =
∑

u

WuvOu + biasv (3.1)
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and output

Ov = S(netv), (3.2)

where wuv is the weight for the connection linking node u to node v, biasv is the

bias value for node v, Ou is the output of node u, and S stands for the activation

function (AF). Here the AF is considered as a sigmoid function29 and is defined as

S(netv) =
1

1 + e(−netv)
. (3.3)

MLP uses back-propagation (BP) learning algorithm38 for weight updating. The

BP algorithm basically reduces the sum of squared error called cost function (CF)

between the actual and desired output of output-layer neurons in a gradient descent

manner. The CF is given as

CF =
1

2

∑

g

∑

v

(Ogv − tgv)
2
, (3.4)

where g is a training pattern and v is an output node. Ogv denotes the output of

node v when the training pattern g is applied to the network, and tgv is the cor-

responding target output. The error parameter value thus generated is propagated

backward to correct the weights following Eq. (3.5).

∆Wvu(n + 1) = α∆Wvu(n) + ηδvOu, (3.5)

where n, α, η and δ are the iteration number, momentum parameter, learning rate

and node error, respectively. The details of BP algorithm including derivation of

the equation can be obtained from Ref. 29. The number of nodes in the input-layer

is equal to the number of features and the number of nodes in the output-layer

is equal to the number of classes present in the data set. The hidden-layer nodes,

chosen in the present experiment, is equal to the square root of the product of the

number of input and output layer nodes.38 We have used a single hidden-layer for

the present investigation.

4. Performance Measurement Indices

Selection of the training samples for all classes are made according to a prior

assumption of the land cover regions. These training samples are used to estimate

the parameters of the neural classifier. After training the classifier, it is used to

classify the land covers of the whole image. In the following text, we discuss the

performance measures used for the present investigation.

4.1. β index

When the labels of all the pixels in an image are known, the Kappa index49 can

be used to estimate the classification accuracy. But here the case is different, i.e.

the class label of all the pixels are not known. For this case, the cluster validity
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index50 for measuring the segmentation quality is more appropriate. We used this

quantitative index (QI), called β, to estimate the performance of the classifiers. This

measure has been successfully used in the assessment of segmentation quality.50–52

The β in Eq. (4.1) is defined as the ratio of the total variation and within-class

variation of the data set.50 Since the numerator is constant for a given image,

the β value is dependent only on the denominator. The denominator decreases

with increase in homogeneity within the class for a fixed number of classes (C).

Thus for a given image and given number of classes, the higher the homogeneity

within the extracted classes, the higher will be the β value. Mathematically, β can

be represented as

β =

C
∑

i=1

Mi
∑

j=1

(xij − x)2

C
∑

i=1

Mi
∑

j=1

(xij − xi)
2

, (4.1)

where x is the mean grey value of the image pixels (pattern vector), Mi is the

number of pixels in the ith (i = 1, 2, . . . , C) class, xij is the grey value of the jth

pixel (j = 1, 2, . . . , Mi) in class i, and xi is the mean of Mi pixel values of the ith

class. The higher the β value the better is the partitioning.

4.2. Davies–Bouldin index

The Davies–Bouldin (DB) index of cluster validation has been defined and used

in Ref. 53. Also, various researchers have used it for cluster validation in the past.

However, here we are using the index for validating our classification results on

partially labeled data sets. The idea behind DB index is that for a good partition,

inter-cluster separation as well as intra-cluster homogeneity and compactness should

be high. The DB index is based on the evaluation of some measure of dispersion

Si within the ith cluster and the distance (dij) between the prototypes of clusters

i and j. Hence DB index is a function of three parameters, i.e. Si, Sj and dij . The

dispersion Si of ith cluster and the separation dij between the ith and the jth

clusters are defined as

Si,q =

(

1

|Xi|

∑

xεXi

||x − vi||
q
2

)
1

q

, (4.2)

and

dij,t =

[

p
∑

s=1

|vsi − vsj |
t

]
1

t

. (4.3)

Si,q is the qth root of the qth moment of the points in cluster i with respect to their

mean or centroid (vi), and is a measure of dispersion of the points (x) in cluster i.

|Xi| is the cardinality of cluster i. Si,2 is the square root of the mean square error
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of the points in the extracted ith class with respect to the centroid of it, and so on.

dij,t is the Minkowski distance of order t between the centroids that characterizes

the extracted classes i and j. In the present experiment, we have taken q = t = 2.

Hence we compute

Ri,qt = max
j,j �=i

[

Si,q + Sj,q

dij,t

]

. (4.4)

The DB index is then defined as

DB =
1

C

C
∑

i=1

Ri,qt, (4.5)

with C as the number of clusters/classes. The smaller the DB value, the better is

the partitioning.53

5. Results and Discussion

MLP is used in the present investigation to classify the land covers of remote sensing

images. The performance of this classifier is evaluated on three images and the

results are shown in tabular forms. Although we tested the algorithms on various

wavelets, we have shown the performance of three better performing wavelets. They

are: Biorthogonal 3.3 (Bior3.3) and Biorthogonal 3.5 (Bior3.5), and Daubechies 3

(Db3).40 Classified images with Bior3.3 wavelet are shown in Figs. 6–8. In the

present study we have used a two-level decomposition of the WT as the complexity

increases proportionally with the level of decomposition with insignificant increase

in the performance.

5.1. Description of images

5.1.1. IRS-1A images

Three different remote sensing images (size 512 × 512) are used for the simula-

tion study of the proposed WF based classification scheme: two images are from

Indian Remote Sensing Satellite 1A (IRS-1A) and one from SPOT (Systeme Pour

d’Observation de la Terre) satellite. Due to poor illumination, the actual classes

present in the input images are not visible clearly. So we have presented enhanced

images in Fig. 5, which highlight the different land cover regions properly. However,

the algorithm is implemented on actual (original) images.

The IRS-1A images [shown in Figs. 5(a) and 5(b)] were obtained from Indian

Remote Sensing Satellite.54 We have used the images taken from the Linear Imaging

Self Scanner (LISS-II). LISS-II which has a spatial resolution of 36.25 m × 36.25 m

and works in the wavelength range of 0.45–0.86 µm. The whole spectrum range

is decomposed into four spectral bands, namely blue band (band1), green band

(band2), red band (band3) and near infrared band (band4) with wavelengths 0.45–

0.52 µm, 0.52–0.59 µm, 0.62–0.68 µm, and 0.77–0.86 µm, respectively. The image
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(a) (b)

(c)

Fig. 5. (a) and (b) Calcutta and Bombay map of IRS-1A image (band-4); and (c) Calcutta map
of SPOT image (band-3).

in Fig. 5(a) cover an area around the city of Calcutta in the near infrared band

having six major land cover classes. These are pure water (PW), turbid water (TW),

concrete area (CA), habitation (HAB), vegetation (VEG) and open spaces (OS).

Fig. 5(b) shows a part of the Bombay city in the near infrared band. The elongated

city area is surrounded by the Arabian Sea. The total region of the Bombay image

can be classified into five major classes, namely water (W), concrete area (CA),

habitation (HAB), vegetation (VEG) and open spaces (OS).
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5.1.2. SPOT image

The SPOT image (enhanced) shown in Fig. 5(c) is obtained from SPOT satellite,39

which carries an imaging device referred to as HRV (High Resolution Visible). The

Calcutta image used here has been acquired from the HRV that uses the wavelength

range 0.50–0.89 µm. This image has a higher spatial resolution of 20 m× 20 m. We

have considered six different classes for the land cover classification of the SPOT

image. These are pure water (PW), river or turbid water (TW), concrete area (CA),

habitation (HAB), vegetation (VEG) and open spaces (OS).

5.2. Classification of IRS-1A Calcutta image

The classified (IRS-1A Calcutta) images obtained using MLP (original features)

and MLP with Bior3.3 wavelet are only shown in Figs. 6(a) and 6(b), respectively

as MLP performed well with Bior3.3 wavelet compared to other wavelets. From

the visualization point of view, it is clear from the figures that the proposed NW

classifier performed better in classifying the land covers (i.e. segregating different

areas) compared to its corresponding neural version. Various objects in the IRS-1A

Calcutta image are clearly identified in the classified images. For example, as shown

in Fig. 6(b), we see that the Hoogle (Ganges) river situated in the middle of the

image separating the image approximately into two halves, belongs to TW class.

The pure or fishery water (PW class) is easily identified in the classified image.

The other classes like CA, HAB, VEG and OS are also clearly visible. Objects like

Airport Runways, Saltlake Area, Saltlake Stadium, Vivekananda Bridge, Howrah

(a) (b)

Fig. 6. Classified IRS-1A Calcutta image by (a) MLP (with original features); and (b) WT
(Bior3.3)+ MLP classification method.
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Bridge are also distinctly separable in the classified image using the proposed NW

based classification scheme. The above mentioned objects are more or less visible in

case of the classified images obtained by only MLP (with original features) as shown

in Fig. 6(a). With the use of WT based features, the classes became more separated

and well identified [Fig. 6(b)]. Also, a concrete distinction between various classes

obtained by the classifier with different wavelets are justified with the evaluation

of quantitative indices rather than only visualizing the regions.

Two quantitative indices, namely β and DB, as discussed in Sec. 4, have been

used to justify the above findings. With β index, as discussed in the previous section,

for a fixed number of classes, the higher the homogeneity behavior within the class,

the higher the β value. Table 1 depicts the results of β. As expected, the β value

is the highest for the training data, i.e. 9.4212 for IRS-1A Calcutta image. With

MLP classification method, the β value is 7.1487. The β value is increased from

7.1487 to 7.7124, 7.7586 and 7.1678 for the wavelet feature based MLP classifier

with Db3, Bior3.3, and Bior3.5 wavelets, respectively. From Table 1, it is clear

that the classification result with Bior3.3 wavelet is providing the highest β value

compared to others. As a whole, we can establish the following β relation in terms

of the performance of the classifier with different wavelets

βBior3.3 > βDb3 > βBior3.5.

From this relation it is observed that the performance of the classifier is better with

Bior3.3 wavelet compared to other wavelets.

In the present investigation the performance is also compared with the per-

centage of accuracy (PA) achieved in the classification process using MLP and

proposed WF based MLP classification methods. PA is calculated on the basis of β

value obtained with training data. It is evident that the β value with training data

is the highest. We assumed that the β value for training data is equivalent to 100%

accuracy of the classifiers and the accuracy obtained with any of the classifiers can

be compared on the basis of its β value. Thus PA can be expressed as

PAβ =

(

βcl

βtr

)

× 100, (5.1)

where βcl and βtr are the β values obtained from the classified image and from

the training data, respectively. Using this expression, we evaluated the PA of MLP

and the proposed NW classification methods. A PA of 75.87 and 82.35 are achieved

with the use of MLP (with original features) and proposed NW classification meth-

ods, respectively. This shows that nearly 7% increase in classification accuracy

is achieved with the proposed classification method compared to original spectral

feature based classifier.

Similar to the β index comparison, the DB index also supported the superiority

of the proposed WF based NW classification method. The DB value using MLP

for IRS-1A Calcutta image is 0.9347. This value is better (0.6813) with the Bior3.3

wavelet based features. Considering all cases we can infer that the combination
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of MLP and Bior3.3 wavelet is outperforming the other wavelet and MLP (with

original features) based methods.

5.3. Classification of IRS-1A Bombay image

In case of IRS-1A Bombay [Fig. 7(b)] image, the proposed MLP based NW method

(with Bior 3.3 wavelet) also detected the regions like Dockyard, Butcher Island,

Elephanta Cave and Island and Santa Cruz Airport in crisp and homogeneous

way compared to the MLP method [original spectral feature only, Fig. 7(a)]. For

other wavelets also similar conclusions can be made. Just one image is displayed for

typical illustration. However, their quantitative index values are shown in Tables 1

and 2. As mentioned, the two classified images in Figs. 7(a) and 7(b) show some

visual differences. However, a better comparison can be made from the quantitative

indices like β and DB. Table 1 depicts the β values. The β, for the Bombay image

with training data is found to be 21.4783, which is reduced to 17.6162 using MLP

with original features. From the tables we notice that the β value for the proposed

NW classifier with Bior 3.3 wavelet is 18.3815, which is again better than the values

18.3300 and 17.7232 obtained with the wavelets Db3 and Bior3.5, respectively. The

same relations on β values are maintained for IRS-1A Bombay image as in the case

of Calcutta image. The performance of the proposed classifier is also tested in terms

of PA. It is found that the PA values are 85.58 and 82.01 using proposed WF and

MLP (with original feature), respectively. The comparison with PA revealed the

same remarks for the proposed classifiers.

(a) (b)

Fig. 7. Classified IRS-1A Bombay image by (a) MLP (with original features); and (b) WT
(Bior3.3) + MLP classification method.
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Table 1. Comparison of β and PA values for different neuro-wavelet classification methods.

Classifier Wavelet IRS Calcutta IRS Bombay SPOT Calcutta
image image image

β PAβ(%) β PAβ(%) β PAβ(%)

TP∗ — 9.4212 100 21.4783 100 9.3343 100
MLP — 7.1487 75.87 17.6162 82.01 7.0341 75.35
WT + MLP Db3 7.7124 81.86 18.3300 85.34 7.6121 81.54
WT + MLP Bior3.3 7.7586 82.35 18.3815 85.58 7.7143 82.64

WT + MLP Bior3.5 7.1678 76.08 17.7232 82.51 7.2013 77.14

Note: ∗TP = Training patterns.

Table 2. Comparison of DB value for neuro-wavelet classification method.

Classifier IRS Calcutta IRS Bombay SPOT Calcutta
image image image

MLP 0.9347 0.9246 2.3105
MLP+Bior3.3 (wavelet) 0.6813 0.6785 1.4947

Similarly, the DB index shown in Table 2 also indicates the superiority of the

proposed method. The Bior3.3 wavelet based MLP provided promising classification

results over others. The DB value for this method is 0.6785, which is the lowest and

justifies the efficiency of the proposed method in classifying the land covers present

in the IRS-1A Bombay image.

5.4. Classification of SPOT Calcutta image

For SPOT Calcutta image, the classified regions of the images are shown in Fig. 8(a)

for MLP (original spectral features only) and Fig. 8(b) for the proposed NW clas-

sifier, i.e. WF with Bior3.3 wavelet, only as this was performing better compared

to others. From the figures, it is observed that there is a clear separation of dif-

ferent classes and some known regions like Race Course, Howrah Bridge (Setu),

Talis Nala (Canal), Beleghata Nanal, Khiderpore Dock and Garden Reach Lake by

the proposed method. It is also evident that the proposed method produced a well

structured and proper shaped regions compared to the MLP with original spectral

features. However, a better performance comparison with the help of β value can

be seen from Table 1. The β value for the training data set is 9.3343, and it is

7.0341 when the test patterns are classified with MLP. The proposed NW classifier

is providing a higher β value compared to its corresponding original spectral feature

based version. A further improvement of the MLP classifier with WF is observed

with Bior3.3 wavelet. The β relation, in the classification of SPOT Calcutta image,

are also observed to be similar to the case of IRS-1A Calcutta and IRS-1A Bombay

images. The comparative analysis in terms of PA for both the classifiers are made

and observed that the proposed classifier provided 82.64 accuracy, which is more
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(a) (b)

Fig. 8. Classified SPOT Calcutta image by (a) MLP (with original features), and (b) WT
(Bior3.3) + MLP classification method.

compared to the PA value of 75.35 obtained with the MLP. Thus, there is an

increase of nearly 7% of PA value by the proposed classifier compared to MLP with

original spectral features only.

Like the β index, the DB values also corroborate the earlier findings. The com-

parative DB values for the proposed and MLP with original feature based classifi-

cation methods are shown in Table 2, which strengthens the previous findings.

6. Conclusion

In the present article, we have proposed a WF based neural (MLP) approach for

classification of multispectral remote sensing images. The proposed scheme tried to

explore the possible advantages of using wavelet transform (WT) as a preproces-

sor for the neural classifier. The WT is used to extract features from the original

patterns. The extracted features acquire information of the pixel along with its

neighbors both in spatial and spectral domains because of the inherent characteris-

tic of the WT which makes the next stage of classification more efficient compared

to that of without preprocessing. We have used a two-level decomposition of WT, as

complexity increases proportionally with the level of decomposition with insignifi-

cant increase in performance.

The improvement in performance of the proposed neuro-wavelet classification

scheme is verified from the results obtained from classification of three remote

sensing images. The β values (shown in Table 1) indicate the classification accuracy

and support the claim of better visual separation for the identification of various
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known regions in a significantly improved way. We modified the original β index to

compute the percentage accuracy based on βtraining , which provided a better indi-

cator for assessing the classifiers. The PAβ value revealed that there is an increase

of accuracy (nearly 7% for IRS-1A Calcutta and SPOT images and around 4% in

case of IRS-Bombay) using neuro-wavelet classifier with Bior3.3 wavelet, which is

reasonably significant. The DB index value also supported the above findings. Dif-

ferent wavelets are used in the preprocessing stage of the proposed scheme. Bior3.3

wavelet is found to be more appropriate than others for the present investigation.

Also, it is observed that the different structures of the classified regions obtained

with the proposed method are more crisp and well shaped. Thus, in conclusion, we

can say that for the present set of images, proposed neuro-wavelet classifier with

Bior3.3 wavelet is well suited for the detection of objects in remote sensing images.

Future studies will include neural networks with curvelet, countourlet and higher

dimensional wavelets for classification of land covers in multispectral remote sensing

images. The utility of other neural network models like radial basis function network

will also be explored.
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