

2792 S. Bandyopadhyay, U. Maulik / Pattern Recognition 35 (2002) 2791–2799

Yunck [6] has projected the prototypes onto each axis and

de$ned a hypercube around the point to be classi$ed. By

changing the size of this hypercube, the one containing at

least one point can be identi$ed. It is found that in case of

the Euclidean metric used in two dimensions with 1000 uni-

formly distributed points, the e4ective number of distance

calculations required to $nd the nearest neighbor is approx-

imately $ve, while it goes up to 493 for ten-dimensional

space. Here, although a signi$cant gain is achieved in terms

of the computational e�ciency, the storage requirement is

found to increase almost thrice. Sethi [7] proposed another

method of fast recognition of nearest neighbors by comput-

ing the distances from three reference points. However, the

major drawback of this algorithm is that it does not retain

the classi$cation accuracy of the NN rule. In other words,

this method actually utilizes a classi$cation rule (slightly)

di4erent from the NN rule.

Vidal [8] proposed an approximating and eliminating

search algorithm (AESA) for $nding the nearest neighbors

that is independent of the size of the data set. The method

uses the metric properties of the given distance, and does not

assume the data to be structured into any vector space. It is

shown that the number of distance computations for $nding

the nearest neighbor is ¡ 4 in two dimensions and ¡ 60

in ten dimensions. However, this method had quadratic

memory and preprocessing time requirements and involved

signi$cant overhead. Farago et al. [9] besides providing a

theoretical analysis of AESA, also proposed a modi$cation

of the algorithm thereby requiring only n(d+1) distances to

be stored (as opposed to n2 in case of AESA, where n is the

size of the training data and d is the number of dimensions).

They further propose a classi$cation rule which provides

the same asymptotic error probability as that of the NN

rule, and calculates only d+ 1 distances deterministically.

Vidal in Ref. [10] subsequently proposed an enhance-

ment of AESA, that uses branch and bound scheme in the

selection or approximating criterion which resulted in three

improvements. It was signi$cantly cheaper to compute, re-

duced the overhead and also improved the performance of

AESA slightly. Mico et al. [11] also suggested another lin-

ear AESA (LAESA) which required only linear memory

and preprocessing time. They studied the performance of the

LAESA through some simulation experiments and showed

that it overcame the quadratic bottleneck of the AESA. How-

ever, it required about 1.5 times more distance computations

than the AESA.

In this article, we propose a very simple preprocessing

step of the set of prototypes that will ensure that the nearest

neighbors can be obtained with signi$cantly smaller number

of distance computations, while retaining the exact perfor-

mance of the NN rule. The preprocessing step essentially

reorders the prototypes according to their distances from a

$xed point in the feature space usually chosen as one ex-

treme point of the hypervolume surrounding the prototypes.

The distances are also stored along with the prototypes. This

entails a maximum increase in memory requirement from

n × d (for the original set of prototypes) to n × (d + 1).

Subsequently, the nearest neighbor of a test point is identi-

$ed by growing a hypercube around this point. At the same

time, the information about the distances of the prototypes

from the $xed point is taken into account so as to reduce

the number of prototypes to be considered.

The performance of this nearest neighbor algorithm using

reordering of the prototype set (referred to as PR–NN pro-

cedure) is studied using a number of simulation experiments

for a uniformly distributed data set. Since the approximat-

ing and eliminating search algorithm (AESA) of Vidal [10]

and an improved version (LAESA) [11], to the best of our

knowledge, requires quite few distance computations with

respect to other techniques available in the literature, we

have compared our method to theirs in terms of the num-

ber of distance computations, time required for $nding the

nearest neighbor, number of operations involved in over-

head computation and memory requirements. In a part of

the investigation, experiments pertaining to computation of

the k (k¿ 1) nearest neighbors of a point are also carried

out and the results are included.

2. Nearest neighbor identi�cation procedure

In this section we $rst outline the basic NN procedure

followed by a description of the PR–NN rule in detail.

2.1. NN rule

Let us consider a set of n labeled pattern {x1; x2; : : : ; xn}
belonging to one of the classes C1; C2; : : : ; Ck . The NN clas-

si$cation rule assigns an unlabelled pattern y to the class of

its nearest neighbor xi ∈{x1; x2; : : : ; xn} such that

D(xi ; y) = min
l

{D(xl; y)}; l= 1; 2; : : : ; n; (1)

where D is any distance measure de$ned over the feature

space.

Since the aforesaid scheme employs the class label of only

the nearest neighbor to y, this is known as the NN rule. The

details of the NN rule along with the probability of error are

available in Refs. [1–3].

2.2. PR–NN procedure

The PR–NN procedure comprises two primary phases—

preprocessing and neighborhood identi$cation. These are

now detailed below.

2.2.1. Preprocessing

The block diagram of the preprocessing phase of the PR–

NN procedure is provided in Fig. 1. In this phase, the train-

ing data (or the sample prototypes) are read and minimum

along each dimension, mi (i = 1; 2; : : : ; d, where d is the

dimension of the feature space), is computed. The point

S. Bandyopadhyay, U. Maulik / Pattern Recognition 35 (2002) 2791–2799 2793

Fig. 1. Preprocessing.

having the coordinate (m1; m2; : : : ; md) is taken as the ref-

erence point (or xc). Fig. 2 shows an example of reference

point in three dimensional space. Subsequently, the distance

(di ; i = 1; 2; : : : ; n) of each point from the reference point

is calculated. These distances, along with the correspond-

ing prototypes, are sorted (in ascending order) and stored.

Finally, the distance between two closest points (dmin) in

the data set is computed which is used in the subsequent

neighborhood computation phase to $x the width of the

surrounding hypercube around the test point. The value of

dmin as well as the reference point are also stored. If there

are n prototypes in d dimensional space then the amount

of memory required for storing all this information will be

Fig. 2. Example of a reference point.

(n+1)× (d+1), out of which n×d is required for storing

the prototypes themselves.

One may note that the complexities for computing the dis-

tances, sorting and computing dmin are O(n), O(n log(n)) and

O(n2), respectively. Thus the overall computational com-

plexity of the preprocessing phase is O(n2). Since the pre-

processing has to be carried out only once for a given set

of prototypes, its computational complexity does not play

a major role. The memory requirement that is linear in the

number of prototypes is a major advantage of this technique.

One may also note in this context that the requirement for

computing dmin may be relaxed; thereby reducing the com-

plexity of the preprocessing phase to O(n log(n)).

2.2.2. Neighborhood identi4cation

The di4erent steps of the neighborhood identi$cation pro-

cedure is given below.

Step 1: Let y=(y1; y2; : : : ; yd) be the sample whose near-

est neighbor has to be computed. Let Ny ; X; xc and dmin be

the set containing the neighbors of y, set of reordered proto-

types, reference point and distance between the two closest

prototypes, respectively.

Step 2: Set �= 1, dy = distance(y; xc) and Ny =N ′

y = ∅,
where N ′

y is an auxiliary data structure.

Step 3: Compute � = �× dmin.

Step 4: Set index Il to the $rst prototype i in X , such that

di¿dy − �, (where di is the distance of the ith prototype

from xc). Similarly, set index Ih to last prototype j in X ,

such that dj6dy+ �. Note that since X is sorted, the index

settings can be done using binary search.

Step 5: Among the elements in between (and including)

Il and Ih, select only those elements whose coordinates lie

in between yi ± �, i = 1; 2; : : : ; d, (i.e., in the hypercube of

width 2� around y). Add these elements to the set N ′

y.

Step 6: If N ′

y = ∅ increment � by 1 and go to Step 3.

Otherwise go to Step 7.

2794 S. Bandyopadhyay, U. Maulik / Pattern Recognition 35 (2002) 2791–2799

Fig. 3. Neighborhood computation process.

Step 7: For each xi ∈N
′

y, check whether its distance, d
y
i ,

to y has already been computed. Otherwise compute d
y
i .

Also compute the minimum, min, of all d
y
i such that i∈N ′

y,

and add the corresponding element to Ny.

Step 8: If min6 �, then terminate with the nearest neigh-

bor in Ny. Otherwise set � = min, and go to Step 4.

Fig. 3 demonstrates the logic underlying the neighborhood

determination process. It relies on the procedure of growing

a hypersphere of diameter 2� around the test point until it

contains atleast one point from the training set. Since it is

computationally intensive to check whether a training point

lies in the hypersphere, the enclosing hypercube of sides 2�

is considered instead. Let the hypercube contain one training

point in it (with the minimum distance from y beingmin) for

some value of �. At this point, let �1 be the distance of one

corner point of the hypercube from y (see Fig. 3). Ifmin6 �,

then obviously this is the nearest neighbor. Otherwise, i.e.,

when �¡min6 �1, we need to check only the hypersphere

of radius min in order to $nd out the nearest neighbor of

y. This is done by actually setting � = min (rather than

�= �× dmin in Step 3) in Step 8 and going back to Step 4.

One may note that once the algorithm reaches Step 7

(which it is sure to reach at some point of time), then just

one more iteration through the loop is required before the

algorithm terminates. Moreover, in this outer loop, it will

always $nd N ′

y to be non-empty, and hence will not spend

time any further time in the inner loop (Step 3 to Step 6).

Note: An extension of PR–NN procedure to the case of

k nearest neighbors may be incorporated by maintaining an

array min[k] rather than just a scalar min, as done in Step

7 of the above algorithm. This array will be used to store

the k minimum distances of the unknown point y from k

prototypes which may then be included in the set Ny. In

order to achieve this, an outer loop that will include Steps

4–8 of the algorithm needs to be added which will keep

a check on whether k nearest neighbors have been already

found or not.

3. Results

In this section, the e4ectiveness of the PR–NN technique

is established through some simulation experiments. Its su-

periority over some other available methods is demonstrated

in terms of the number of distances to be computed, the over-

all time requirement (excluding the preprocessing time) for

$nding the nearest neighbor, the number of optimized oper-

ations required for overhead computation, and the memory

requirements. Note that preprocessing is done only once ir-

respective of the number of samples to be tested and there-

fore, it is not as important as the other factors. Di4erent sizes

of the training data set with varying dimensionalities are

considered for this purpose. Variation of the performance

of PR–NN with the size of the test set is also investigated.

Results, in terms of the number of distance computations,

of PR–NN when k nearest neighbors (k = 1; 3; 5; 7 and 9)

are to be computed are reported at the end of this section.

3.1. Performance of PR–NN

The results presented in this section use training proto-

types and test data drawn from a uniform distribution in the

unit hypercube in d dimensional space. After having drawn

a random set of n prototypes for training, an independent

test set of 1000 prototypes is drawn from the same uniform

distribution. The results are the average values obtained for

these 1000 test points. The values of n and d considered for

the experiments range from [100 to 10,000] and [2 to 10],

respectively. In a part of the experiments, the variation of

the performance of PR–NN with the size of the test set for

$xed n (=1000) and for several values of d in the range

2–10 is demonstrated.

Fig. 4 shows the variation of the number of distance com-

putations (Nneigh) with n for di4erent values of d for both

PR–NN and NN procedures. (Note that Nneigh is independent

of d for the NN procedure.) As is evident from the $gure,

Nneigh is signi$cantly less for PR–NN than that required by

the NN rule. Moreover, the variation of Nneigh with n for a

given d is comparatively small, indicating the stability of

the proposed method. The variations of Nneigh with d for dif-

ferent $xed values of n are shown in Fig. 5. It is found that

the maximum value of Nneigh when n = 10; 000 and d = 10

is about 115, signi$cantly less than what is required by the

NN rule (i.e., 10,000).

It may be noted in this regard that the PR–NN procedure

involves management of indices, and determination of proto-

types which lie in the enclosing hypercube in addition to the

computation of distances to the Nneigh neighbors. Although

some sort of overhead is always involved in any procedure

attempting to reduce the number of distance computations

S. Bandyopadhyay, U. Maulik / Pattern Recognition 35 (2002) 2791–2799 2795

Fig. 4. Variation of number of distance computations with n for

di4erent values of d.

Fig. 5. Variation of number of distance computations with d for

di4erent values of n.

[4–6,8,10,11], this gives rise to the issue of investigating

the actual computation time required by the proposed pro-

cedure vis-a-vis the exhaustive NN-rule. Fig. 6 shows the

variation of the ratio of time taken by the PR–NN proce-

dure to that by the NN rule with n for di4erent values of d.

As can be seen from the $gure, the time taken by PR–NN

procedure is always much less than that taken by NN rule.

Fig. 6. Variation of ratio of time taken by PR–NN procedure to

that by NN procedure with n for di4erent values of d.

Fig. 7. Variation of number of distance computations with the size

of the test set for di4erent values of d and n = 1000.

Moreover, this ratio is found to decrease with increase in n,

thereby indicating its applicability to larger data sets.

A study of the variation of the number of distances com-

puted by PR–NN procedure with the size of the test set for

$xed number of prototypes (=1000) is provided in Fig. 7

for d=2; 4; 6; 8, and 10. As seen from the $gure, the number

of distances computed, on an average, is relatively indepen-

2796 S. Bandyopadhyay, U. Maulik / Pattern Recognition 35 (2002) 2791–2799

Fig. 8. Variation of ratio of time taken by AESA to that by PR–NN

procedure with n for di4erent values of d.

dent of the size of the test set for a given dimensionality of

the data. This, in turn, indicates that the time required for

computing the nearest neighbor, on an average, will again

be independent of the size of the test set. This has also been

experimentally veri$ed.

3.2. Comparison with AESA [8] and LAESA [11]

The comparative performance of PR–NN with respect to

AESA and LAESA is now presented in terms of process-

ing time for computing the nearest neighbor, number of

distances to be computed for this purpose, and memory

requirements. The size of the training set and the number

of dimensions range from 100 to 5000 and 2 to 10, res-

pectively. The size of the test set is kept equal to 1000.

3.2.1. Processing time for NN computation

Fig. 8 plots the ratio of the time taken for nearest neighbor

computation as required by AESA to that required by PR–

NN for di4erent dimensionalities. As can be seen from the

$gure, this ratio (whose minimum value is ¿ 2) is found

to increase with the number of training points (n) as also

mostly with the number of dimensions (d). (Note that we

were not able to include results for n = 10; 000 since the

time taken by AESA for this n was found to be prohibitively

large.)

Note that the processing time reported here for AESA

and PR–NN includes the time for the distance computa-

tions and the overhead for $nding the nearest neighbor,

and not the preprocessing time. LAESA is an improvement

over AESA in terms of preprocessing (and memory) re-

quirements, and not in terms of distance computations or

Fig. 9. Variation of number of distance computations with n for

di4erent values of d for AESA and PR–NN procedures.

overhead (computation not strictly applied to distance com-

putation). In fact, the number of distance computations in

LAESA is 1.5 times that required in AESA. Therefore, the

processing time for LAESA can only be more than that of

AESA (or, in other words, will be still poorer compared to

PR–NN).

3.2.2. Number of distance computations

Fig. 9 shows the performance in terms of the number of

distances computed by AESA and PR–NN algorithms. As

can be seen from the $gure, the number of distances com-

puted by PR–NN procedure is smaller than that of AESA

for d = 2; 4 and 6. The case is similar even for d = 8

and 10, when the sizes of the data set is small. For larger

data sets in these dimensionalities, AESA is found to per-

form better than PR–NN with regard to the number of dis-

tances computed. Although for large n and d, the num-

ber of distances computed in AESA is less than that for

PR–NN, the time taken by the former, as mentioned ear-

lier, is found to be signi$cantly more than that required

by the latter (see Fig. 8). This is because of the fact that

the processing time required includes the time for distance

computations as well as that for the overhead, i.e., com-

putation not strictly applied to distance computation. This

overhead is very signi$cant for AESA as compared to PR–

NN, thereby making the former computationally intensive.

Fig. 10 shows a comparison of AESA and PR–NN with

respect to the optimized number of operations involved in

the overhead computation of the two methods. (A detailed

discussion is provided in the following subsection.) As can

be seen, AESA requires signi$cantly more number of op-

erations than PR–NN in overhead computation. This, in

S. Bandyopadhyay, U. Maulik / Pattern Recognition 35 (2002) 2791–2799 2797

Fig. 10. Variation of number of operations for overhead compu-

tation with n for di4erent values of d. The dash–dotted and solid

lines correspond to PR–NN and AESA, respectively.

turn, increases the time required by AESA as compared to

PR–NN for $nding the nearest neighbor. As already men-

tioned, the time taken by AESA when n= 10; 000 was pro-

hibitively large. For PR–NN it was obtained in 11:4 s, when

the average number of distance computations required was

100.238.

The above discussion, therefore, underlines the utility of

the PR–NN procedure with respect to AESA in practical

problems. As mentioned in Ref. [11], the number of distance

computations in LAESA is about 1.5 times that of AESA.

This indicates that in the cases where PR–NN was better

than AESA, the former will surely outperform LAESA. On

the other hand, in the cases where AESA was better than

PR–NN, the di4erence in performance will be reduced sig-

ni$cantly in between PR–NN and LAESA.

3.2.3. Number of optimized operations in overhead

computation

In this section, we provide a comparison of AESA and

PR–NN in terms of the number of optimized operations in-

volved in the overhead computation i.e., computation not

strictly related to distance computation. An indication of the

number of distances computed by the two methods has been

provided earlier in Fig. 9. Note that the operations include

multiplication=division, addition=subtraction and compari-

son (or, MACs), as is usually considered [13].

For the sake of convenience of the readers, we reproduce

here the AESA algorithm [10, pp. 4, 5], and indicate the

instructions where we have considered an operation by un-

derlining it.

Algorithm AESA.

Input: Set of prototypes P; unknown point y; distance

measure d

D: array of precomputed distance between all the

elements of P

Output: Nearest Neighbor p∗ ∈P and its distance d∗

Variables: A :P(P);p; s; s′: P; dsy:real number;

G: array [P] of real numbers
A= P

d∗ =∞;p∗ = unknown;G = [0];

s = arbitrary selection(A)

while |A|¿ 0 do

dsy = d(s; y);A= A− {s}
if dsy¡d∗(comparison) then

p∗ = s;d∗ = dsy endif

s′ = s; s = arbitrary selection(A)

∀p∈A do

G[p] = max(G[p]; |D[p; s′]− dsy|)
(comparison and subtraction)

if G[p]¿d∗ (comparison)

then A= A− {p}
else if G[p]¡G[s] (comparison) then s=p endif

endif

end ∀
endwhile

end AESA.

Similarly, for PR–NN we have considered an operation

in the following steps:

A multiplication operator in Step 3. In Step 4 two addi-

tion operations are considered for computing dy ± �. Also

for each invocation of binary search (for setting the indexes

Il and Ih) we consider two comparison operations, one ad-

dition and one division operation. In Step 5 two addition

and two comparison operations are considered for comput-

ing yi ± � and checking belongingness within the hyper-

cube for each dimension. Step 6 involves one addition op-

eration corresponding to the increment operator. In Step 7 a

comparison operator per element in N ′

y is required. Finally,

Step 8 requires one comparison operator.

Fig. 10 demonstrates the variation of the number of oper-

ations, computed as given above, with the number of proto-

types n for di4erent dimensions (mentioned along side the

plots). The dash–dotted and solid lines represent the varia-

tions for PR–NN and AESA, respectively. It is found from

the $gure that PR–NN signi$cantly outperforms AESA in

terms of the optimized number of operations involved in

overhead computation for all the dimensions. It may be men-

tioned in this context that AESA requires no multiplication

operator, while PR–NN does so. However, in real terms,

the number of multiplication operators is far less than both

the addition and comparison operators. As an illustration,

for n= 5000 and d= 10, the number of additions, compar-

isons andmultiplications in PR–NN is 125.48, 42,908.54 and

61.08, respectively. The number of additions and compar-

isons, for the same n and d, in case of AESA are 43,889.92

2798 S. Bandyopadhyay, U. Maulik / Pattern Recognition 35 (2002) 2791–2799

Table 1

Memory requirements for the di4erent schemes. Here n= number

of training prototypes, d=number of dimensions and m=number

of base prototypes in LAESA [11]

Method Memory requirement

NN rule n× d

AESA n× d + n2

LAESA n× d + n× m

PR–NN ¿ n× d and 6 n× d + n

Table 2

Comparative results for the number of distances computed

n d Yuncks Friedman Branch and PR–NN

algorithm algorithm Bound algorithm

256 2 3.08 18.1 — 1.243

1000 2 4.84 35.7 46 1.203

4 27.1 239 — 3.151

6 60.5 481 — 9.63

8 134 708 — 25.18

10 493 913 — 77.48

3000 8 248 1851 451 29.725

10,000 10 1127 7251 — 110.238

and 13,1723.78, respectively, which are found to very high

as compared to those for PR–NN.

3.2.4. Memory requirement

As mentioned in Ref. [10], AESA has quadratic memory

requirements. In LAESA [11], derived from AESA, this was

reduced from quadratic to linear in the number of proto-

types, at the cost of increase in the number of distance com-

putations. Note that in the PR–NN procedure the memory

requirement is linear in the number of prototypes. A com-

parison of the exhaustive NN scheme, AESA, LAESA and

PR–NN in terms of the memory requirement is provided in

Table 1.

3.3. Comparison with other methods

As regards the comparison of PR–NN procedure with

other existing methods [4–6] other than the two mentioned

above, it may be noted that none of these methods re-

ported results with n= 10; 000. The results are provided in

Table 2 (these were taken from already published literature)

[6]. As seen from the table, the results of PR–NN procedure

are signi$cantly superior for all the values of n and d.

Fig. 11. Variation of number of distance computations with k for

di4erent values of d, n = 5000. Here the dashed lines indicate a

linear scaling by a factor of k.

3.4. Extension to k nearest neighbors

In this subsection the e4ectiveness of extending the PR–

NN procedure to the case of $nding the k nearest neighbors

is demonstrated experimentally. Fig. 11 shows the variation

of the number of distances computed for $nding the k near-

est neighbors, for K =1; 3; 5; 7 and 9 when 5000 prototypes

are considered (i.e., n= 5000). As before, we have consid-

ered several values d. As can be seen from the $gure, the

number of distances computed scale linearly with a factor

almost equal to k. The dashed lines represent linear scal-

ing by a factor of k. Thus it is found that in practice, the

number of distance computations increases by a factor that

is smaller than k in all the cases. Interestingly, it is found

from Fig. 11 that this factor, in general, decreases with the

number of dimensions (d), indicated by the increasing dif-

ference between dashed and solid lines for larger d. On the

contrary, it may be noted that AESA is speci$cally designed

for $nding only the nearest neighbor. Extending it to the

case of k nearest neighbors is not straightforward (as with

PR–NN).

4. Discussion and conclusions

A very simple preprocessing technique, involving com-

putation and storage of n distances and a reordering of pro-

totypes based on these distances, for computing the nearest

neighbor is reported in this article. The modi$ed algorithm

retains the intuitive simplicity and Mavor of the original NN

rule. The new method, PR–NN, is found to require signi$-

S. Bandyopadhyay, U. Maulik / Pattern Recognition 35 (2002) 2791–2799 2799

cantly smaller number of distance computations as compared

to the exhaustive scheme as well as several other methods

available in the literature.

Since the PR–NN procedure involved some overhead not

directly related to distance computation, natural concern

about its timing requirement with relation to the NN rule

arose. It has been experimentally demonstrated that in terms

of computation time, the new method is superior to the NN

procedure as well as to AESA and LAESA. A comparison of

the two methods, in terms of the number of optimized oper-

ations required for $nding the nearest neighbor also demon-

strates the superiority of PR–NN. As mentioned in Ref. [11],

the linear overhead of (L)AESA can become a serious bot-

tleneck if the number of prototypes becomes very large.

In this respect it may be noted that the PR–NN procedure

may be e4ectively combined with the concept of triangle

inequality used in Refs. [8,10]. This is likely to improve the

e�ciency of the new method, reducing its computational

overhead to a large extent. This line of research is currently

being pursued by the authors who are getting encouraging

initial results.

Finally, the question of scalability of the PR–NN scheme

to the case of computing the k nearest neighbors of a point

has been addressed. An investigation for di4erent values of

k shows that the algorithm scales linearly with the value

of k, with the scaling factor being less than k in practice.

Moreover, this factor is found to usually decrease for larger

dimensionality of the data.

Acknowledgements

The authors would like to thank the reviewer, whose in-

valuable comments and suggestions helped immensely in

improving the quality of the article and providing some new

directions of research.

References

[1] R.O. Duda, P.E. Hart, Pattern Classi$cation and Scene

Analysis, Wiley, New York, 1973.

[2] K. Fukunaga, Introduction to Statistical Pattern Recognition,

Academic Press, New York, 1990.

[3] J.T. Tou, R.C. Gonzalez, Pattern Recognition Principles,

Addison-Wesley, Reading, 1974.

[4] J.H. Friedman, F. Baskett, L.J. Shustek, An algorithm for

$nding nearest neighbors, IEEE Trans. Comput. C-24 (1975)

1000–1006.

[5] K. Fukunaga, P.M. Narendra, A branch and bound algorithm

for computing k-nearest neighbors, IEEE Trans. Comput. C-24

(1975) 750–753.

[6] T.P. Yunck, A technique to identify nearest neighbors, IEEE

Trans. Syst. Man Cybern. SMC-6 (1976) 678–683.

[7] I.K. Sethi, A fast algorithm for recognizing nearest neighbors,

IEEE Trans. Syst. Man Cybern. C-24 (1975) 1000–1006.

[8] E. Vidal, An algorithm for $nding nearest neighbors in

(approximately) constant average time, Pattern Recognition

Lett. 4 (1986) 145–157.

[9] A. Farago, T. Linder, G. Lugosi, Nearest neighbor search and

classi$cation in o(1) time, Problems Control Inform Theory

20 (1991) 383–395.

[10] E. Vidal, New formulation and improvement of the nearest

neighbor approximating and eliminating search algorithm,

Pattern Recognition Lett. 15 (1994) 1–7.

[11] M.L. Mico, J. Oncina, E. Vidal, A new version of

the nearest-neighbor approximating and eliminating search

algorithm (asea) with linear preprocessing time and memory

requirements, Pattern Recognition Lett. 15 (1994) 9–17.

[12] B. Bhattacharya, D. Kaller, Reference set thinning for

the k-nearest neighbor rule, in: Proceedings of the 14th

International Conference on Pattern Recognition, Los

Alamitos, CA, USA, pp. 238–242, IEEE Computer Society

Press, 1998.

[13] V. Ramasubramanian, K.K. Paliwal, Fast nearest-neighbor

search algorithms based on approximation-elimination search,

Pattern Recognition 33 (2000) 1497–1510.

About the Author—SANGHAMITRA BANDYOPADHYAY did her Bachelors in Physics and Computer Science in 1988 and 1991,

respectively. Subsequently, she did her Masters in Computer Science from Indian Institute of Technology (IIT), Kharagpur in 1993 and

Ph.D. in Computer Science from Indian Statistical Institute, Calcutta in 1998. Currently she is a faculty member at Indian Statistical Institute,

Calcutta, India. Dr. Bandyopadhyay is the $rst recipient of Dr. Shanker Dayal Sharma Gold Medal and Institute Silver Medal for being

adjudged the best all round post graduate performer in IIT, Kharagpur in 1994. She has worked in Los Alamos National Laboratory,

Los Alamos, USA in 1997 as a graduate research assistant, in the University of New South Wales, Sydney, Australia as a post doctoral

fellow and in the Department of Computer Science and Engineering, University of Texas at Arlington, USA as a faculty and researcher.

Dr. Bandyopadhyay received the Indian National Science Academy (INSA) and the Indian Science Congress Association (ISCA) Young

Scientist Awards in 2000. Her research interests include Pattern Recognition, Data Mining, Evolutionary Computation, Computer Vision

and Parallel & Distributed Systems.

About the Author—UJJWAL MAULIK did his Bachelors in Physics and Computer Science in 1986 and 1989, respectively. Subsequently,

he did his Masters and Ph.D. in Computer Science in 1991 and 1997, respectively from Jadavpur University, India. He is currently a faculty

in the Department of Computer Science and Technology, Kalyani Government Engineering College, Kalyani University, where he has

also small served as the head of the Computer Science Department during 1996–1999. Dr. Maulik has visited Center for Adaptive

Systems Application, Los Alamos, New Mexico, USA in 1997 as a scientist, and University of New South Wales, Sydney, Australia as a

post-doctoral researcher in 1999. He received the Govt. of India BOYSCAST fellowship in 2001, with which he visited University of Texas

at Arlington, USA. His research interests include Parallel and Distributed System, Arti$cial Intelligence and Combinatorial Optimization,

Pattern Recognition, Image Processing and Computer Vision.

	3.pdf
	2.pdf

