


the context of a particular problem. More specifically, in clustering, a set of

patterns, usually vectors in a multi-dimensional space, are grouped into clus-

ters in such a way that patterns in the same cluster are similar in some sense

and patterns in different clusters are dissimilar in the same sense.

In some clustering problems, the number of clusters, K, is known a priori. In

such situations clustering may be formulated as distribution of n patterns in N

dimensional metric space among K groups, such that the patterns in a group

are more similar to each other than to patterns in different groups. This in-

volves minimization of some extrinsic optimization criterion. K-Means algo-

rithm is a well known and widely used clustering technique applicable in such

situations. However, the major drawback of the K-Means algorithm is that it

often gets stuck at local minima and the result is largely dependent on the

choice of the initial cluster centers. An attempt is made in this paper to inte-

grate the effectiveness of the K-Means algorithm for partitioning data into a

number of clusters, with the capability of genetic algorithm for providing the

requisite perturbation to bring it out of this local minima.

Genetic algorithms (GAs) [8–10] are randomized search and optimization

techniques guided by the principles of evolution and natural genetics. They are

efficient, adaptive and robust search processes, performing multi-dimensional

search in order to provide near optimal solutions of an evaluation (fitness)

function in an optimization problem. Since the problem of clustering may be

viewed as searching for a number of clusters in the feature space such that a

given clustering metric is optimized, application of GAs to this problem seems

natural and appropriate. One such attempt can be found in [11].

Murthy and Chowdhury [11] have considered a partition to be encoded as a

string of length n, where n is the number of data points. The ith element of the

chromosome represents the cluster number to which the corresponding point

belongs. A comparison of the performance of their algorithm, subsequently

referred to as the GA-clustering algorithm, with that of the K-Means algorithm

is provided in [11]. Note that with the increase in the string length, the search

space in GAs increases; thereby making the process more time consuming.

Hence, when the number of points to be clustered is very large, which may

happen in many real life situations, the method proposed in [11] (where the size

of a chromosome is equal to the number of data points) will have limited

applicability.

In this paper, we describe a GA-based clustering algorithm where the

chromosome encodes the centers of the clusters instead of a possible partition

of the data points. (Note that the length of a chromosome in the algorithm is

restricted by the number of clusters, rather than the number of data points as in

[11].) The algorithm tries to evolve the appropriate cluster centers while opti-

mizing a given clustering metric.

Traditionally, GAs assume no prior knowledge of the problem under con-

sideration. The only step that requires such a knowledge is the fitness com-
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putation procedure. They are therefore applicable to a wide variety of prob-

lems. However, in many situations, some additional information about the

search space is often available. These can be effectively incorporated in GAs for

improving its searching capability [12]. In the domain of clustering, it is often

assumed that the centroid of the points belonging to a cluster represents the

center of that cluster. This knowledge is incorporated in the fitness evaluation

process of the GA-based clustering method, thereby providing the KGA-

clustering algorithm, to make the search more efficient. The details are pre-

sented in Section 3.1.

Experimental results comparing the performance of the proposed KGA-

clustering method with those of the K-Means and the GA-clustering [11] al-

gorithms are provided for several artificial and real-life data sets. Moreover,

the utility of the KGA-clustering algorithm for pixel classification of a satellite

image for differentiating different land-cover regions is demonstrated. Note

that although GAs usually deal with binary strings, we have implemented

floating point coding of the chromosomes since it is a more natural form of

representation for this problem.

2. Clustering

In this section, we first provide a formal statement of the clustering problem.

Since we have compared the performance of our KGA-clustering algorithm

with that of the K-Means algorithm, a brief outline of the latter is also provided.

2.1. Basic principle

Clustering in N dimensional Euclidean space RN is the process of parti-

tioning a given set of n points into a number, say K, of groups (or, clusters)

based on some similarity/dissimilarity metric which establishes a rule for as-

signing patterns to the domain of a particular cluster center. Let the set of n

points fx1; x2; . . . ; xng be represented by the set S and the K clusters be rep-

resented by C1;C2; . . . ;CK . Then

Ci 6¼ ; for i ¼ 1; . . . ;K;

Ci \ Cj ¼ ; for i ¼ 1; . . . ;K; j ¼ 1; . . . ;K and i 6¼ j;

[

K

i¼1

Ci ¼ S:

2.2. Clustering by K-Means algorithm

K-Means [3] is one of the widely used clustering techniques, which is an

iterative hill climbing algorithm. It consists of the following steps:
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Step 1. Choose K initial cluster centers z1; z2; . . . ; zK randomly from the n

points fx1; x2; . . . ; xng.
Step 2. Assign point xi, i ¼ 1; 2; . . . ; n to cluster Cj; j 2 f1; 2; . . . ;Kg iff

kxi 	 zjk6 kxi 	 zpk; p ¼ 1; 2; . . . ;K; and j 6¼ p:

Ties are resolved arbitrarily.

Step 3. Compute new cluster centers z
1; z


2; . . . ; z
K ; as follows:

z
i ¼
1

ni

X

xj2Ci

xj; i ¼ 1; 2; . . . ;K;

where ni is the number of elements belonging to cluster Ci.

Step 4. If z
i ¼ zi 8i ¼ 1; 2; . . . ;K then terminate. Otherwise continue from

step 2.

Note that the process is executed for a predetermined fixed number of it-

erations unless it terminates at step 4.

Although K-Means is one of the widely used clustering techniques, it is

known that the solution it provides depends on the choice of the initial cluster

centers [3]. Also it has been shown in [13] that the algorithm may fail to con-

verge to a local minimum under certain conditions. Moreover, global solutions

of large problems cannot be found with a reasonable amount of computation

effort [14]. It is because of these factors that several approximate methods are

developed to solve the underlying optimization problem. As described in the

next section, GA is one such technique that may be efficiently applied for

finding optimal clusters by minimizing the extrinsic clustering metric.

3. Clustering using GAs

The algorithm described in this section has been designed for use in the areas

where K-Means algorithm has wide spread applicability. The KGA clustering

algorithm is first described in detail followed by a brief outline of the algorithm

of Murthy and Chowdhury [11].

3.1. KGA-clustering algorithm

The KGA-clustering algorithm appropriately determines K cluster centers in

R
N ; thereby suitably clustering the set of n unlabeled points. For N dimensional

feature space, each chromosome is represented by a sequence of N 
 K floating
point numbers where the first N positions (or, genes) represent the N dimen-

sions of the first cluster center, the next N positions represent those of the

second cluster center, and so on. The sum of the Euclidean distances of the

points from their respective cluster centers is taken as the clustering metricM.
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The goal is to search for the appropriate cluster centers such that M is mini-

mized. The flowchart of KGA-clustering algorithm is provided in Fig. 1. In

each generation the principles of K-Means algorithm are utilized for deter-

mining new cluster centers. Subsequently, the old cluster centers are replaced

by these new values thereby incorporating some problem specific knowledge in

the system. However, this greedy characteristic of K-Means algorithm makes it

liable to get stuck at locally optimal values. In order to avoid this, features of

GAs are used for perturbing the system. The different steps of KGA-clustering

algorithm are now described briefly.

3.1.1. Population initialization

K randomly chosen distinct points from the data set are used to initialize

the K cluster centers encoded in each chromosome. This is similar to the

Fig. 1. Flowchart of the KGA-clustering algorithm.
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initialization of the cluster centers in K-Means algorithm. This process is re-

peated for each chromosome in the population.

3.1.2. Clustering

In this step, the clusters are formed according to the centers encoded in the

chromosome. This is done by assigning each point xi, i ¼ 1; 2; . . . ; n to one of
the clusters Cj with center z



i such that

kxi 	 zjk6 kxi 	 zpk; p ¼ 1; 2; . . . ;K; and p 6¼ j:

All ties are resolved arbitrarily. As like the K-Means algorithm, for each cluster

Ci, its new center z


j is computed as

z
i ¼
1

ni

X

xj2Ci

xj; i ¼ 1; 2; . . . ;K;

where ni is the number of points in cluster Ci. These z


i s now replace the pre-

vious zis in the chromosome.

3.1.3. Fitness computation

For each chromosome, the clusters formed in the previous step are utilized

for computing the clustering metric, M, as follows:

M ¼
X

K

i¼1

X

xj2Ci

kxj 	 zik: ð1Þ

For finding the appropriate clusters M has to be minimized. The fitness

function of a chromosome is defined as 1=M. Therefore, maximization of the

fitness function will lead to minimization of the clustering metric M.

3.1.4. Genetic operations

• Selection. The selection process selects chromosomes from the mating pool

directed by the survival of the fittest concept of natural genetic systems. In

the proportional selection strategy adopted in this paper, a chromosome is

assigned a number of copies, which is proportional to its fitness in the pop-

ulation.

• Crossover. Crossover is a probabilistic process that exchanges information

between two parent chromosomes for generating two offspring. Here, sin-

gle-point crossover with a fixed crossover probability of lc is used. For chro-

mosomes of length l ðl ¼ NKÞ, a random integer, called the crossover point,

is generated in the range ½1; l	 1�. The portions of the chromosomes lying to
the right of the crossover point are exchanged to produce two offspring.

• Mutation. Each chromosome undergoes mutation with a fixed probability

lm. Let Mmin and Mmax be the minimum and maximum values of the clus-
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tering metric, respectively, in the current population. For mutating a chro-

mosome whose clustering metric is M, a number d in the range ½	R;þR�
is generated with uniform distribution, where

R ¼
M	Mmin

Mmax	Mmin
if Mmax > M;

1 if Mmin ¼ Mmax:

(

If the minimum and maximum values of the data set along the ith dimension

(i ¼ 1; 2; . . . ;N ) are ximin and ximax, respectively, and the position to be mutated

is the ith dimension of a cluster center with value xi, then after mutation the

value becomes

xi þ d� ðximax 	 xiÞ if dP 0;

xi þ d� ðxi 	 ximinÞ otherwise:

Note that this scheme of mutation provides perturbation in a maximum

range to strings either when they have the largest value ofM in the population

(i.e., M ¼ Mmax) or when all the strings have the same value of the clustering

metric (i.e., M ¼ Mmin ¼ Mmax). On the other hand, the best string(s) in the

population (i.e., the one withM ¼ Mmin) is not perturbed at all in the current

generation. Moreover, the perturbation is such that the mutated centers still lie

within the bounds of the data points.

3.1.5. Termination criterion

The processes of clustering, fitness computation, selection, crossover, and

mutation are executed for a maximum number of iterations. The best string or

chromosome seen up to the last generation provides the solution to the clus-

tering problem. Elitism has been implemented in each generation by replacing

the worst chromosome of the population with the best one seen up to the

previous generation.

Since the performance of the KGA-clustering algorithm is compared to that

of another GA-based clustering technique where the number of clusters is

known a priori, a brief outline of the latter is now provided.

3.2. GA-clustering algorithm [11]

In GA-clustering [11], a possible partition is encoded in a chromosome of

length n, where n is the number of data points. The ith element of the chro-

mosome denotes the cluster number assigned to the point xi. For initializing

the population, the chromosomes are generated randomly, where the value of

each element in a chromosome is allowed to lie between 1 and K. Since the

chromosome itself provides a partition of the data points, it is no longer

necessary to determine the appropriate clusters as is done for KGA-clustering
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algorithm. For computing the fitness, the centroid of the clusters are deter-

mined, and the clustering metric M is computed as in Eq. (1).

The mating pool is created using proportional selection scheme. Conven-

tional single point crossover is applied on the chromosomes. Because of

crossover, some invalid chromosomes, i.e., where all the clusters are not rep-

resented, may be generated. For example, if chromosomes (1 2 2 3 2 1) and (1 3

3 2 2 1) are crossed after the third position, then we get offspring (1 2 2 2 2 1)

and (1 3 3 3 2 1). Here the first offspring is invalid since it does not contain any

point from cluster 3. In case such invalid offspring are produced, the crossover

process is repeated until valid offspring result, or a limit on the number of

attempted crossovers is reached.

Mutation is performed occasionally, where a position in a chromosome is

chosen at random, and its value is replaced by a number in the range ½1;K�.
Again, mutation may result in invalid strings which are tackled in a manner

similar to that of the crossover operation. Elitist model of GAs is used for

developing the clustering algorithm. The steps of fitness computation, selec-

tion, crossover and mutation are repeated for a fixed number of iterations,

after which the best chromosome provides the final clustering.

The following section provides the results of implementation of the KGA-

clustering algorithm, along with its comparison with the K-Means and GA-

clustering [11] algorithms for several artificial and real life data sets.

4. Implementation results

Two artificial data sets (Data 1 and Data 2) and three real-life data sets

(Vowel, Iris and Crude Oil) are considered for the purpose of conducting the

experiments. These data sets are first described below.

4.1. Data sets

4.1.1. Artificial data

Data 1. This is a two dimensional data set having 10 points where the

number of clusters is two. Thus for this data set the value of K is chosen to be 2.

Data 2. This is a two dimensional data set having 76 points where the

number of clusters is three. Thus for this data set the value of K is chosen to be

3.

4.1.2. Real life data sets

Vowel data. This data consists of 871 Indian Telugu vowel sounds [15].

These were uttered in a consonant–vowel–consonant context by three male

speakers in the age group of 30–35 years. The data set has three features F1; F2,
and F3, corresponding to the first, second, and third vowel formant frequencies,
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and six classes fd; a; i; u; e; og. The value of K is therefore chosen to be 6 for this
data.

Iris data. This data represents different categories of irises having four fea-

ture values. The four feature values represent the sepal length, sepal width,

petal length and the petal width in centimeters [16]. It has three classes with 50

samples per class. The value of K is therefore chosen to be three for this data.

Crude oil data. This data [17] has 56 data points, five features and three

classes. Hence the value of K is chosen to be 3 for this data set.

4.2. Comparative performance of the clustering algorithms

In this section, the performances of the KGA-clustering, GA-clustering [11]

and K-Means algorithms are first compared in terms of the best value obtained

after a fixed number of iterations. The two GA-based algorithms are also

compared in terms of the number of iterations required to obtain a desired

value. The crossover and mutation probabilities are lc ¼ 0:8 and lm ¼ 0:001,
respectively. The population size is taken to be 10 for Data 1 since it is a very

simple data set, while it is taken to be 50 for the other data sets.

4.2.1. Clustering metric obtained after fixed number of iterations

For K-Means algorithm, as well as the two GA-based algorithms, we have

fixed a maximum of 1000 iterations. However, it was observed that in all the

experiments the K-Means algorithm terminated much before 1000 iterations.

The best, worst and the average values of the clustering metric (Mbest,Mworst

and Mavg, respectively) obtained for 50 distinct runs of the K-Means, KGA-

clustering and GA-clustering [11] algorithms are shown in Table 1 for Data 1.

Both the GA-based algorithms provide the optimum value of 2.225498. K-

Means algorithm is found to sometimes get stuck at sub optimal values de-

pending on the points that are chosen as the initial cluster centers.

Table 2 provides the corresponding values of M obtained by the three

techniques for Data 2. The optimum value is 47.616026, which is obtained in all

the runs of KGA-clustering algorithm. Noticeably, the algorithm of Murthy

and Chowdhury fails to attain this value even once within 1000 generations. K-

Means algorithm is found to attain this value in 22 of its 50 runs.

Table 1

Mbest, Mworst andMavg obtained by K-Means, KGA-clustering and GA-clustering [11] algorithms

for 50 different runs for Data 1 when K ¼ 2

K-Means KGA-clustering GA-clustering

Mbest 2.225498 2.225498 2.225498

Mrest 5.383182 2.225498 2.225498

Mavg 3.488572 2.225498 2.225498
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Tables 3 and 4 provide the best, worst and average values ofM obtained by

the three techniques for Vowel and Iris, respectively. As seen from the results,

the results of the KGA-clustering algorithm are far superior to that of both K-

Means and the GA-clustering algorithm of Murthy and Chowdhury. In fact,

the GA-clustering algorithm is unable to provide meaningful clusters within

the prescribed 1000 iterations for Vowel. Even for Iris, its result is found to be

significantly poor.

Finally, Table 5 provides the best, worst and average values of M obtained

by the three techniques for Crude Oil. It is found that the KGA-clustering

algorithm is able to provide the same partition of the data points in all the runs.

As earlier, the results of the other two methods are inferior to that of ours.

Table 3

Mbest, Mworst andMavg obtained by K-Means, KGA-clustering and GA-clustering [11] algorithms

for 50 different runs for Vowel when K ¼ 6

K-Means KGA-clustering GA-clustering

Mbest 149373.097180 149356.012425 383484.152448

Mworst 151605.600107 149378.029757 395267.339008

Mavg 149903.869317 149368.454400 390088.243508

Table 4

Mbest, Mworst andMavg obtained by K-Means, KGA-clustering and GA-clustering [11] algorithms

for 50 different runs for Iris when K ¼ 3

K-Means KGA-clustering GA-clustering

Mbest 97.204574 97.100777 124.127458

Mworst 124.022373 97.100777 139.778272

Mavg 107.724549 97.100777 135.404799

Table 5

Mbest, Mworst andMavg obtained by K-Means, KGA-clustering and GA-clustering [11] algorithms

for 50 different runs for Crude Oil when K ¼ 3

K-Means KGA-clustering GA-clustering

Mbest 279.484810 278.965150 297.048873

Mworst 279.743216 278.965150 318.966627

Mavg 279.597091 278.965150 308.155902

Table 2

Mbest, Mworst andMavg obtained by K-Means, KGA-clustering and GA-clustering [11] algorithms

for 50 different runs for Data 2 when K ¼ 3

K-Means KGA-clustering GA-clustering

Mbest 47.616026 47.616026 60.032942

Mworst 61.613077 47.616026 72.342458

Mavg 57.713124 47.616026 66.800033

230 S. Bandyopadhyay, U. Maulik / Information Sciences 146 (2002) 221–237



In all the cases, the performance of the KGA-clustering algorithm is seen to

be the best among the three methods. The performance of the GA-clustering

algorithm of Murthy and Chowdhury is found to be poorer than that of even

the K-Means algorithm (except for Data 1). Note that, the performance of the

GA-based clustering methods may have further improved if more iterations are

executed. For example, in the case of Crude Oil all the three values Mbest,

Mworst and Mavg for the algorithm of Murthy and Chowdhury after 10,000

iterations became 278.965150. This conforms to the finding in [11], where this

value was provided within 10,000 iterations in all the runs.

For comparing the performance of the two GA-based clustering techniques

graphically, we have considered Figs. 2 and 3. The figures present the variation

of the average clustering metric for Data 2 and Iris, respectively in the first 1000

generations. Note that these figures, which reflect the overall performance of

the algorithms, again demonstrate the significant superiority of the KGA-

clustering over GA-clustering technique.

4.3. Number of iterations required to obtain a desired value

In this section, we compare the speed of convergence of the two GA-based

clustering techniques to some desired value of the clustering metric, set in ac-

cordance with the best values obtained in the previous experiment for Data 1,

Fig. 2. Variation of the average clustering metric with the number of generations for Data 2.

S. Bandyopadhyay, U. Maulik / Information Sciences 146 (2002) 221–237 231



Data 2, Vowel, Iris, and Crude Oil data sets. The results are summarized in

Table 6, where the entries are averaged over 50 runs of the algorithms when

they are allowed to execute for a maximum of 10,000 iterations. As seen from

the table, the GA-clustering algorithm is able to arrive at the desired value for

Data 1 and Crude Oil all the 50 times, while for Iris it does so 32 times. For the

other two data sets, it is not able to provide the desired value even once. The

corresponding entries in the column for �Avg. number of iterations� are

Fig. 3. Variation of the average clustering metric with the number of generations for Iris.

Table 6

Number of iterations required to obtain a desired value for KGA-clustering and GA-clustering

algorithm [11]

Data set Desired value GA-clustering KGA-clustering

Times

obtained

Avg. number

of iterations

Times

obtained

Avg. number

of iterations

Data 1 2.225498 50 21.0 50 2.4

Data 2 51.013294 0 – 50 3.0

Vowel 149356.012425 0 – 50 2115.0

Iris 97.100777 32 5868.0 50 357.6

Crude

Oil

278.965150 50 4703.2 50 6.6
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therefore put as �–�. On the other hand, the KGA-clustering algorithm is able to

obtain the desired value every time, in relatively fewer number of iterations.

From the results it appears that the algorithm of Murthy and Chowdhury is

significantly dependent on the number of data points, n. Their method is able

to provide good partitions for data sets where n is comparatively small, (e.g., 10

for Data 1, 56 for Crude Oil) than for the cases where n is large (e.g., 871 for

Vowel). This is expected since the length of a chromosome in their method is

equal to n. Consequently, for large n, the chromosome length becomes large,

and hence the performance of the GA degrades.

4.4. Pixel classification of IRS image of Mumbai

In this section, the utility of the KGA-clustering for partitioning different

landcover regions in satellite images is demonstrated. Note that satellite images

usually have a large number of overlapping classes and hence the clustering

problem in such space becomes quite difficult. This data has been used earlier

for classifying the pixels into different categories under the supervised frame-

work [18,19].

4.4.1. IRS image of Mumbai

This 512� 512 image was obtained from Indian Remote Sensing Satellite

(IRS-1A). This is a circular sun-synchronous satellite, rotating around the

earth at the rate of 14 orbits per day, at an altitude of 904 km and a repetition

cycle of 22 days. This satellite is equipped with two different sensors LISS-I

and LISS-II. LISS-I has a resolution of 72:5� 72:5 m2 while LISS-II has a

resolution of 36:25� 36:25 m2. Data used for this work was obtained from

LISS-II sensor which has a focal length of 324.4 m and radiometric resolution

of 128. We have considered here two bands, namely,

• green band of wavelength 0.52–0.59 lm,

• near infra red band of wavelength 0.77–0.86 lm.

Some important landcovers of Mumbai, as seen more prominently from

near infra red band (Fig. 4 shows the image with histogram equalization to

make it more prominent), are as follows: the elongated city area is surrounded

by the Arabian sea. There is a concrete structure (on the right side top corner)

connecting Mumbai to New Mumbai. On the southern part of the city, there

are several islands, including the well known Elephanta islands. The dockyard is

situated on the south eastern part of Mumbai, which can be seen as a set of

three finger like structure. On the upper part of the image, towards left, there is

a distinct crisscrossed structure. This is the Santa Cruz airport.

Fig. 5 provides the output Mumbai image using KGA-clustering algorithm.

From our previous knowledge about this data, we expect the image to contain
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six visually distinct clusters [19]. Hence K was taken to be 6 for this data. As

can be seen from the results, most of the landcover categories have been cor-

rectly distinguished. For example, the Santa Cruz airport, dockyard, bridge

connecting Mumbai to New Mumbai, and many other road structures have

come out distinctly. Moreover, the predominance of one category of pixels in

the southern part of the image conforms to the ground truth; this part is known

to be heavily industrialized, and hence the majority of the pixels in this region

should belong to the same class of concrete. The Arabian Sea has come out as a

combination of pixels of two different classes. This is again in conformity with

earlier experiments with this data [19], where the sea water was found to be

decomposed into two classes, turbid waters 1 and 2, based on the difference of

their reflectance properties. (Note that the result presented here does not in-

clude any postprocessing operations. One such step that is usually carried out

in image processing is the merging of very small segments to one of the

neighboring regions. This helps in cleaning up the image by filling up small

holes embedded with large regions.) Therefore, from the ground truth available

and the performance of KGA-clustering, it can be concluded that it is a useful

technique for differentiating the various landcover types present in an image.

Fig. 4. Near infra red band of the Mumbai image with histogram equalization.
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5. Discussion and conclusions

A genetic algorithm-based clustering algorithm, called KGA-clustering, has

been developed in this paper. Genetic algorithm has been used to search for

the cluster centers such that a given clustering metric, M, is minimized. The

knowledge that the centroid of the points belonging to a cluster represents

the center of the cluster is incorporated in the chromosome for enhancing the

searching capability of the clustering method. Floating point representation of

chromosomes has been adopted, since it appears to be a more natural and

appropriate form for encoding the cluster centers. The superiority of the KGA-

clustering algorithm over K-Means algorithm and another GA-clustering [11]

is extensively established for several artificial and real life data sets with di-

mensions ranging from two to five and number of clusters from two to six.

Moreover, the utility of the KGA-clustering algorithm for classifying the pixels

of satellite images is also demonstrated for an image of a part of the city of

Mumbai. Note that the number of pixels is equal to 262,144 (512� 512 image),
which is a significantly large data to cluster.

It has been proved in [20] that an Elitist model of GAs will definitely

converge to the optimal string as the number of iterations tends to infinity

Fig. 5. Mumbai image partitioned into six clusters using the KGA-clustering method.
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provided the probability of going from any population to the one containing

the optimal string is greater than zero. Since both the GA-based clustering

algorithms discussed in this article satisfy this criterion, they will surely provide

the optimal clusters as the number of iterations goes to infinity. However, as

seen from the results, the speed with which the KGA-clustering algorithm

converges to a desired value is significantly higher than that of the GA-clus-

tering algorithm. In real life situations, where the algorithms have to be ter-

minated after finite number of iterations, KGA-clustering algorithm appears to

be better applicable than the GA-clustering algorithm [11].

The KGA-clustering algorithm developed in this paper can be applied when

the number of clusters is known a priori and they are crisp in nature. As a

scope of further research, the algorithm may be modified in order to take care

of situations where the number of clusters is unknown as well as when the

partitioning is fuzzy. This may necessitate the consideration of variable length

chromosomes in GAs to search for the appropriate fuzzy partitions of the data

set.
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