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detection, robotics, autonomous navigation, dynamic scene

analysis, path detection, and others [1]–[4]. Moving object

detection in a video is the process of identifying different

object regions which are moving with respect to the back-

ground. More specifically, moving object detection in a video

is the process of identifying those objects in the video whose

movements will create a dynamic variation in the scene [2].

This can be achieved by two different ways: 1) motion detec-

tion/change detection, and 2) motion estimation [2]. Change

or motion detection is the process of identifying changed and

unchanged regions from the extracted video image frames

when the camera is fixed and the objects are moving. For

motion estimation, we compute the motion vectors to estimate

the positions of the moving objects from frame to frame. In

case of motion estimation, both the objects and the camera

may move [2]. After detecting the moving objects from the

image frames, it is required to track them. Tracking of a

moving object from a video sequence helps in finding the

velocity, acceleration, and position of it at different instants of

time. In visual surveillance, sometimes it may be required to

obtain the speed/velocity of a moving vehicle so as to keep

an eye on the movement of a particular vehicle [16].

Moving object detection by the process of motion/change

detection is again restricted by the requirement of a refer-

ence frame (where the object is not present). This can be

accomplished by the use of intensity difference based motion

detection algorithm [4] (where objects may move slow or fast).

In the absence of a reference frame, if there is a substantial

amount of movement of an object from one frame to another,

the object can be tracked exactly by generating a reference

frame [4]. However, for those cases where the reference frame

is not available and: 1) the objects in the scene do not have

a substantial amount of movement from frame to frame, or

2) the objects in a given scene move and stop for some time

and move further, identification of moving objects becomes

difficult with temporal segmentation [1]–[4].

A robust video image segmentation algorithm is essen-

tial to solve these problems. Watershed algorithm (a region

based approach) [1], [2], [4] is a famous approach in this

context. A computationally efficient watershed based spatial

segmentation approach was proposed by Salember et al. [5].

They had used spatial segmentation and temporal segmentation

to detect object boundaries. However, this method produced

oversegmented results and hence could not detect the objects

satisfactorily.

Different stochastic model based approaches [8] are

available in the literature and they provide better results. MRF

model, because of its attribute to model spatial dependency,

is proved to be a better model for image segmentation [10].

MRF models [9]–[23] and Hidden MRF models [27], [28]

have also been used for moving object detection for the

last two decades. Since in a video, spatial and temporal

coherence is there, MRF model is shown to be a better

resilience. An early work on MRF based object detection

scheme was proposed by Hinds et al. [11]. In order to obtain

a smooth transition of segmentation results from frame to

frame, temporal constraints was introduced. They had adhered

to a multi-resolution approach to reduce the computational

burden. A similar approach where MRF model had been used

to obtain a 3-D spatio-temporal segmentation was proposed

by Wu et al. [12]. In this paper, region growing approach

along with contour relaxation was applied to obtain accurate

boundaries of objects. In the approach proposed by Babacan

et al. [19], the video sequences were modeled as MRF,

a spatial direction MRF model was used for spatial

segmentation. Previous frame segmentation result acted as the

precauser for the next frame segmentation. This method could

overcome the fragmentation caused by the spatio-temporal

framework of Hinds et al. [11]. A similar approach where the

changes in temporal direction had been modeled by a mixture

of Gaussian MRFs was also proposed by Babacan et al.

[20] for detection of moving objects. In this case, the MAP

estimate was obtained by ICM. They proposed a scheme of

background modeling that exploited both spatial and temporal

dependency to improve the quality of segmentation of both

indoor and outdoor surveillance videos. However, all these

methods [19], [20] are constrained to assume the availability

of the reference frame. These methods fail to segment the

targets in the absence of reference frame and also fail when

temporal changes in between the frames are not substantial.

All the MRF model based approaches discussed so far

were used for video object detection along with spatial seg-

mentation, whereas combination of spatial segmentation along

with temporal segmentation proved to be a better choice of

detecting moving objects [13], [14], [17]. In these methods

MRFs have been used to model video image frames and

spatial segmentation problem has been formulated in spatio-

temporal framework. The spatio-temporal spatial segmenta-

tion thus obtained is combined with the results of temporal

segmentation to detect the moving objects. Kim et al. [13]

proposed a video object detection scheme where each video

sequence was modeled with a MRF, and the MAP estimate

was obtained using DGA. The unstable chromosomes found

during the evolution from frame to frame were regarded as

moving objects. A similar approach was also proposed by

Hwang et al. [14]. In this scheme, spatial segmentation was

obtained using MRF model and DGA was used to obtain the

MAP estimate. The temporal segmentation was obtained by

direct combination of VOP of the previous frame with the

CDM of the current frame. The objects from the previous

frame were assumed to be present in the current frame also

and lead it to an error in the detection of moving objects in the

current frame correctly. This gave an effect of silhouette. The

effect of silhouette is found to be less in a recently proposed

moving object detection technique of Kim et al. [17]. They had

extended the video segmentation scheme proposed by Hwang

et al. [14] where an evolutionary probability was considered

to update the crossover and mutation rate through evolution in

DGA. Thereafter for temporal segmentation of current frame,

the CDM was updated with the label information of the

current and the previous frames. Combination of both spatio-

temporal spatial segmentation and temporal segmentation was

performed to obtain the VOP, that gives an accurate shape of

moving objects, with less effect of silhouette.

A region labeling approach that uses MRF model with

motion estimation was used by Tsaig et al. [15] to obtain
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the VOPs. Here, to obtain an initial partition of the considered

frame, watershed algorithm was used. Recently a region based

object detection algorithm was proposed by Huang et al. [21]

to obtain a set of motion coherent regions. They had also

used MRFs for spatial segmentation and integrated the spatial

as well as temporal sequences to obtain the moving objects.

An adaptive thresholding based background and foreground

separation scheme for target detection was proposed by Kim

et al. [29]. The intensity distribution of the video sequence had

been modeled by Gaussian distribution and the parameters had

been estimated using an auto regressive model. The objects

and background were classified and thereafter the objects were

tracked by checking the movement of the centroids of the

identified objects. This yielded quite satisfactory results for

video surveillance.

In this paper, we propose a compound MRF model [25]

based scheme that detects moving objects with less compu-

tational burden. This method is able to track moving objects

in the absence of any reference frame, and when objects

are moving very slowly or do not have much movements.

The proposed scheme is a combination of both spatio-

temporal spatial segmentation and temporal segmentation.

Here, we obtain spatio-temporal spatial segmentation first

for a given initial frame by edgebased compound MRF

Model. Thereafter, for subsequent frames, segmentation is

obtained by adding some change information of these frames

with initial frame segmentation result. In the edgebased

compound MRF model [25] of segmentation, a compound

MRF model is used that takes care of the spatial distribution

of the current frame, temporal frames and edge maps in the

temporal direction. This problem is formulated using MAP

estimation principle. For the initial image frame, the MAP

estimate is obtained using a hybrid algorithm. For subsequent

frames, original pixels corresponding to the changed regions

(changes obtained between current and previously considered

frames) of the current frame are super-imposed on previously

available segmented frame to obtain a heuristic initialization.

Subsequent frames are modeled with compound MRFs and

the MAP estimate is obtained by ICM algorithm starting from

this initialization. This spatio-temporal spatial segmentation

combined with temporal segmentation yields the VOP and

hence can detect moving objects. For temporal segmentation,

we used a label difference CDM instead of a gray level

difference CDM. Moment of inertia based tracking strategy

is used to track moving objects from a given video sequence.

The results obtained by the proposed spatio-temporal spatial

segmentation method are compared with those of JSEG [24],

edgeless [25] and edgebased [25] methods of segmentation

and is found to be better. Computational time requirement

for the proposed method is less compared to edgeless and

edgebased approaches. Similarly the results obtained for VOP

by the label frame difference CDM is compared with those of

CDM with a gray level difference, and it is found that the VOP

with label frame difference CDM approach gives better results.

The organization of this paper is as follows. In Section II,

algorithm for detecting objects is narrated with the help of a

block diagram. In Section III, spatial segmentation method

using spatio-temporal framework is presented where initial

Fig. 1. Block diagram of the proposed scheme.

frame segmentation and change information based subsequent

frame segmentation schemes are described along with spatio-

temporal MRF based image modeling. In Section IV, temporal

segmentation based on CDM is elaborated. In Section V, VOP

generation and tracking process by centroid based method is

discussed. Section VI provides simulation results and analysis.

Our conclusion is presented in Section VII.

II. Proposed Algorithm for Object Detection

A block diagrammatic representation of the proposed

scheme is given in Fig. 1. Here we use two types of segmen-

tation schemes: one is a spatio-temporal spatial segmentation

and the other is a temporal segmentation. Spatial segmentation

helps in determining the boundary of the regions in the scene

accurately, and temporal segmentation helps in determining

the foreground and the background parts of it.

The spatial segmentation task is considered in spatio-

temporal framework. Here the attributes like color or gray

value in the spatial direction, color or gray value in the

temporal direction and edge map/line field both in spatial

and temporal directions are modeled with MRFs. RGB color

model is used. The edge map considered is obtained by

considering a 3×3 Laplacian window. In order to speed up the

algorithm, initial image frame is segmented with edgebased

spatio-temporal modeling and a hybrid algorithm (hybrid of

both SA [22] and ICM [23]) is used for MAP estimation. For

subsequent frames, a change information based algorithm is

proposed with less computational burden.

For temporal segmentation, a CDM is obtained by taking the

difference between two consecutive frames, where information

from the previous frame is fed back and the label of the

current spatial segmentation result is used to modify the

CDM. The modified CDM itself represents a binary mask of

foreground and background region where VOP is extracted by

superimposing the original pixels of the current frame on the

foreground part of the temporal segmentation.

A schematic representation of the whole process is shown

in Fig. 1. Here we assume the frame instants to be the same as

the time instants. Frame t represents the observed image frame
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at tth instant of time. We model the tth frame with its second

order neighbors both in spatial and temporal directions. For

temporal direction modeling, we have considered two temporal

frames at (t − 1)th and (t − 2)th instants. Similarly edge/line

field of tth frame is modeled with its neighbors in temporal

direction at (t − 1)th and (t − 2)th frames. The estimated

MAP of the MRF represents the spatial segmentation result

of the tth frame. The whole process is performed in spatio-

temporal framework, and hence is termed as spatio-temporal

spatial segmentation. For temporal segmentation we have used

a motion detection scheme. We obtain a difference image of

two consecutive frames, i.e., the tth and the (t−1)th frame and

is thresholded by a suitable threshold value. The thresholded

image itself represents the amount of movement performed by

objects in the scene from the (t−1)th instant to the tth instant

of time. The spatial segmentation result of the tth frame, the

(t − 1)th frame, along with VOP of the (t − 1)th frame were

used to perform a temporal segmentation of the tth frame.

The pixels corresponding to the object regions of the temporal

segmented output are replaced by the original pixels of the tth

frame to obtain the VOP of the tth frame.

We have considered a moment of inertia based scheme to

find out the centroid of a detected object. Moving objects are

tracked by calculating the centroid of the detected objects from

frame to frame.

III. Spatio-Temporal Spatial Segmentation

In the spatio-temporal spatial segmentation scheme, we

have modeled each video image frame with compound MRF

model and the segmentation problem is solved using the

MAP estimation principle. For initial frame segmentation, a

hybrid algorithm is proposed to obtain the MAP estimate. For

segmentation of other frames, changes between the frames is

imposed on the previously available segmented frame so as

to have an initialization to find the segmentation result of

other frames. The total scheme is described in detail in the

subsequent sections.

A. MRF Based Spatio-Temporal Image Modeling

Here it is assumed that the observed video sequence y is

a 3-D volume consisting of spatio-temporal image frames.

yt represents a video image frame at time t and hence is a

spatial entity. Each pixel in yt is a site s denoted by yst . Let

Yt represent a random field and yt be a realization of it at

time t. Thus, yst denotes a spatio-temporal co-ordinate of the

grid (s, t). Let x denote the segmentation of video sequence

y and xt denote the segmented version of yt . Let us assume

that Xt represents the MRF from which xt is a realization.

Similarly, pixels in the temporal direction are also modeled as

MRFs. We have considered the second order MRF modeling

both in spatial and in temporal directions. In order to preserve

the edge features, another MRF model is considered with the

linefield of the current frame xt and the line fields of xt−1

and xt−2. It is known that if Xt is a MRF then it satisfies the

Markovianity property in spatial direction, that is

P(Xst = xst | Xqt = xqt, ∀qεS, s �= q) =

P(Xst = xst | Xqt = xqt, (q, t)εηs,t)

where ηs,t denotes the neighborhood of (s, t) and S denotes

the spatial lattice of Xt . For temporal MRF, the following

Markovianity property is also satisfied:

P(Xst = xst | Xpq = xpq, q �= t, p �= s, ∀(s, t)εV ) =

P(Xst = xst | Xpq = xpq, (p, q)εηs,t).

Here V denotes the 3-D volume of the video sequence. In

spatial domain, Xt represents the MRF model of xt and hence

the prior probability can be expressed as Gibb’s distribution

with P(Xt) = 1
z
e

−U(Xt )

T , where z is the partition function

expressed as z =
∑

xt
e

−U(xt )

T , U(Xt) is the energy function

(a function of clique potentials). We have considered the

following clique potential functions for the present work:

Vsc(xt) =

{

+α, if xst �= xpt and (s, t), (p, t)εS

−α, if xst = xpt and (s, t), (p, t)εS.

Analogously in the temporal direction

Vtec(xt) =

{

+β, if xst �= xqt and (s, t), (q, t − 1)εS

−β, if xst = xqt and (s, t), (q, t − 1)εS

and for the edgemap in the temporal direction as

Vteec(xt) =

{

+γ, if xst �= xet and (s, t), (e, t − 1)εS

−γ, if xst = xet and (s, t), (e, t − 1)εS.

Here α, β and γ are the parameters associated with the

clique potential function. These are +ve constants and are

determined on a trial and error basis.

In image modeling the clique potential function is the

combination of the above three terms. Hence, the energy

function is of the following form:

U(Xt) =
∑

c∈C

Vsc(xt) +
∑

c∈C

Vtec(xt) +
∑

c∈C

Vteec(xt). (1)

Fig. 2 shows a diagrammatic representation of a MRF

modeling. Fig. 2(a) shows that each site s at location (i, j)

is a MRF modeled with its neighbors in spatial direction.

Fig. 2(b) shows the diagram for another MRF model in

temporal direction. Here each site s at location (i, j) in the tth

frame is modeled with neighbors of the corresponding pixels

in the temporal direction, i.e., in the (t − 1)th and (t − 2)th

frames. Similarly a MRF model that takes care of edge features

is considered by modeling the line field of the tth frame with

the neighbors of the corresponding pixels in the (t − 1)th and

(t − 2)th frames. The MRF model diagram for line field is

provided in Fig. 2(c).

B. MAP Estimation Based Framework for Initial Frame

Segmentation

The observed image sequence y is assumed to be a degraded

version of the actual image sequence x. For example at a given

time t, the observed frame yt is considered as a degraded

version of the true label xt . The degradation process is assumed

to be Gaussian. Thus, the label field Xt can be estimated from

the observed random field Yt . The label field is estimated by

maximizing the following posterior probability distribution:

x̂t = arg maxxt
P(Xt = xt|Yt = yt)

= arg maxxt

P(Yt=yt |Xt=xt )P(Xt=xt )

P(Yt=yt )
(2)
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Fig. 2. (a) Neighborhood of a site for MRF modeling in the spatial direction.
(b) MRF modeling taking two previous frames in the temporal direction.
(c) MRF with two additional frames with line fields to take care of edge
features.

where x̂t denotes the estimated labels. The prior probability

P(Yt = yt) is constant and hence (2) reduces to

x̂t = arg max
xt

P(Yt = yt|Xt = xt, θ)P(Xt = xt, θ) (3)

where θ is the parameter vector associated with the clique

potential function of xt . The prior probability P(Xt = xt) can

be expressed as

P(Xt = xt) = e−U(xt )

= e
−
{
∑

c∈C
Vsc(xt )+

∑

c∈C
Vtec(xt )+

∑

c∈C
Vteec(xt )

}

. (4)

In (4), Vsc(xt) is the clique potential function in spatial

domain at time t, Vtec(xt) denotes the clique potential in

temporal domain, and Vteec(xt) denotes the clique potential in

temporal domain with edge features.

Assuming decorrelation of the three RGB planes for the

color image and the variance to be the same among each plane,

the likelihood function P(Yt = yt|Xt = xt) can be expressed as

P(N = yt − xt|Xt, θ) =
1

√

(2π)3σ3
e
− 1

2σ2 (yt−xt )
2

. (5)

In (5), variance σ2 corresponds to the Gaussian degradation.

Here n is a realization of the Gaussian noise N(µ, σ2).

Using (4), (5) and the underlying assumption of the degra-

dation process, (3) reduces to

x̂t = arg min
xt

[

‖ yt − xt ‖2

2σ2

]

+

[

∑

cεC

Vsc(xt) + Vtec(xt) + Vteec(xt)

]

. (6)

x̂t is the MAP estimate. The complete derivation is provided

in Appendix A.

1) Hybrid Algorithm for MAP Estimation of Initial Frame:

There are two kinds of relaxation schemes. This includes

relaxation labeling and probabilistic relaxation. Relaxation

labeling is very popular in MRF-MAP estimation and pop-

ularly referred to as stochastic relaxation [9]. In this re-

gards SA, a generic probabilistic meta-heuristic optimization

scheme proposed by Kirkpatrick et al. [22], is found to have

a good approximation of the global optimum of a given

function. Such an optimization scheme is inspired from the

concept of annealing in metallurgy, a technique involving

simultaneous heating and controlled cooling of a material,

so that the particles of the material arrange themselves in

the lower ground states of the corresponding lattice. In

each step of SA, the algorithm replaces the current solution

by a random “nearby” solution, chosen with a probability

that depends on the difference between the corresponding

functional values and the global parameter T (called the

temperature), that is gradually decreased during the process.

Initially, T is set to a high value, and in each step of

processing it is decreased in a controlled manner. Hence,

the computational time taken by SA is expected to be high.

SA assumes that the cooling rate is low enough for the

probability distribution of the current state to be near ther-

modynamic equilibrium at all times. This probability can be

given as

Pr(U = u) =
1

Z
exp(−

U

kBT
) (7)

where Z is the partition function, kB is the Boltzman con-

stant and U is the functional values or energy value. As

reported by Li [18], the SA algorithm is a meta-heuristic

search scheme, although optimize through the neighbor-

hood searching approach, it can even move through the

neighbors that are worse than the current solutions. SA

is thus expected not to stop at a local optimum. In the-

ory, if SA can run for an infinite amount of time, the

global optimum could be found. It is also reported [18]

that for any given finite problem, the SA terminates with

the global optimal solution as the annealing schedule is

extended.

ICM [23] uses a deterministic strategy to find the local

minimum. It starts with an estimate of the labeling, and for

each pixel, the label that gives a decrease in energy value

is chosen for next iteration of processing. This process is

repeated until convergence, which is guaranteed to occur, and

in practice is very rapid. However, the results are extremely

sensitive to the initial estimate, as it may stuck at local minima.

The ICM algorithm is a deterministic scheme and starts with

an initial label. In ICM algorithm for each pixel it searches for

a neighborhood point that gives a decrease in energy function.

Hence ICM may be viewed as a local search algorithm and the

result provided by ICM algorithm may stuck to local minima.

It is faster than SA.

We have proposed a hybrid algorithm (hybridization of both

SA and ICM algorithms) for MAP estimation of the initial

frame. The proposed algorithm works as follows: initially a

few iterations of SA algorithm is executed to achieve a near

optimal solution. Thereafter, for quick convergence, a local

convergence based strategy, ICM, is run to converge to the

nearest optimal solution.

The steps of the proposed algorithm are enumerated as

below.

1) Initialize the temperature T (t) = T0.

2) Compute the energy U of the configuration.

3) Perturb the system slightly with suitable Gaussian dis-

turbance.

4) Compute the new energy U
′

of the perturbed system and

evaluate the change in energy 
U = U
′

− U.
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5) If (
U < 0), accept the perturbed system as a new

configuration, else accept the perturbed system as a new

configuration with probability e
−( 
U

T (t)
)
.

6) Decrease the temperature T (t + 1) = c ∗ T (t), where c is

the cooling constant (0 < c < 1).

7) Repeat Steps 2–7 for some prespecified number of

epochs.

8) Compute the energy U of the configuration.

9) Perturb the system slightly with suitable Gaussian dis-

turbance.

10) Compute the new energy U
′

of the perturbed system and

evaluate the change in energy 
U = U
′

− U.

11) If (
U < 0), accept the perturbed system as a new con-

figuration, otherwise retain the original configuration.

12) Repeat Steps 8–12, till the stopping criterion �U < ε

(a predefined positive constant) is met.

C. Change Information Based Segmentation Scheme for Sub-

sequent Frames

Spatio-temporal spatial segmentation in MRF-MAP frame-

work is computation intensive due to random initialization. In

order to reduce this burden, we propose a change information

based heuristic initialization technique. This requires a pre-

viously segmented frame which is used in combination with

the change information between the current and the previously

considered frames to generate an initialization for processing

the current frame. The change information is obtained by

computing absolute values of the intensity difference between

the current and the previously considered frames followed

by a thresholding approach. The pixel values of the changed

region of the current frame are superimposed on the previously

available segmented frame to get an initialization.

Let yt denote a frame at time t, whose spatio-temporal

spatial segmentation xt is available with us. Now considering

yt+d as a frame at an instant (t + d), x(t+d)i represents its

initialization obtained by this scheme. xt+d represents its final

spatio-temporal spatial segmentation. x(t+d)i can be obtained

as follows.

1) Obtain the changed region corresponding to the frame

yt+d by taking a difference of the gray values of the

frames yt+d and yt followed by thresholding, and the

changes thus obtained is denoted by y(t+d)|yt+d−yt |
.

2) The pixels corresponding to these changed regions in

the tth frame segmentation result xt are initialized as

xtt = xt − xt|yt+d−yt |
. (8)

These regions in the xtt are replaced by the original gray

values of yt+d for initialization of the (t + d)th frame as

x(t+d)i = xtt + y(t+d)|yt+d−yt |
(9)

y(t+d)|yt+d−yt |
represents the pixels of the (t + d)th frame

where changes took place from the previous frame.

x(t+d)i serves as the initialization for spatio-temporal

spatial segmentation of the (t + d)th frame. ICM is run

on the (t+d)th frame starting from x(t+d)i to obtain x(t+d).

To illustrate the proposed technique, let us consider an

example of Bird video. The original 27th and 31st frames are

Fig. 3. Bird video. (a) Original frame 27. (b) Original frame 31.
(c) Edgebased segmentation result of 27th frame. (d) Difference image ob-
tained by pixel by pixel comparison of 27th and 31st frames. (e) Thresholded
difference image for 31st frame. (f) Initialization for 31st frame. (g) Final
segmentation result of 31st frame.

shown in Fig. 3(a) and (b). Segmentation result for the 27th

frame, x27 using edgebased compound MRF model and hybrid

algorithm is displayed in Fig. 3(c). By taking the absolute

value of pixel by pixel intensity difference of 27th and 31st

frames we obtain the difference image as shown in Fig. 3(d).

The corresponding thresholded image is shown in Fig. 3(e).

The pixel values of the 31st frame of the changed region

is superimposed on the 27th segmented frame, i.e., x27 to

generate x31i [shown in Fig. 3(f)]. ICM is run on the 31st

frame starting from x31i to obtain the segmentation result for

the 31st frame, i.e., x31 [as shown in Fig. 3(g)].

For MRF based segmentation, the set of all possible image

configurations is given by D = 2b×M×N , where b is the number

of bits used to represent the gray value of each pixel in the

image frame and M ×N is the dimension of the image frame.

2b represents the admissible pixel values and D represents all

admissible realization of images in the M×N dimensional real

space. The x-axis of the plot in Fig. 4 represents the number of

possible image frames, that ranges from 0 to D. xt represents

one such realized image frame form this range. Searching such

a huge space every time for each frame requires high computa-

tional time. (Note that the contents of the scene is not changing

much from one frame to another.) To minimize this burden,

we have considered the above approach where an initialization

x(t+d)i is expected to lie near the optimum point e as shown

in Fig. 4. Now considering a local (optimum) fast searching

criterion, such as ICM, we can detect the optimum point o.

IV. Temporal Segmentation

Generally temporal segmentation is performed to classify

the foreground and the background in a video image frame.

In temporal segmentation, a CDM is obtained and this CDM

serves as a precursor for detection of the foreground as well

as the background. The general procedure for obtaining the

CDM is by taking a difference between the gray value of

the current and the previously considered frame followed by

a thresholding algorithm. In order to detect moving objects
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Fig. 4. Energy curve for each realized image through MRF.

in the absence of reference frame, some information from the

previous frame is used to update the current CDM. As opposed

to the conventional gray value difference CDM, we have

considered a ‘label frame’ difference CDM, where silhouette

effect is less. The label frame difference CDM is obtained by

taking a difference of xt and xt+d .

The results thus obtained by a CDM with difference in label

values of two frames are compared with those of the CDM

constructed with a gray value difference of two frames. We

have adopted a popular global thresholding method such as

Otsu’s method [30] for thresholding the CDM. The results

thus obtained are verified and compensated by considering

the information of the pixels belonging to the objects in the

previous frame, to improve the segmentation result of the

moving objects. This is represented as

R =
{

ri,j|0 ≤ i ≤ (M − 1), 0 ≤ j ≤ (N − 1)
}

(10)

where R is a matrix having the same size of the frame. ri,j

is the value of the VOP at location (i, j), where (i, j) location

represents the ith row and the jth column (detail explanation

is available in Appendix B). If a pixel is found to have ri,j = 1,

then it belongs to a moving object in the previous frame;

otherwise it belongs to the background in the previous frame.

Based on this information, CDM is modified as follows: if

it belongs to a moving object in the previous frame and

its label obtained by spatio-temporal spatial segmentation is

the same as that of one of the corresponding pixels in the

previous frame, then it is marked as a foreground area in the

current frame else as the background. The modified CDM thus

represents the final temporal segmentation.

V. VOP Generation and Tracking

After obtaining a temporal segmentation of a frame at time

t, we get a binary output with objects as one class (denoted

by FMt) and the background as other class (denoted as BMt).

The regions forming the foreground part in the temporal

segmentation is identified as moving object regions, and the

pixels corresponding to the FMt part of the original frame

yt form the VOP. After obtaining the VOP from the different

image frames we can track the moving objects.

After obtaining a temporal segmentation, a centroid based

tracking is performed to track moving objects from the

considered video image sequence. The centroid (ûnc
, v̂nc

) of

the moving object is computed as

ûnc
=

∑

i uni
c(i)

∑

iεT c(i)
(11)

v̂nc
=

∑

i vni
c(i)

∑

iεT c(i)
(12)

where (uni, vni) represents the co-ordinate of a pixel in the

temporal segmentation and the value of c(i) is considered as

c(i) =

{

1, if pixel i is identified as an object pixel

0, if pixel i is identified as a background pixel.

By calculating the (ûnc
, v̂nc

) for different frames, the move-

ment of an object can be tracked.

VI. Experimental Result and Analysis

We have considered two types of video sequences (one

reference video sequence and one real life video sequence) as

shown in Figs. 5 and 6 to test the usefulness of the proposed

approach. Since changes in between the consecutive frames

are very less, we have considered a few randomly sampled

frames within a particular interval of time where a reasonable

amount of change is expected to have occurred. For the given

video sequences the spatial segmentation of the initial frame

has been obtained by the proposed edgebased compound MRF

model followed by the hybrid algorithm for MAP estimation.

For the subsequent frames the spatial segmentation is obtained

using the change information based initialization scheme. The

label frame difference based temporal segmentation and the

spatio-temporal spatial segmentation is combined to obtain

the VOP. Thereafter tracking is carried out. In order to

validate the scheme, we have compared the spatio-temporal

spatial segmentation results obtained by the proposed scheme

with those of JSEG [24], edgeless [25] and edgebased [25]

methods of segmentation and is found to be better in terms

of numbers of misclassified pixels. The computational time

requirement for the proposed method is also found to be

less as compared to edgeless and edgebased approaches of

segmentation. Similarly the results obtained for VOP by the

label frame difference CDM is compared with those of CDM

with a gray level difference, and it is found that the VOP

with label frame difference CDM approach gives better results

opposed to gray level difference CDM.

The first video considered is the Akiyo video sequence.

Fig. 5(a) shows the original image frames of this video

sequence. Corresponding manually constructed ground truth

images are shown in Fig. 5(b). The initial frame of this video

is segmented by modeling it with the proposed edgebased

compound MRF model followed by the hybrid algorithm

for MAP estimation. The proposed change information based

subsequent frame segmentation scheme is used to segment the

different frames of this sequence. Fig. 5(c) shows the spatial

segmentation of these image frames using the proposed change

information scheme. The MRF model parameters chosen for

this video are α = 0.009, β = 0.008, γ = 0.007 and σ = 2.0.

Segmentation results of these frames using edgeless approach

are shown in Fig. 5(d). It is observed from these figures that the
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racks behind Akiyo are not properly segmented. The distinction

in the shapes of the racks are not proper. Similarly, the face

of Akiyo is not properly segmented (e.g., lip, eye). The blazer

crest and the shirt like portion are almost lost. Segmentation

result of JSEG approach are shown in Fig. 5(e), which also

fails to segment the frames properly and an over-segmented

result in the portions such as face, racks, blazer, shirt and

others are obtained. Except the display portion all portions in

the background are merged into a single class. The proposed

approach however is able to segment the face, lip, eye, and

others properly. Similarly, the distinction in the shapes of the

racks with minute edge details are properly identified by the

proposed change information based segmentation scheme.

The temporal segmentation results of these frames, obtained

using the CDM generated with a difference in label frames

instead of the CDM generated with a difference in original

frames are shown in Fig. 5(f) and the corresponding VOPs

are shown in Fig. 5(g). It is observed from these VOPs that

the object (i.e., Akiyo) in different frames has been detected

properly. The corresponding temporal segmentation results

using a difference in original frame based CDM are shown

in Fig. 5(i). It is observed from these results that there are

some patches near the hair portions of Akiyo which led to

the misclassification in VOPs [shown in Fig. 5(j)]. Thus, we

notice that temporal segmentation obtained using the CDM

generated with a label frame difference yields better VOPs

than that of using a gray value difference CDM. Result of

tracking is shown in Fig. 5(h).

The segmentation result using MRF modeling with edgeless

approach is shown in Fig. 5(d). The results obtained by

JSEG [24] method are shown in Fig. 5(e). The number of

misclassified pixels is computed by comparing the result thus

obtained with the ground truth, and is shown in Table I.

It can be observed that the proposed method incurs less

misclassification than that of using JSEG method and the

edgeless approach of segmentation. But the results are quite

comparable with edgebased approach of spatial segmentation.

In order to test the robustness of the proposed algorithm,

we also tested it on one real life video sequence i.e., (Fig. 6)

with uncontrolled environmental conditions. Fig. 6 represents

the VOP generated for Rahul video sequence. This video was

captured with a low resolution video camera at the National

Institute of Technology, Rourkela, India. Fig. 6(a) represents

the original image frames of this video sequence. Correspond-

ing ground truth image frames are shown in Fig. 6(b). Fig. 6(c)

shows the spatio-temporal spatial segmentation result of these

frames by the proposed spatial segmentation scheme. The

MRF model parameters chosen for this video are α = 0.009,

β = 0.005, γ = 0.001 and σ = 5.0. Spatial segmentation

results of those frames using edgeless and JSEG approaches

of segmentation are shown in Fig. 6(d) and (e), respectively.

It is observed from the results that these methods provide over

segmented results in the face and hand regions of Rahul. The

JSEG scheme segments the lower parts of the hand of Rahul

in the background class. Similarly, some portions like collar of

Rahul is merged with face regions of Rahul. Fig. 6(g) shows

the generated VOPs of Rahul using label frame difference

CDM. The results for VOPs of Rahul video sequence using

Fig. 5. VOP generation for Akiyo video sequence using change informa-
tion based scheme (for frames 75th, 95th, 115th, and 135th). (a) Origi-
nal frames. (b) Ground truth of original frames. (c) Segmentation using
proposed scheme. (d) Segmentation using edgeless scheme. (e) Segmen-
tation using JSEG scheme. (f) Temporal segmentation using label frame
CDM. (g) VOP generated by temporal segmentation result (f). (h) Centroid
based tracking of VOPs as obtained in (g). (i) Temporal segmentation
using original frame CDM. (j) VOP generated by temporal segmentation
result (i).

gray level difference based CDM are shown in Fig. 6(j). It is

observed that the effect of silhouette is quite less in Fig. 6(g)

than that in Fig. 6(j). Result of tracking is shown in Fig. 6(h).

We have used a single set of SA parameters for all the video

sequence. Those are initial temperature (T0) = 0.38, cooling

constant (c) = 0.9992, perturbation variance as 1.

A. Computational Time Requirement

All the programs were implemented in a Pentium 4(D),

3 GHz, L2 cache 4 MB, 1 GB RAM, 667 FSB PC with

Fedora-Core operating system and C programming language.

The image sequence considered are of size 176 × 144.
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Fig. 6. VOP generation for Rahul video using change information based
scheme (for frames 11th, 16th, 21st, and 26th). (a) Original frames.
(b) Ground truth of original frames. (c) Segmentation using proposed scheme.
(d) Segmentation using edgeless scheme. (e) Segmentation using JSEG
scheme. (f) Temporal segmentation using label frame CDM. (g) VOP gener-
ated by temporal segmentation result (f). (h) Centroid based tracking of VOPs
as obtained in (g). (i) Temporal segmentation using original frame CDM.
(j) VOP generated by temporal segmentation result (i).

The time required by the proposed scheme, to detect the

moving objects from the considered video sequences, are

provided in Table II. We have considered a few sample frames

of a particular video sequence and tested our algorithm on

it and the average time taken is assumed as t1. We tested

edgebased and edgeless approaches of segmentation on the

same set of image frames and the average time taken by each

of them is denoted as t2; and have computed the Gain by

using the following formula:

Gain =
t2

t1
.

We have computed the Gain for the two video examples. For

Akiyo sequence it comes 10.25 with edgebased and 13.4 with

edgeless approach. Similarly, for Rahul video sequence it is

8.5 with edgebased and 10 with edgeless approach.

TABLE I

Number of Misclassified Pixels

Video FrameNo. Edgeless Edgebased Proposed JSEG

75 388 88 88 4718

Akiyo 95 312 75 75 1238

115 259 106 115 1262

135 335 91 115 1374

11 100 51 51 300

Rahul 15 115 93 85 310

16 102 68 72 380

21 112 63 66 308

TABLE II

Time (in Second) Required for Execution of the Algorithms Per

Frame

Video Frame No. Edgeless Edgebased Proposed

95 108 82 8

Akiyo 115 108 82 8

135 108 82 8

16 70 57 7

Rahul 21 70 57 7

26 70 57 7

From the considered video examples we observed that using

change information based spatio-temporal approach a better

accuracy of segmentation is obtained with a faster execution

time. Similarly, using a label frame difference CDM instead

of gray level difference CDM effect of silhouette is found

to be reduced. Thus the change information based scheme

has much less computational burden and gives more accuracy,

and hence is more viable for real time implementation. Since

JSEG approach does yield an over-segmented result, which

is unacceptable, we have not compared the execution time of

JSEG scheme with the proposed approach.

VII. Conclusion and Discussion

In this article, a change information based moving object

detection scheme is proposed. The spatio-temporal spatial

segmentation result of the initial frame is obtained by edge-

based MRF modeling and a hybrid MAP estimation algorithm

(hybrid of SA and ICM). The segmentation result of the initial

frame together with some change information from other

frames is used to generate an initialization for segmentation

of other frames. Then, an ICM algorithm is used on that

frame starting from the obtained initialization for segmenta-

tion. It is found that the proposed approach produces better

segmentation results compared to those of edgeless and JSEG

segmentation schemes and comparable results with edgebased

approach. The proposed scheme gives better accuracy and is

approximately 13 times faster compared to the considered

MRF based segmentation schemes for a number of video

sequences. The MRF model parameters are chosen on a trial

and error basis. For temporal segmentation a CDM based

on a difference of labels of two frames is considered. This

reduces the effect of silhouette on the generated VOP. A

centroid based tracking process is considered to track the

objects.
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Our future work will focus on estimation of MRF model

parameters and VOP generation of the initial frame. We are

also looking at a related problems with moving camera where

existing approach does not produce good results.

APPENDICES

A. Appendix

Here image segmentation problem is considered to be a

process of determining a realization xt that has given rise to the

actual image frame yt . The realization xt cannot be obtained

deterministically from yt . Hence, it requires to estimate x̂t

from yt . One way to estimate x̂t is based on the statistical

MAP criterion. The objective of statistical MAP estimation

scheme is to have a rule, which yields x̂t that maximizes the

a posteriori probability, that is

x̂t = arg max
xt

P(Xt = xt|Yt = yt) (13)

where x̂t denotes the estimated labels. Since xt is unknown, it

is difficult to evaluate (13). Using Bayes’ theorem, (13) can

be written as

x̂t = arg max
xt

P(Yt = yt|Xt = xt)P(Xt = xt)

P(Yt = yt)
. (14)

Since yt is known, the prior probability P(Yt = yt) is constant.

Hence (14) reduces to

x̂t = arg max
xt

P(Yt = yt|Xt = xt, θ)P(Xt = xt, θ) (15)

where θ is the parameter vector associated with the clique

potential function of xt . According to Hammerseley Clifford

theorem [18], the prior probability P(Xt = xt, θ) follows

Gibb’s distribution and is of the following form:

P(X = x) = e−U(x,θ)

= e

[

−
∑

cεC
[Vsc(x)+Vtec(x)+Vteec(x)]

]

. (16)

In (16), Vsc(xt) is the clique potential function in spatial

domain at time t, Vtec(xt) denotes the clique potential in

temporal domain, and Vteec(xt) denotes the clique potential

in temporal domain with edge features. We have used this

additional feature in the temporal direction and the whole

model is referred to as edgebased model. The corresponding

edgeless model is expressed as

P(Xt = xt) = e−U(xt ,θ) = e

[

−
∑

cεC
[Vsc(xt )+Vtec(xt )]

]

. (17)

The likelihood function P(Yt = yt|Xt = xt) of (15) can be

expressed as

P(Yt = yt|Xt = xt) = P(yt = xt + n|Xt =

xt, θ) = P(N = yt − xt|Xt = xt, θ).

Here n is a realization of the Gaussian degradation process

N(µ, σ). Thus, P(Yt = yt|Xt = xt) can be expressed as

P(N = yt − xt|Xt, θ)

=
1

√

(2π)f det [k]
e− 1

2
(yt−xt )

T k−1(yt−xt ) (18)

Fig. 7. Blockdiagram of temporal segmentation scheme.

where k is the covariance matrix, det[k] represents the deter-

minant of matrix k and f is the number of features (for color

image, RGB are the three features). Assuming decorrelation

among the three RGB planes and the variance to be the same

among all the planes, (6) can be expressed as

P(N = yt − xt|Xt, θ) =
1

√

(2π)3σ3
e
− 1

2σ2 (yt−xt )
2

. (19)

In (19), variance σ2 corresponds to the Gaussian degradation.

Hence (15) can be expressed as

x̂t = arg max
xt

1
√

(2π)3σ3
×

[

e
[−‖yt−xt‖

2]
2σ2 −

[
∑

cεC
[Vsc(xt )+Vtec(xt )+Vteec(xt )]

]

]

. (20)

Maximization of (20) is equivalent to minimization of

x̂t = arg min
xt

[

‖ yt − xt ‖2

2σ2

]

+

[

∑

cεC

Vsc(xt) + Vtec(xt) + Vteec(xt)

]

. (21)

x̂t in (21) is the MAP estimate.

B. Appendix

For temporal segmentation, we have obtained the label

difference image by taking a difference of the respective

R, G and B components of the considered frames’ spatial

segmentation result. We applied Otsu’s thresholding algorithm

[30] to each channel (i.e., R, G and B) of the difference image.

After obtaining the thresholded images for all the channels,

they were fused by a logical operator (we have considered the

OR operator here). The schematic representation of the above

process is shown in Fig. 7.

The CDM thus obtained are of two types, either changed

or unchanged (i.e., denoted as 1 or 0). To improve the

temporal segmentation, the obtained change detection output

is combined with the VOP of the previous frame based on

the label information of the current and previous frames. The

VOP of the previous frame is represented as a matrix of size

M × N as

R =
{

ri,j|0 ≤ i ≤ (M − 1), 0 ≤ j ≤ (N − 1)
}

(22)
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and is represented as

R =





















r0,0 r0,1 r0,2 . . . r0,N−1

r1,0 r1,1 r1,2 . . . r1,N−1

r2,0 r2,1 r2,2 . . . r2,N−1

. . . . . . .

. . . . . . .

. . . . . . .

rM−1,0 rM−1,1 rM−1,2 . . . rM−1,N−1





















where ri,j is the value of the VOP at location (i, j). Here

(i, j) location represents the ith row and the jth column and

is described as

ri,j =

{

1, if it is in object

0, if it is in background.
(23)
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