

S. Bandyopadhyay, S. Santra / Pattern Recognition 41 (2008) 1338–1349 1339

of being intuitive and simple as well as computationally fea-

sible. Moreover, no previous knowledge about the data set is

necessary. More details about them are available in Refs. [1–5].

Many data-mining algorithms in the literature find outliers

as a side product of clustering [1,6,7]. For these, outliers are

objects that do not belong to any cluster. Thus, the technique

implicitly defines outliers as the background noise in which

the clusters are embedded. Another class of techniques defines

outliers as points, which are neither a part of a cluster nor a part

of the background noise; rather they are specific points, which

behave very differently from the normal once [32]. The outlier

detection problem can also be modelled as a highly imbalanced

classification problem, and measures like receiver operating

characteristic curves may be used to estimate the performance

of a learning algorithm [8,9].

Recently genetic algorithms (GAs), a class of evolutionary

search and optimizing tools, have been applied to the prob-

lem of outlier detection in multidimensional space [10,11]. The

method is based on taking projections of the data in some lower

dimensional spaces, dividing these space into grids and com-

puting the sparsity factor of the grid, such that the deviations

become prominent. However, this process is found to be ex-

tremely computation intensive. The computation time is found

to be significantly large even for moderately large data. In or-

der to overcome this limitation, a novel structure has been pro-

posed in this article for storing the data so that the computation

time is reduced significantly. In contrast to the method in Ref.

[10], which assumes the data to be numeric, here a modified

genetic outlier detection method is proposed which can work

on mixed data, containing both numerical and categorical fea-

tures. The proposed method is compared to some other outlier

detection methods like K.d tree based method [5] and distance

based method [2], in addition to the earlier genetic scheme [10]

for several artificial and real life data sets including four gene

expression data sets.

The article is organized as follows. Section 2 describes the

main issues involved in the proposed grid count tree based

algorithm. This includes the definition of the GCT and how

it is used for computing the fitness in genetic algorithm. The

following section describes the proposed algorithm in detail.

The experimental results are provided in Section 4. Section 5

concludes the article.

2. GCT-GOD: genetic algorithm for outlier detection

using grid count tree

For high dimensional data, it is often found that a few data

points deviate from the normal data in only a few dimensions.

However, in these cases, an algorithm that tries to detect the

outliers considering all the dimensions will be misled due to

the averaging effect of the non-deviating attributes. In such sit-

uations, it may be advisable to first project the data in a lower

dimensional space, and then try to detect outliers in this space.

It may be noted in this context that the problem of determin-

ing the appropriate projection is exponential in the number of

dimensions. In Ref. [10] a genetic algorithm is used to iden-

tify the appropriate low dimensional projection where the most

sparse data can be found. In order to define such projection

first a grid discretization of the data space is performed. Each

attribute of the K-dimensional data is divided into f = 1
�

equi-

depth intervals. Thus each interval along each dimension con-

tains a fraction f = 1
�

of the points on an average. For an

s-dimensional grid, s < K (K is the number of dimensions),

which is created by projecting the data on s different dimen-

sions, the expected fraction of records would be equal tof s . If

the data are uniformly distributed, then the presence or absence

of any point in the s-dimensional grid is a Bernoulli random

variable with probability f s [10]. Let N be the total number of

points. Then expected number of points and the standard devi-

ation of the points in an s-dimensional grid are given by N ·f s

and
√

N · f s · (1 − f s), respectively. Let N ′ be the number of

points in an s-dimensional grid H . Then the sparsity coefficient

Sc of grid H is defined as follows [10]:

Sc =
(N ′ − N · f s)

√
N · f s(1 − f s)

. (1)

Negative sparsity coefficients of the grids indicate the presence

of significantly lower data points than expected.

Although the method of Ref. [10], referred to as GOD (ge-

netic algorithm for outlier detection) in this article, works well

for very high dimensional space when the number of data points

is low, it becomes computationally infeasible if the size of the

data set becomes even moderately large. This is because every

time the sparsity coefficient is computed (which is in fact com-

puted a large number of times in GOD), the entire data set needs

to be projected in a lower dimensional space and a grid count

operator needs to be carried out. In this article a new structure

for data representation, called grid count tree (GCT), is pro-

posed for storing some information about the data points such

that the genetic technique becomes computationally feasible

for large data sets. The genetic scheme using GCT is referred

to as GCT-GOD. A further modification is made so as to en-

able GCT-GOD to operate on categorical as well as numerical

data. This is in contrast to Ref. [10], where only numerical data

can be considered. A detailed description of the GCT is given

below followed by an explanation of the GCT-GOD technique.

2.1. GCT: grid count tree

The data set is first divided into a number of equi-sized in-

tervals along each dimension. In case an attribute is categorical

having m possible values v1, v2, . . . , vm, that particular dimen-

sion is divided into m distinct values [29]. Note that in contrast

to Ref. [10] where each dimension was divided into a fixed

number (say, �) of intervals, here this may vary depending on

whether an attribute is categorical or not; and if so, then on the

number of possible values it can take. The number of intervals

along dimension i is defined as �i . The entire feature space can

now be considered to be a set of non-overlapping hypergrids

containing all the data points. A special representation, called

the GCT, is used to store the definition of each grid (or, hyper-

grid) as well as the number of data points residing in it. In the

first step, each point of the data set is represented as a string of

1340 S. Bandyopadhyay, S. Santra / Pattern Recognition 41 (2008) 1338–1349

D
im

e
n

s
io

n
 2

Dimension 1

*
* 4

*

*

*

*

*

*

*

* *

*

2
1

3

5

6

7

8

9

10

11
12

Fig. 1. An example of a data set and the grid structure imposed on it. The

grids with bold and dotted boundaries map to nodes ‘a’ and ‘b’, respectively,

in Fig. 2.

length K , where K is the number of dimensions. This corre-

sponds to a multidimensional grid where the point resides. The

way this mapping is done is as follows.

Let us consider a data set X = {−→x1 , −→x2 , . . . , −→xN } in a K-

dimensional space. Let Maxi and Mini represent the maximum

and minimum extent of X along dimension i, respectively. If

�i is the number of intervals along dimension i, then the length

of each interval is

�i =
Maxi − Mini

�i

. (2)

A point −→xj = (xj1, xj2, . . . , xjK) maps to a string stj =
sj1sj2 . . . sjK , where

sji =
⌈

xji − Mini

�i

⌉

. (3)

Consider Fig. 1. This figure shows a sample data set having

12 points in a two-dimensional space. Here each dimension

is divided into four intervals as shown. As can be observed,

points labeled 1, 3 and 4 lie in the same grid (3,1) and can

be represented by the string 31. The string representation of

a hypergrid can contain ‘∗’s which indicates all the intervals

along the corresponding dimension (i.e., the data are effectively

projected along the dimensions that do not have a ‘∗’). For

example, grid (4, ∗) in Fig. 1, represented by string 4∗, contains

points labeled 7, 8, 9, 11 and 12, i.e., those points which would

like in the 4th interval of dimension 1, if all the points are

projected along this dimension.

The GCT contains a parent node, ℘, corresponding to some

dimension i, that consists of �i pointers, where �i is the number

of intervals along that dimension. An important issue during

the construction of the GCT is the choice of the dimension i

as the parent node. In this article the dimension with the least

number of intervals is selected. A tie is resolved randomly.

Each pointer of the parent node ℘ points to a binary search tree

(BST). One may recall that a BST is a binary tree where each

node has a key and two child pointers. The key values of the

left (or, right) child of any parent node in a BST is smaller (or

greater) than the key value of the parent. In GCT, each node of

the �i BSTs (corresponding to the �i pointers from ℘) contains

the following:

• String—A string that defines a multidimensional hypergrid

in the feature space. Note that depending on the context, it

can be treated as a string or an integral value.

• Count—A counter to count the number of points that reside

in that grid.

• Left—A left pointer.

• Right—A right pointer.

Consider Fig. 2 which is the GCT corresponding to the points

shown in Fig. 1. ℘ is the root node whose entries correspond to

the four intervals along dimension 2. Point ‘1’ is the first point to

be considered, and its grid location is (3,1) which corresponds

to the string ‘31’. Therefore, a node (represented in Fig. 1 as

‘a’) containing ‘31’ as the grid location, and 1 in the count

field is created as the child of ℘ [12]. Thereafter point ‘2’ is

encountered whose grid location is (2,1). Since this corresponds

to the string ‘21’, and 21 is smaller than 31, it appears as the

left child of ‘a’ (see node ‘b’ in Fig. 1). Subsequently, point ‘3’

is encountered, and its grid location is again (3,1). Following

the pointer from ℘ [12] (since the second dimension of the

grid (3,1) is 1), a match with the grid location entry of node

‘a’ is found. Hence its count value is incremented by one. This

is again incremented by one after encountering point ‘4’.The

node ‘c’ which appears as the right child of ‘a’ corresponds to

the points ‘7’ and ‘8’ having grid location (4,1). In this way

the full GCT is constructed for all the eight points. Algorithm

1 shows how a string (st) is inserted into the GCT.

Algorithm 1. GCTbuild(st, GCT).

1: Input: st, GCT /* GCT is a pointer pointing to the

subtree ℘[st[v]], where v corresponds to the dimen-

sion forming the root of the GCT, and st[v] is the vth

position of the string st to be inserted. */

2: Output: GCT

/* For empty tree */

3: if GCT is NULL then

4: new = Allocate space for a GCT node

5: new.String = st

6: new.Count = 1

7: new.Left = new.Right = NULL

8: ℘[st[v]] = new

9: end if

/* The strings are treated as integral values here. */

10: if st > (GCT → String) then

11: if (GCT → Right) is NULL then

12: new = Allocate space for a GCT node

13: new.String = st

14: new.Count = 1

15: new.Lef t = new.Right = NULL

16: GCT → Right = new

17: else

18: Call GCTbuild(st, GCT → Right)

19: end if

20: end if

S. Bandyopadhyay, S. Santra / Pattern Recognition 41 (2008) 1338–1349 1341

1 32 4

a

b c

31 3 42 1 34 2

44 221 1 41 2

11 1

℘

Fig. 2. GCT for the data in Fig. 1.

21: if st < (GCT → String) then

22: if (GCT → Lef t) is NULL then

23: new = Allocate space for a GCT node

24: new.String = st

25: new.Count = 1

26: new.Lef t = new.Right = NULL

27: GCT → Lef t = new

28: else

29: Call GCTbuild(st, GCT → Lef t)

30: end if

31: end if

32: if st = =(GCT → String) then

33: GCT → Count = GCT → Count + 1

34: end if

2.2. Lower dimensional projection and chromosome

representation

As in Ref. [10], the data are first projected in a lower dimen-

sional space. A chromosome is defined to encode a hypergrid

in the projected space. The length of a chromosome is equal to

the number of dimensions of the data set. For a K-dimensional

data set the structure of the chromosome would be a string

[c1c2c3 · · · cK] where

ci = j, j ∈ {‘ ∗ ’, 1, 2, . . . , �i}, i = 1, 2, . . . , K . (4)

Here, a value of ‘∗’ in some ci represents a don’t care, indi-

cating that the chromosome represents the whole range along

the dimension i. Otherwise, some value j in ci indicates that

the chromosome represents the j th interval along dimension i.

For a K-dimensional data set where the data are projected on

an s-dimensional space, the chromosome should have (K − s)

‘∗’s and s numeric values. Consider the following chromosome

∗3 ∗ ∗2 ∗ ∗5. It represents a three-dimensional projection of

an eight-dimensional data set. This chromosome corresponds

to the grid composed of the 3rd, 2nd, 5th intervals along 2nd,

5th, and 8th dimension, while all other dimensional values are

don’t care’s. In the example described in Fig. 1 one such chro-

mosome may be 1∗ which indicates that the data are projected

only along the first dimension, and the first interval is to be

considered. From the figure, it is evident that this corresponds

to the data point ‘6’.

2.3. Fitness computation

The fitness value of a chromosome is equal to the sparsity

coefficient of the hypergrid represented by that chromosome.

The sparsity coefficient provides a measure for detecting out-

liers based on the degree to which the characteristics of the

data points in a hypergrid deviate from the normal data char-

acteristics. If �i is the number of intervals along dimension i,

then for a K-dimensional hypergrid with s projected dimen-

sions (say, pd1, pd2, . . . , pds), the expected number of points

in it is equal to

s
∏

i=1

fpd i
,

where pd i is the ith projected dimension and

fpd i
=

1

�pd i

. (5)

Therefore Sc (Eq. (1)) now becomes

Sc =
(N ′ − N.

∏s
i=1 fpd i

)
√

N.
∏s

i=1 fpd i
(1 −

∏s
i=1 fpd i

)

. (6)

The fitness of a chromosome is defined as Sc. Note that the

sparsity coefficient, Sc, which is a measure of the difference

between expected uniform and actual sparsity of a hypergrid,

will be very low for the hypergrids containing outliers. From

Eq. (6) it is evident that the computation time depends primarily

on the determination of N ′ since computation of
∏s

i=1 fpd i
is

fixed. The computational complexity for fitness computation is

hence mainly dependent on the complexity of the computation

of N ′ .

2.3.1. N ′ computation from GCT

GCT is designed to optimize the computation of the sparsity

coefficient Sc as given in Eq. (6). In general, to calculate Sc of

a hypergrid all the data elements need to be compared with the

string value of that hypergrid. This was the approach used in

Ref. [10]. In the present article, a method is proposed where

the GCT is used to perform this computation more efficiently.

Given a chromosome C = c1c2 . . . cK , (cj ∈ {1, 2, . . . , �j ,

‘ ∗ ’}) that encodes a hypergrid in the projected space, the GCT

1342 S. Bandyopadhyay, S. Santra / Pattern Recognition 41 (2008) 1338–1349

is traversed in an efficient way to find out the number of data

points that lie in this hypergrid. The GCT traversal is referred

to as the Match-Decision traversal (MDT).

MDT starts at the root with the initial value of N ′ = 0. If the

root is the projection along dimension i, then the ith position

of the chromosome is matched to the corresponding position of

the root node. In case the ith position of the chromosome is a

‘∗’ (don’t care), then this indicates that all the positions of the

root node are matching, and all of them must be considered in

the traversal. Following the link of the matched position from

the root (which could be all the positions of the root in the worst

case), the respective BSTs are now traversed. The nodes of the

BSTs are matched to the string encoded in the chromosome.

If the values in the defined positions in a chromosome (i.e.,

excluding the don’t cares) match those in the corresponding

positions of the String field, a match is declared. For example

a chromosome 42 ∗ 5 would match a string 4275.

If a match is found then one of the following three cases

will arise:

• Match-Leaf (Decision): The matching BST node is a leaf. In

this case N ′ is incremented by the value in Count field of the

leaf node, and the traversal in that BST terminates.

• Match-NonLeaf-EndIntervals (Decision): The matching BST

node is not a leaf and the first ‘∗’ position of the chromosome

(say j) has a value stj in the corresponding String field of

the BST node, where stj is either 1 or �j . Here, N ′ is first

incremented by the value in Count field of the match node.

Thereafter, in case the value is 1 (or, �j), then the Right

(or, Left) pointer has to be traversed fully from the matching

node. Thus a decision regarding which link to follow in the

next step of MDT can be taken.

• Example: For example let the chromosome be [42 ∗ 5] and

the String field of the matching BST node be [4275] with

�3 = 7. As is evident, a match is found. Since �3 = 7,

the third dimensional value in the chromosome can be any

number between 1 and 7. Since the String field contains 7 in

the third position, all other matches with 42 ∗ 5 can only be

smaller than 4275. Hence only the left subtree needs to be

fully traversed. The converse is true if the String field of the

matching BST node is [4215].

• Match-NonLeaf-MidInterval (NoDecision): The matching

BST node is not a leaf and the first ‘∗’ position of the chro-

mosome is j and the corresponding String field of the BST

node has a value stj where 1 < stj < �j . In this case, N ′ is

first incremented by the value in Count field of the match

node. Thereafter, both the children of the matched BST node

have to be fully traversed.

• Example: For the above example, let the String field of the

matching BST node be [4225], while the chromosome be

[42∗5]. Then the other nodes that may match the chromosome

reside in both the left and right subtrees of the BST node.

If a match is not found as per the above definition, then again

one of the following three cases will arise:

• MisMatch-Defined (Decision): Let j be the position where

the first mismatch occurs. Then, this situation arises when

the j th position of the chromosome C contains a non-‘∗’

value. (Note that String field will never contain ‘∗’s.) In that

case, if the j th value of C is less than that of String, then the

Left pointer is to be followed. Otherwise, the Right pointer

should be followed.

• Example: LetC be [42∗5] and the String field of the matching

BST node be [4374]. As is evident, this is a mismatch; the

mismatch occurs at position 2. Moreover, since 42 is less

than 43, so the Left pointer is to be traversed.

• MisMatch-Star-EndInterval (Decision): Let j be the position

where the first ‘∗’ appears in C. Here, let stj be the value in

the j th position of String, and stj is either 1 or �j . If stj = 1

then the Right pointer of the BST node should be followed.

If stj = �j , then the Left pointer should be followed.

• Example: LetC be [42∗5] and the String field of the matching

BST node be [4274] where �3 = 7. Evidently, all matches

with 42 ∗ 5 can only be found in the left subtree of the BST

node.

• MisMatch-Star-MidInterval (NoDecision): Let j be the po-

sition where the first ‘∗’ appears in C. Here, let stj be the

value in the j th position of String, and stj is neither 1 nor

�j . In this case no decision regarding which pointer to fol-

low can be taken; both the pointers have to be followed.

• Example: Let C be [42∗5] and the String field of the matching

BST node be [4234] where �3 = 7. Evidently, no decision

can be made regarding which link to follow. Consequently,

both the links have to be checked.

2.3.2. Search complexity in GCT

During MDT, if the dimension of the root node of GCT is

one of the projected dimensions as encoded in C, then search-

ing is limited to a single underlying BST. Otherwise search is

extended to all �i BSTs, where i is the dimension correspond-

ing to the parent node.

Considering a data set generated using a uniform distribution,

each interval of the parent node corresponds to N
�i

points on an

average. If Hmax is the maximum number of hypergrids that

may be considered along each interval of the parent node (the

corresponding BST is constructed from these Hmax hypergrids),

then

Hmax = min







N

�i

,

K
∏

j=1,j �=i

�j







. (7)

If only one BST is traversed for MDT, then the average search

complexity is equal to that for searching in the BST with Hmax

nodes; this is equal to

O(log(Hmax)) = O



log



min







N

�i

,

K
∏

j=1,j �=i

�j













 . (8)

In case the search is extended to all the �i BSTs, the average

search complexity becomes

O(�i log(Hmax)) = O



�i log



min







N

�i

,

K
∏

j=1,j �=i

�j













 .

(9)

S. Bandyopadhyay, S. Santra / Pattern Recognition 41 (2008) 1338–1349 1343

3. The main algorithm

The main process is now described in Algorithm 2. It consist

of four phases, namely, initialization, selection, crossover and

mutation. These phases are described below in detail.

Algorithm 2. GCT-GOD(K, s, PopSize, NumberOfSol).

Require: (0 < s�K)

1: Select v (the GCT root dimension), the intervals

along each dimension and initialize ℘

2: for each data point xj do

3: st = Convert xj to a string in the feature space

4: GCTbuild(st,℘[st[v]])
5: end for

6: PreserveSet⇐∅/* PreserveSet Resultant chromosome set */

7: Initialize(P)

8: Compute Fitness (P)

9: while Terminating condition = False do

10: P ⇐ Selection(P)

11: P ⇐ Crossover(P)

12: P ⇐ Mutation(P)

13: Compute Fitness (P)

14: PreserveSet ⇐ Preserve(PreserveSet, P)

/*Best Cs with the smallest values of Sc among

PreserveSet and P are preserved */

15: end while

16: ϑ ⇐ Outlier(PreserveSet, NumberOf Sol) /* Return outlier */

17: return (ϑ)

3.1. Initialization

Random initialization is used in order to create chromosomes

for the initial population. In order to create only feasible chro-

mosomes, s different dimensions are selected randomly. Then

for each selected dimension i the corresponding position is

filled with a random value between 1 and �i . All the remaining

dimensions of the chromosome are filled with ∗. The two most

important tasks during initialization are the selection of �i , the

number of intervals along dimension i and s, the number of

projected dimensions. When the dimension is numeric, �i is

kept high enough so that points that are far apart along that

dimension are not placed in the same interval [12]. For non-

numeric attributes, �i equals the number of possible values on

that dimension. The value of s is so chosen that there exists

at least one point in a hypergrid. In this case, from Eq. (5),

the expected fraction should be greater than or equal to 1
N

. For

the determination of such a value of s, says1, a decreasing order

set (OK) of K �s are created. In other words

OK = {�a1
, �a2

, . . . �aK
}, s.t. �ai

��aj

for i < j and i, j = {1, 2, . . . , K},

then s1 = q where q ∈ {1, 2, . . . , K} s.t.

q
∏

i=1

�ai

�N �

q+1
∏

i=1

�ai
. (10)

It is to be noted that for any value of s�s1, the condition that

there exits at least one point in a hypergrid is satisfied.

The other consideration while choosing s is to make the

number of possible s-dimensional projections (KCs) large. Note

that KCs is maximum when s = K
2

. The value of s is then

chosen as s = min{s1,
K
2
} in order to ensure that a hypergrid in

the projected space contains at least one point.

Example: For a four-dimensional data set with 10,000 data

points let the �i values be 10, 15, 10 and 20 along the four

dimensions, respectively. Then the value of s1 is 3 since 20 ×
15 × 10�10, 000. So for this data set, s should be min{3, 4

2
},

which is 2.

Algorithm 3. Chromosome Initialization (P).

1: P = ∅
2: for (i = 1 to PopSize) do

3: Generate chromosome Ci of length K with all ‘∗’s.

4: Randomly select s positions a1, a2, . . . as /*

s = number of projected dimensions */

5: for (j = a1 to as) do

6: Ci[j] ⇐ Random(1, �j)

7: end for

8: if Ci /∈ P then

9: P ⇐ {Ci} ∪ P

10: else

11: Return to step 3

12: end if

13: end for

3.2. Compute fitness and selection

The fitness of the chromosome is computed in terms of Sc

as defined in Eq. (6). Several alternatives are possible for im-

plementing selection in a GA. The present algorithm uses rank

selection method [13]. This selection procedure has been of-

ten found to be more stable than the straight forward fitness

proportional methods which samples the set of solutions in pro-

portion to their actual fitness value [10]. The advantage of this

method is that it can prevent very fit individuals from gaining

dominance early at the expense of less fit ones.

3.3. Existing and proposed crossover operators

This is a key method in evolutionary algorithms where

information is exchanged between two solutions in order to

yield potentially better solutions. In crossover, performed

with a probability pc, two chromosomes (C1,C2) exchange

parts of their characteristics (genes) and generate two new

chromosomes (C′
1,C

′
2) that share characteristics of both the

parent chromosomes. Two crossover operations were used in

Ref. [10] namely the conventional single point crossover and

a crossover that employed a local search to test for all pos-

sible feasible combinations of the two parents, and selected

the one having the lowest sparsity value. The latter operator

is extremely time consuming, though it is shown to provide

better results than the first scheme [10], and is referred to as

‘optimized crossover’ in this article.

1344 S. Bandyopadhyay, S. Santra / Pattern Recognition 41 (2008) 1338–1349

A third crossover technique is proposed in this article that

is not as time consuming as the above mentioned optimized

crossover [24] and ensures that only feasible strings result from

the process as the optimized crossover also does. The new

crossover technique is shown in Algorithm 4. This is explained

here through an example. Consider the following two chro-

mosomes for a six-dimensional data with three-dimensional

projection.

Algorithm 4. Crossover(P).

Require (P �= ∅) ∧ (|P | is even)

1: P ′ ⇐ ∅
2: for (j = 1 to |P |/2) do

3: Select two chromosomes (Cj ,C
′
j) from P

4: X⇐ set of positions in which neither Cj nor Cj ′ is ‘∗’

5: Y ⇐ {(i, j)| for parents Cj and C
′
j ∧ ((Cj [i] = ‘ ∗ ’) ∧

(C′
j [i] �= ‘ ∗ ’) ∨ (Cj [i] �= ‘ ∗ ’) ∧ (C′

j [i] = ‘ ∗ ’))

6: Initialize string C with K ‘∗’s

7: for all (i, i ∈ X) do

8: C[i] ⇐ random(C1[i],C2[i]).
9: end for

10: Extend C by selecting
|Y |
2

positions randomly from set Y

and assign the value from the appropriate chromosome.

11: Generate a complementary string C
′ in which values

are derived from a different parent than C is derived.

12: Add solutions C and C
′ to set P ′.

13: end for

14: Replace P with P ′

15: return (P)

Position 1 2 3 4 5 6

C1 → 3 ∗ ∗ 5 ∗ 2

C2 → 2 5 ∗ 3 ∗ ∗

There are two positions (1 and 4) with no ‘∗’s. These are kept

in set X. There are two positions (2 and 6) with one ‘∗’ only;

these are kept in Y . Thus X = {1, 4} and Y = {2, 6}. Note that

|Y |=2(s−x′), when x′ =|X|. Initially C, a child chromosome,

is assigned values in the positions of set X randomly from one

of the two parent chromosome. So initially C may be 2 ∗ ∗5 ∗
∗; where the first position is taken from second chromosome

and fourth position is taken from the first chromosome. Then
|Y |
2

= s −x′ positions are randomly selected from set Y and the

values in these positions from the appropriate chromosome are

put in C. Or, C may be either2 ∗ ∗5 ∗ 2 or 25 ∗ 5 ∗ ∗ depending

on whether the second or the first position is selected from Y ,

respectively.

3.4. Mutation

In GAs, mutation is used to increase the diversity of the

population, and to recover lost information [13]. Here mutation

is similar to the one used in Ref. [10], expect that whenever a

‘∗’ has to be set to defined value, it is set to a randomly chosen

value in [1, �i].
Consider the chromosome C = 3 ∗ ∗5 ∗ 2 with �2 = 10.

Let the second position be selected for mutation that contains

a ‘∗’. It is then changed to a random value in Refs. [12,15],

say 4. It is then necessary to randomly select a position not

containing a ‘∗’. Let position 4 be selected. It is changed to ‘∗’.

If no other position is changed, then after mutation C becomes

34 ∗ ∗ ∗ 2.

3.5. Complexity of GCT-GOD

In GCT-GOD, the GCT is created only once from the data

set. The complexity of converting each point of the data

set to a string is O(N ∗ K), where N and K are the num-

bers of points and dimensions, respectively. The average

complexity for constructing the tree is O(N log(N)). The

procedure Initialize is also carried out only once with com-

plexity O(|P | × K × s), where |P | is the size of the pop-

ulation and s is the number of dimensions on which the

data are projected. As mentioned earlier, the average GCT

search complexity is O(log(min{ N
�i

,
∏K

j=1,j �=i �j })). Hence

for |P | chromosomes, the complexity for fitness computation

is O(|P | × log(min{ N
�i

,
∏K

j=1,j �=i �j })). The selection com-

plexity, that includes the complexity of ranking of the chromo-

some and selection of |P | chromosomes is O(|P | log(|P |)).
Crossover operator has the complexity of O(|P | × K). GCT-

GOD performs bit wise mutation so the complexity of this

operator is O(|P | × K). In Preserve procedure, the chromo-

somes are sorted in the current population (with complexity

O(|P | log |P |)) and the best chromosomes are selected by

merging the PreserveSet chromosomes and current population

chromosomes. The complexity for this procedure is there-

fore O(|P | log(|P |) + |PreserveSet |) ≈ O(|P | log(|P |)) as

|PreserveSet | < |P |. The outliers are determined by project-

ing the chromosomes in the PreserveSet of last generation.

It is carried out only once. The complexity of this procedure

is O(|PreserveSet | × log(min{ N
�i

,
∏K

j=1,j �=i �j })). So the

overall complexity of GCT-GOD is

O



N log N + gen ×







|P | × log



min







N

�i

,

K
∏

j=1,j �=i

�j



















 , (11)

where gen is the number of iterations of the genetic procedure.

4. Experimental study

This section presents an experimental evaluation of GCT-

GOD along with its comparison to other outlier detection

method. The performance is tested on both real and artificial

data sets. All the tests are performed on a Sun Solaris machine.

For the experiments, we choose the crossover probability as

0.9 while mutation probability is fixed to 0.005. Experiments

with the other values of the parameter were also conducted

with similar results The result presented here is the average

result of 10 runs. The population number and the number of

S. Bandyopadhyay, S. Santra / Pattern Recognition 41 (2008) 1338–1349 1345

Table 1

Comparative sensitivity and precision score for Dset1, Dset2 and Dset3

Method Data set Sensitivity Precision

GCT-GOD Dset1 0.73 0.49

Dset2 0.76 0.54

Dset3 0.68 0.45

GOD [10] Dset1 0.64 0.46

Dset2 0.21 0.14

Dset3 0.61 0.41

K.d tree [15] Dset1 0.41 0.35

Dset2 – –

Dset3 0.34 0.30

DB-outlier [16] Dset1 0.22 0.15

Dset2 – –

Dset3 0.16 0.09

generations are determined according to the size of the data

set [25].

4.1. Data sets

For the experiments, six data sets have been used. These

consist of three artificial and three real life data sets. Two

10-dimensional artificial data sets (Dset1 and Dset2) and one

50-dimensional artificial data set (Dset3) have been considered

for the experiments. Both Dset1 and Dset2 contain 10,100 in-

stances of which 10,000 instances belong to normal data and

100 instances are outliers. The outliers are manually injected

within the data sets, and they deviate from the normal data

in randomly selected two or three dimensions. Dset3 contains

50,100 instances with 100 outliers. As before, these 100 points

deviate from the normal data in randomly selected five or six

dimensions. Dset1 and Dset3 contain all numeric attributes

whereas Dset2 contains six non-numeric and four numeric at-

tributes. The data sets are available on request to the authors.

The three real-life data sets, Arrythmia, Adult and Mechan-

ical, are obtained from the UCI machine learning repository

(http://www.ics.uci.edu/∼mlearn/MLRepository.html). Arryth-

mia data set consists of 452 instances with 279 attributes of

which 206 are numeric. Mechanical data set contains 9254 data

points and 8 attributes with only one non-numeric attribute.

Adult data set contains 8 non-numeric attributes out of total 14

attributes with 32,561 data points.

4.2. Results on artificial data sets

Table 1 shows the results of GCT-GOD and GOD [10] when

they are executed for the same amount of time (800 s of Dset1

and Dset2, and 2000 s. for Dset3) for the artificial data sets

Dset1, Dset2 and Dset3. For the purpose of comparison with

other outlier detection methods, the K-d tree based approach

[15] and distance-based (DB) outlier detection [16] are also

considered. Their results are also included in the table. Note that

the execution times of these algorithms are not restricted; rather

they execute to termination. Three factors, namely sensitivity,

precision and specificity [9] are used to measure the quality of

the results. These are defined as

sensitivity =
TP

TP + FN
, precision =

TP

TP + FP
and

specificity = 1 − fp rate,

where TP, FN and FP indicate the true positive, false negative

and false positive calculated from the class confusion matrix

[9,17,18]. TP is the number of data points which are predicted

as outliers and they are indeed outliers. FP is the number of

data points which are incorrectly predicted as outliers when

they are in fact not outliers, fp rate is the false positive rate

which is the ratio of FP and total number of negative.

As can be seen from Table 1 both the K.d tree based and

distance based method, DB-outlier, yield poor scores, with the

latter performing the poorest. The DB-outlier method is com-

putationally expensive and is also found to be unable to pro-

vide reasonable result. Both DB-outlier and the K.d tree based

method attempt to detect the outliers in all the dimensions and

therefore end up with low sensitivity and precision values since

the outlier characteristics of the manually injected points are

evident in only few dimensions.

GCT-GOD and GOD, as expected, perform significantly bet-

ter than the other two methods. From Table 1, it can seen that

the performance of GCT-GOD, both in terms of the sensitivity

and precision values, are better than GOD for all the data sets.

The reason for this is that the number of iterations executed by

GCT-GOD is more than that of GOD though both are executed

for the same time (800 s of Dset1 and Dset2, and 2000 s for

Dset3); this is because of the fact that the GCT employed dur-

ing fitness evaluation (i.e., in the computation of N ′) in GCT-

GOD makes it computationally more efficient than GOD [10].

The results demonstrate that for Dset3 with 50,100 points

and 50 dimensions, GCT-GOD performs the best yielding rea-

sonable sensitivity and precision values. The performance of

GOD is poorer, while that of DB outlier detection method is

the worst. This is expected since for this 50-dimensional data

where the outlier characteristics are evident in only a few di-

mensions, the average effect of the non-deviating attribute con-

fuses the DB-outlier detection method considerably, resulting

in its poor performance. Since both GOD and GCT-GOD are

looking at lower dimensional projection of the 50-dimensional

data, they fare significantly better.

Fig. 3 shows the variation of the average percentage of out-

liers detected using GCT-GOD and GOD with time. As can be

found from the graph, this percentage is greater for GCT-GOD

than for the method in Ref. [10] at all time instances indicating

its efficiency and robustness.

It may be noted that the outlier detection problem can also

be modelled as a highly imbalanced classification problem, and

measures like receiver operating characteristic (ROC) curves

may be used to estimate the performance of a learning algorithm

[8]. An ROC curve is used to visualize the tradeoff between hit

ratio and false alarm rate. Fig. 4 shows the ROC curves of the

proposed method for Dset1, Dest2 and Dset3. The X-axis rep-

resents the specificity value where as the corresponding sensi-

tivity value is plotted along the Y axis for different generations.

1346 S. Bandyopadhyay, S. Santra / Pattern Recognition 41 (2008) 1338–1349

0 100 200 300 400 500 600 700 800 900

10

20

30

40

50

60

70

80

Time(s) ---->

a
v
e

g
a

re
 %

 o
f

o
u

tl
ie

rs
 d

e
te

c
te

d
 -

--
->

GCT-GOD with Dset1

GOD with Dset1

GCT-GOD with Dset2

GOD with Dset2

Fig. 3. Variation of the average percentage of outliers detected for Dset1 and

Dset2 using GCT-GOD and GOD.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Specificity ----->

S
e

n
s
it
iv

it
y
 -

--
--

>

Dset1

Dset2

Dset3

Fig. 4. ROC for three artificial datasets.

The area under the curve (AUC) calculated using the method

in Ref. [9] is found to be fair (.71) for Dset3 where as this is

good for Dset2 and Dset3 (.80 and .83, respectively).

4.3. Results on real-life data sets

The results on the real life data sets using both the proposed

and optimized crossover are shown in Table 2 for GOD and

GCT-GOD. The algorithms are executed for at most 1000 iter-

ations, unless most of the individuals of a population become

genetically similar [19,23]. As can be seen from Table 2, except

for Arrhythmia data set, GCT-GOD produces better quality re-

sult much faster. For Arrhythmia, GCT-GOD produces better

Table 2

Comparative result for the real life data sets

Data set Crossover Time required Average sparsity value

GOD GCT-GOD GOD GCT-GOD

Mechanical Optimized 845 231 −3.529 −3.541

Proposed 263 52 −3.52 −3.536

Arrhythmia Optimized 704 720 −1.21 −1.41

Proposed 270 277 −1.1 −1.2

Adult Optimized 2076 1667 −0.341 −8.890

Proposed – 542 – −8.862

0 100 200 300 400 500 600 700 800 900

-9

-8.5

-8

-7.5

-7

-6.5

-6

Time(s) ---->

A
v
e
ra

g
e
 S

p
a
rs

it
y
 v

a
lu

e
 -

--
->

Proposed crossover

Optimized crossover

Fig. 5. Plot of the average sparsity value against time for two different

crossover techniques in GCT-GOD on adult data set.

sparsity values by properly categorizing the non-numeric at-

tributes, but more computation time is needed as the number

of data points is too low and the number of attributes is rela-

tively too high. In this case most of the time the string value

corresponding to the parent node of GCT is ‘0’. So the search

is extended to the entire grid count tree in general, thereby

necessitating a higher computation time. As is evident from

Table 2, the results for Adult and Mechanical data sets, which

have a mixture of numeric and non-numeric attributes, GCT-

GOD shows superior performance with respect to both time

and the average sparsity values. In the Mechanical data set,

though the sparsity values are almost equal because only one

attribute is non-numeric, the time gain of GCT-GOD over GOD

is quite significant for both optimized and proposed crossovers.

For Adult data set, GOD is unable to provide reasonable result

either with optimized or proposed crossover. This is because of

the presence of non-numeric attributes and relatively large size

of the data.

Fig. 5 shows the variation of average sparsity value provided

by GCT-GOD with time for Adult data set using the proposed

and optimized crossovers. As can be seen from the figure, in the

initial stages the proposed crossover outperforms the optimized

S. Bandyopadhyay, S. Santra / Pattern Recognition 41 (2008) 1338–1349 1347

Table 3

Comparative result for the real life data sets

Data set Average time required (s)

GOD GCT-GOD Average sparsity No. of outliers

CDT15 32 27 −2.18 20

Yeast 1560 291 −1.23 30

CD27+ 3026 1083 −0.1416 50

CD27− − 2131 −0.16541 50

one at any given time. This is because the optimized crossover

technique uses a very expensive local search resulting in more

time per iteration. For a fixed time interval, GCT-GOD executes

more generations and produces better quality result. Only after

a long time (i.e., toward the end of the process), the optimized

crossover marginally outperforms the proposed one. This is also

evident from Table 2 where it can be seen that the proposed

crossover requires less time than the optimized one for both

GOD and GCT-GOD while providing equivalent or marginally

inferior result.

4.4. Results on gene expression data

Microarray data sets contain the expression values of thou-

sands of genes measured under different experimental condi-

tion/samples. Due to technological variation of sources not all

observations for genes are correct. These observation, which

are treated as deviations or outliers, should either be discarded

or mapped to a value within in the normal range [20]. Alter-

natively, outlier genes may bear important information, e.g.,

implicating the genes in certain diseases, that require further

analysis [21]. Therefore, outlier detection in gene expression

data is an important problem. In this section, we compare the

performance of GCT-GOD with GOD for the problem of out-

lier detection in gene expression data with respect to time re-

quirements. A brief discussion is also included on the outliers

detected by an earlier method [11] vis-á-vis the present one.

Four real life gene expression data sets have been used

for comparing the performance of GOD with that of GCT-

GOD using the proposed crossover. Among them, two lym-

phoma data (Blood B cell CD27) are obtained from the web-

site http://llmpp.nih.gov/lymphoma. Blood B cell CD27+ and

CD27− contain 9209 and 18,432 data points, respectively with

25 attributes. A gene expression data of Yeast (yeast.matrix)

is obtained from the website http://arep.med.harvard.edu. Yeast

expression data contains 2882 data points with 17 columns

(originally it contained 2884 data points; among them row 57

and 1265 are discarded as they contain a large number of miss-

ing values). Another gene expression data cell cycle CDT15 is

obtained from Stanford microarray data set. CDT15 contains

768 data points with 24 attributes.

The comparative results of GCT-GOD and the earlier GOD

[10] are shown in Table 3 for the four data sets. As can be seen

from the table, for the gene data CDT15, only a small time

gain is obtained by GCT-GOD. This is because the size of the

data set is rather small. For Yeast data, GCT-GOD produces

0 200 400 600 800 1000 1200 1400 1600

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Time(sec.) ----->
S

p
a
rs

it
y
 -

--
--

>

GCT-GOD

GOD

Fig. 6. Variation of the average sparsity values with time for two different

crossover techniques in GCT-GOD on CDT15 data set.

much higher time gain. This is expected as the size of these

data are quite large. The results for the two Blood B cell data

again highlight the advantage of incorporating GCT in GOD for

outlier detection when the data size is quite large. In particular

for CD27− (which is much larger with 18,832 data points)

GOD cannot provide any meaningful result. In contrast GCT-

GOD is able to detect the outliers for this data set reasonably

fast. This demonstrates the effectiveness of using the proposed

GCT while computing the fitness especially when the size of

the data set is large. It may be mentioned in this context that the

sparsity values of GCT-GOD and GOD is the same since their

computing process is the same, the difference being in terms

of the time gained when using the proposed GCT. Fig. 6 shows

variation of the average sparsity value with time as obtained by

GOD and GCT-GOD for the Yeast data. As is evident, GCT-

GOD attains a given sparsity much earlier as compared to GOD,

indicating the effectiveness of incorporating the proposed GCT.

The problem of outlier detection in gene expression was

tackled in Ref. [11] for the Yeast data, where outliers were

detected in dimensions 1, 2, 3 and 14. For this data using GCT-

GOD, outliers were also detected in dimensions 1, 2, 3 and 14.

Additionally we have also found outliers in dimension 8, 10,

12, 13 and 17. In the case of CD27+ data we not only found

outliers in dimension 1 and 3, as was obtained in Ref. [11], but

also obtained outliers in dimensions 11, 17 and 22. For CD27−,

the outliers were obtained when projected along dimensions

4, 13, 17, 22, 23 and 24, while for CDT15, the outliers were

obtained in dimensions 2,4,7,8,15 and 22.

5. Discussion and conclusions

The search capability of genetic algorithm is utilized in this

article to detect outliers in lower dimensional subspaces of a

1348 S. Bandyopadhyay, S. Santra / Pattern Recognition 41 (2008) 1338–1349

given data set. The proposed algorithm ranks the outliers and

declares the top n among them. The evolution mechanism, with

a new crossover operator, is adopted to avoid combinatorial

explosion that haunts a brute force algorithm. A grid count tree

(GCT) data structure is proposed for efficient computation of

the fitness value. With this data structure, the algorithm can

efficiently handle large amounts of data with modest number of

dimensions. Complexity analysis is also provided in this regard.

Results are demonstrated for artificial and real-life data sets

which vary widely over the number of data points and dimen-

sions. The artificial data sets are generated in such a way that the

outliers are known. Hence the results are compared with respect

to specificity and precision values for these data sets, where

the proposed method is found to significantly outperform the

other methods. Receiver operating characteristic (ROC) curves

are also reported for three data sets. Results for real-life data

sets shows the effectiveness of incorporating GCT in the ge-

netic outlier detection method, which results in significantly

faster execution of the algorithm. In a part of the investigation,

the proposed method is used for detecting outliers in several

gene expression data sets. The results once again highlight the

effectiveness of using GCT.

Note that while computing the sparsity value, a simple par-

titioning scheme is used for limiting the time requirement of

GCT-GOD. Several sophisticated techniques for detecting real

data distribution on a subspace for high dimensional problem

exists [6,7,14], which might be effective in improving the per-

formance of the proposed method. However our purpose is to

show that using GCT yields significant improvement in the tim-

ing requirement of the genetic scheme, e.g., GOD. It may be

possible to integrate GCT with other techniques like subspace

clustering to improve their efficiency. A comparative study of

the performance of the proposed approach with those of meth-

ods like subspace clustering needs to be performed.

As a part of future research, in addition to computing the

sparsity value, other methods of fitness evaluation need to be

considered. An exhaustive comparison of the genetic scheme

with other approaches like those based on different soft com-

puting tools as well as with subspace clustering methods should

be carried our. In this article, a tree structure is used to organize

the hypergrids so as to make the computation of N ′ in pro-

jected subspaces easier. In this regard, use of some other more

efficient data structure might be studied in future.

The main motivation of this paper is to improve on an earlier

genetic approach, GOD, developed in Ref. [10], by proposing

the GCT which significantly improves the time required for

computing N ′ in Eq. (6). Thus following their approach, the

data are assumed to be uniformly distributed. This assumption

may not hold in practice. Moreover, discarding some dimen-

sions, as followed in Ref. [10] without estimating the actual

distribution of the data along these dimensions may not be ef-

fective. (In spite of this, the reason that this approach appears

to work may be that it finally deals not with the exact spar-

sity values for the grids in different subspaces, but with those

having much less than the expected sparsity value.) There-

fore it is expected that incorporation of techniques for estima-

tion of the actual data distribution, e.g., [22], will improve the

accuracy of the method. Other techniques like principle com-

ponent analysis, clustering, etc., can also be used in this regard.

This constitutes an interesting area of future research.

Acknowledgment

The authors gratefully acknowledge the anonymous review-

ers whose comments helped in improving the quality of the

article.

References

[1] J. Han, M. Kamber, Data Mining: Concepts and Techniques, Morgan

Kaufmann, Los, Altos, CA, 2001.

[2] E.M. Knorr, R.T. Ng, Algorithms for mining distance-based outliers in

large datasets, in: Proceedings of VLDB Conference, 1998, pp. 392–403.

[3] A. Arning, R. Agrawal, P. Raghavan, A linear method for deviation

detection in large databases, in: Proceedings of Knowledge Discovery

and Data Mining, 1996, pp. 164–169.

[4] D. Hawkins, Identification of Outliers, Chapman & Hall, London, 1980.

[5] S. Ramaswamy, R. Rostogi, K. Shim, Efficient algorithms for mining

outliers from large data sets, in: Proceedings of ACM SIGMOD

Conference, 2000, pp. 427–438.

[6] L. Parsons, E. Haque, H. Liu, Subspace clustering for high dimensional

data: a review, SIGKDD Explor. 6 (1) (2004) 90–105.

[7] R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan, Automatic subspace

clustering of high dimensional data for data mining applications, in:

Proceeding ACM SIGMOD Conference, 1998, pp. 94–105.

[8] N.V. Chawla, N. Japkowicz, A. Kolcz, Editorial: special issue on learning

from imbalanced data sets, SIGKDD Explor. 6 (1) (2004) 1–6.

[9] T. Fawcett, ROC Graphs: Notes and Practical Considerations for

Researchers, Kluwer Academic Publishers, Dordrecht, 2004.

[10] C.C. Aggarwal, P.S. Yu, Outlier detection for high dimensional data, in:

Proceedings of ACM SIGMOD Conference, 2001, pp. 37–47.

[11] C. Yan, G. Chen, Y. Shen, Outlier analysis for gene expression data, J.

Comput. Sci. Technol. 19 (1) (2004) 13–21.

[12] F. Korn, T. Johnson, H. Jagadish, Range selectivity estimation for

continuous attributes, in: Proceedings of International Conference on

Scientific and Statistical Database Management, 1999, pp. 244–253.

[13] Z. Michalewicz, Genetic Algorithm + Data Structure = Evolution

Program, Springer, Berlin, 1996.

[14] D. Jiang, C. Tang, A. Zhang, Cluster analysis for gene expression data:

a survey, IEEE Trans. Knowl. Data Eng. 16 (11) (2004) 1370–1386.

[15] A. Chaudhary, A.S. Szalay, A.W. Moore, Very fast outlier detection in

large multidimensional data sets, in: Proceedings of Data Mining and

Knowledge Discovery, 2002.

[16] E.M. Knorr, R.T. Ng, Finding intensional knowledge of distance-based

outliers, in: Proceedings of VLDB Conference, 1999, pp. 211–222.

[17] A.A. Freitas, Data Mining and Knowledge Discovery with Evolutionary

Algorithms, Springer, Berlin, 2002.

[18] N. Ye, The Handbook of Data Mining, Lawrence Erlbaum, London,

2003.

[19] K. A. De Jong, Analysis of the behavior of a class of genetic adaptive

system, Ph.D. Thesis, Department of Computer and Communication

Sciences, University of Michigan, 1981.

[20] G. Parmigiani, E.S. Garett, R.A. Irizarry, S.L. Zeger, The Analysis of

Gene Expression Data, Springer, Berlin, 2003.

[21] J. Wittes, H.P. Friedman, Searching for evidence of altered gene

expression: a comment on statistical analysis of microarray data, J. Nat.

Cancer Inst. 91 (5) (1999) 400–401.

[22] W. Feller, An Introduction to Probability and Its Application, Wiley,

New York, 1968.

[23] A. Razzi, A convergence theorem for genetic algorithm, Metron 55

(1997) 69–83.

[24] C.C. Aggarwal, J.B. Orlin, R.P. Tai, Optimized crossover for the

independent set problem, Oper. Res. 45 (2) (1997) 226–234.

S. Bandyopadhyay, S. Santra / Pattern Recognition 41 (2008) 1338–1349 1349

[25] C. Gathercole, P. Ross, Small populations over many generations can

beat large populations over few generations in genetic programming, in:

Proceedings of GP-97, Stanford University, 1997, pp. 111–118.

[26] G. Kollios, D. Gunopulos, N. Koudas, S. Berchtold, Efficient biased

sampling for approximate clustering and outlier detection in large data

sets, IEEE Trans. Knowl. Data Eng. 15 (5) (2003) 1170–1187.

[27] M. M. Breunig, H. Kriegel, R.T. Ng, J. Sander, OPTICS-OF: identifying

local outliers, Principle Data Min. Knowl. Discovery (1999) 262–270.

[29] S. Guha, R. Rastogi, K. Shim, A robust clustering algorithm for

categorical attributes, in: Proceedings of International Conference on

Data Engineering, 1999, pp. 512–521.

[30] V. Barnet, T. Lewis, Outliers in Statistical Data, Wiley, New York, 1994.

[31] W. Jin, A.K.H. Tung, J. Han, Mining top-n outlier in large databases,

in: Proceedings of the ACM SIGKDD, 2001, pp. 293–298.

[32] Z. He, X. Xu, Shengchun Deng, Discovering cluster-based local outliers,

Pattern Recognition Lett. 24 (9–10) (2003) 1641–1650.

About the Author—SANGHAMITRA BANDYOPADHYAY (SM’05) did her Bachelors in Physics and Computer Science in 1988 and 1991, respectively.
Subsequently, she did her Masters in Computer Science from Indian Institute of Technology (IIT), Kharagpur in 1993 and Ph.D. in Computer Science from
Indian Statistical Institute, Calcutta in 1998. Currently she is an Associate Professor, Indian Statistical Institute, Kolkata, India. Dr. Bandyopadhyay is the
first recipient of Dr. Shanker Dayal Sharma Gold Medal and Institute Silver Medal for being adjudged the best all round post graduate performer in IIT,
Kharagpur in 1994. She has worked in Los Alamos National Laboratory, Los Alamos, USA in 1997, University of New South Wales, Sydney, Australia in
1999, Department of Computer Science and Engineering, University of Texas at Arlington, USA in 2001, University of Maryland, Baltimore County, USA
in 2004, Fraunhofer Institute AiS, St. Augustin, Germany in 2005 and Tsinghua University, China in 2006. She has delivered lectures at Imperial College,
London, UK, Monash University, Australia, University of Aizu, Japan, University of Nice, France, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia,
and also made academic visits to many more Institutes/Universities around the world. She is a co-author of 3 books and more than 100 research publications.
Dr. Bandyopadhyay received the Indian National Science Academy (INSA) and the Indian Science Congress Association (ISCA) Young Scientist Awards in
2000, as well as the Indian National Academy of Engineering (INAE) Young Engineers’ Award in 2002. She has guest edited several journal special issues
including IEEE Transactions on Systems, Man and Cybernetics, Part—B. Dr. Bandyopadhyay has been the Program Chair, Tutorial Chair, Associate Track
Chair and a Member of the program committee of many international conferences. Her research interests include pattern recognition, data mining, evolutionary
and soft computation, bioinformatics and parallel and distributed systems.

About the Author—SANTANU SANTRA received his Bachelor degree in Computer Science from Midnapore College, Vidyasagar University in 2002. He
did his Masters in Computer Science from Vidyasagar University in 2004. He is the recipient of University Gold Medal in 2002. At present he is a Project
Linked Personnel in Machine Intelligence Unit at Indian Statistical Institute, Kolkata. His research interests include pattern recognition, genetic algorithm, data
mining, bioinformatics and drug design.

	1 copy.pdf
	2.pdf

