MNeoral Mebwo ks Yol. B, Na. 4, pp. 43 887, 1993

A Connectionist System for Learning and Recognition of
Structures: Application to Handwritten Characters

JavanTa Basax, NIKHIL R. Pai, aND Sankar K. PaL

Indian Stacistcal Losini

Ahstract—A comnectiomist svidemm for learming od recoprition of stractores is developed. The sysien iv o casoade
of twer diffe rent modieles, ome for derecting lirear siructures (primiiees ) and the orfier for integrating these Hnear
struchures, A connectionist mode! implamenring Hough transform hay been nsed for the first module, The peaks
in the Hough space are found by irerative verification method, A multilavered perceptron [ four lavers) with
suitably chasen ruwnber of Redes and links has beee used for the second medule. As long s the size of Pre ool
fayer of first module remains foeed (even i e fize af fnped imape changes |, e same secernd module com e nsed
o thix 1y hecanse the modufes operite Independentfe, The sextem performance 5 tested on handwritten Benpali

characier ser,
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L. INTRODUCTION

An object can be deseribed in werms of deseriptions of
its parts {primitives) and spatial arrangements {rela-
tions) of the parts (noled as structural desenption ).
Recognition of the structures basically involves match-
ing of 4 candidale siructure with sume prototype struc-
tures stored in the model base {Shapiro & Haralick,
1982, Shapiro et al., 1984, Boyer, Vayda, & Kak. 1986:
Basak et al, 1993 The main difficelly in strocture
matching problems is that the presence of noise {and/
OF vaguencss b may change the desctiption of some of
the primitives, thereby affecting the matching perfor-
mahce. Axsigning some weipghls o the primitives and
to the relations (reflecting their importance in charac-
teriving vanous classes) helps, w some cxleni, in
achieving noise tolerance and in handling imprecise-
ness in inpul. These weights will be higher lor the prime-
itives and relations that are nost consistent (i.e., im-
pottant ) in charactetizing a class.

Structural description is widely used in different
problems like shape malching, siereo matehing, char-
acter recognition, ete. In all these problems descriptions
should be such that the cilect ol nolse gracetully de-

Acknuwledpements: The work was dooe while Prof. 5 K. Pal
held Tawharlal Mchin Fellowship. Thanks are alwo dug to M 8,
Chakrabury fur preparing the dispracos and Mr. A Bukherjes fur
hiz getive help in capturing the charagtor itnages.

Eeguests for reprints should be sent to Jayanca Basak. Maching
[ntellegence Liai. Lodian Swuistcal Institure, Culoatta P00 035, Todia,

L)

grades the performance of the svatemn. Therelure, 0
design a recopnition system based on sttuctural de-
seription, vne should pay attention W the proper ex-
traction of the primitives and assignment of weighly (o
the primitives and the relations. The extracied primi-
tives { features ) should be as robust as possible. More-
over, the system should be able wo assign these weights
subirmiatically (seperviscd or unsupervised learning ),

For desipning a pallern recognition or vision system.
one wishes 1o achieve robusincss, adaptability { capa-
bility of learning the variations }, and fastness ( lor reul-
time applications ). Neural networks (Lippmann, 1987
Feldman & Ballard, 1982; Fablmann & Hinron, 19875,
having capability to leun from examples. and having
robustness and weopes (or parallelism, have recently
been used for designing mwore intelligent reeopnition
systems.

The vbjective of the present wvestigation is to de-
sigh & scheme for structural pattem leamning and roc-
ognition within a connectionist framework. The prob-
lem of handwritten character recopnition is considered
as 4 candidate for the development of the scheme. Be-
fore desenibing the proposed system, we give a brief
review of the neural network-based character recogni-
tion systems.

In the literature, there exist various approaches
based on tevral networks for the character recognition
prohlem. Possibly the first attempt was made by Fu-
kuzhima ( 1987, 1982} lor 2-D ohject recognition. The
model {neocognitron b can recognize positon and scale
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FIGURE 1. Block dlagram shawing the basic opargtions of the proposad connectlonlst system.

invariant handwnten nemerals. Attempls, so far made,
for neural network-based handwritten character rec-
ognition can be elassilicd into two categones. In the
first category, classification ar matching task is based
on the derved features from the characer images. The
second category, on the other hand, does not need to
extract the features scparately; the classification s per-
tormed directly From the pixel level inlonnation. Sone
of the investigations of the first category are as follows,
[.wa and Gan (1990} used the moethodd ol conperiative
and competitive processing 1o recognize Chinese char-
acters. They used Hebbian leaming mechantsm, Later,
in anuther study, they used sdaptive resonance theory
for recognition of characters {Can & Lopa, 1992), Cur-
give soripts wrllen by different wrlers were caego-
rized using Kohonen's self-organizing feature map
{Schomaker, 1993}, Yong ( 1988) also develaped a
connectionist model for Chinese chavacter recognition
using strokes as the fealures. Recently, a newty de-
sipned network, namely CLI network (conjunciion of
localized featores ). ways used to recopnize handwritien
numerals § Talkdes, Johnson, & Pieront, 1993 1. Tn most
of these mvestigations, the feature vectors were choscn
in soch 2 manner that they fortned compact disjoinc
closiers corresponding to individual characters. It iy
therefore necessary that the features should be inveniant
under noisy, ambiguous environment. In other words,
the process of feature extraction shuuld be robust. But
choostng the righd kind of {feaures in some scripts (like
Indian ) may be difficult.

Some of the ailempls in Lhe second category are as
follows. Le Cono et al. { 199! ) used multlayered per-
ceptron { Rumelhart & MeClelland, 1986) to recognize
handwrirren numerals. Le Cun { [988) developed a
theorerical framework [or oplimal selection of network
structure and used it for character recognition. Denker
ct al. ( 1991 ) also ysed MLP to recognize handwritten
7ip codes. Oneg of the merets ol wsing MLE is thad 11 cau
generate complex decision regions. Becausc these ap-
proaches take the entire image patterps directly for
lcarning ihrough the back-propagation mle, learning
the classes from the images o complicaled characters
( like, Indian scripts ) may take guite a long time. hore-
over, the required arraagement of hidden nodes tor dif-
ferent scripts may be different if the pixel Tevel intor-
martion is given as input.

Therefore, it scoms that @ the merits of robusr fea-
lure sclection and the characterisies of MLP in inte-

gruling the features can be cxploited w design the tec-
ognition system, that would possibly lead to a more
ire ligent seheme for sireclura] pattern recognition. n
the present work, a six-layered connectionist system
has bueen designed for both lealure extraction and ee-
egmition. The system accepes skeleton version of im-
apes (regions ) as inpul. Feslures are exiracted by lind-
ing out the linear structures in the image. Then these
features are hicrarchically inkegrated by a mullilayered
perceptron wodel. In this case, the network has been
designed with a view to reducing redundincy, The
ncarby lingar struclures (elose in position and oden-
tations) have been grouped hierarchically. The firse
three layers ol the network cxtract the features, and
other three lavers integrate them o map the decision
SPH.L'U.

The effectivensss of the model in wWenntying dis-
poorbed versions of handwritlen characters has been dem-
onsorated. Note that though the method has been im-
plemented om  handwriticn  characler  recopmilion
problem, il can also be applied 1o other souctural pat-
tern recognition and learning tasks with suitible mod-
Hiculions.

2. PRINCIPLE OF FEATURE EXTRAUTION
AND RECOGNITION

I desenibing the principle of suvctural leamming and
recognition process. wo consider the struclurcs b e
composed of mostly linear sepments. One basic re-
guirement. as mentiensd in Secrion 1, is that the prim.
itives should be as robust as possible. This very fact
leads 1o the idca that it similar struclures over a ocigh-
horhundd wre considered as a whole for ponutive ex-
traction and aftcibuted in a proper way, then il would
resull in featares with better invariance. The larger the
size of the neighborhood, the higher will be the invar-
imnce and the lower will be the derails of Lhe feature
information. This arpoment holds te tor any struc-
mral shape recognition problem.

The block diagram in Figore 1 shows the basic op-
erations of the systenl. The system first Ainds out the
lewul line points present W the skeletonized stuctures
in the image. Thiy i3 perlormed with the help of -
plate matching. These remplates arc efficiently cmhbed-
ded within the hoks between the fivst and second laver
of the svstem. The local line points are then grouped
according 1o their anrientadions in the third layer of the
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system. This grouping is perfurmed with the help of
Hough transform. An eliicient scheme for implemen-
tation of Hough transform in the connectionist frame-
work has been designed in the present methodology.
The activations in the third layer representing the linear
structures are then grouped hicrurchically with a MLP
el

Z.1. Hoogh Transform snd Feature Extraction

The Hough lransform works as follows. Hach point ly-
ing on 4 straight linc in the image space { corresponding
ti nonzero pixels') can be cxpressed as

r—xcos# + ysn g N

where {x, v} is the coordinate of the concerned poini
o the image space and » and & are parameters speei-
fying the line. { r is the normal distance of the line from
the origin and # is the angle subtended by the normal
with the positve x-axis) According w this cquation,
several (r. 8} valoes can be computed depending on
the (x. ¥} value ol Lhe poinl. Ax a result, a point in the
image space corresponds to a line { sinusoidal in nature )
in the (r, 83 space. For gach soch point in the image
space, the cumulative contribution { accumulator value.
Ballurd & Brown, 1982} in the (v, #} space is com-
puted. If there exisis a siraipht line in the image space,
then the contribution 1o a particwlar (r, #) value would
he very high becawse all points Iyving on the line in
image space would produce some contribution to that
(e, @) valoe, In practice, 2 cluster of activations in the
{r. @) space would be formed due to the presence of a
linc in the image spuce, Therefore, if the clusters in (F,
2 space (i.e., parameter space) can be identitied, then
the possible lines in the image space would be detected.
In other words, if the local line direction at 4 pixel in
the image space s specified, then if should be trans-
formed (0 a unigue pueint in the Hough space. Lel us
consider this point {in the Hough space’ o be the rep-
resenbative point of tat pizcl. In the following ¢laim
we will consider only the representative points. A
straight ling in the image space can also be identified
as

¥ o=y 40 ey

where m (slope of the line) and « {intercept of the line
with the y-axiz) are the parameter values. Howewer,
cqns (1) and (2} essentially represent the same phe-
nomenon. Next we present an inleresting properly of
Hough transtorm in (s, o) space,

Camd. TF 4 curve in the Image space is continuons and
second-order differentiable, then the ponis Iying on the
curve will lic in a contiguous space after Hough trans-
formation.

' 113 this investigation nunzete pisels comespond to ohject egiom.

s

Proaf. Suppose the image contains a curve given by y
= f{ x}. For the suke of simplicity we consider the 1m-
age space ko he comtinyens. Consider a point (X, )
vn the corve. The equation of the tangent (o the curve
at (5, ¥n) can be written as
¥— b=l — ) iy

that is,

W= — s f )]~ xf . (3
In gther words, in the paramcier space the point (x,,
o3 will be transformed to (), o, ) where

[ T Y

and

xef xa),

Now let us consider a nearby point on the curve (g
+ Ax.w + Ayd{ie, Arx apd Ay ace chosen to be
very small). Suppose this point maps W s point (..
cz ) in the parameter space. In 2 stmilar way ir can be
showm Lthat

O = Yo

my =+ Ax

cr—¥e F oAy (xR A (g | &),

Moreover. Ay can be written as
Ay — Axf T (n)
Therefore, it can be wrinen that
e — 1 = Sx i)
and
e =0 T Ay — A ) - A i B AX)

Because the lirsd and sceond derivatives exist and
are finite, values of ¢ — ¢, aod m. - m, can he small
enough by selecting A x to be arbitrarily small. In other
words, the nearby points on the curve 1o the (x, v}
space will lie in contiguons space in the transformed
region.

It is to be noted here that instesd of congidering (g,
¢ ] space one can consider (r. #) space also. In fact, the
second one has been uscd in the sequel. The eguation
for transforming the image space into {r, &) space 15
given by eqn (13, Itis abwvious that if & curve occupics
conliguous space in the (m, ¢} domain then it will oc-
copy contiguous space in the (v, #) domuin also.

Il the parameter space is divided into a nomber of
slots. then each slot comesponds to o particolar straight
line segment. The coniribution (accumularor value)
presenl in cach slol represents the total mumber of pix-
els present in the corresponding line sepment in the
image space. Becawse of the sbove ofaim, a curve in
the image space contributes th a contiguous chain of
slots n the parameter space. This is equivalent to an
approximation of a curve by a sequence ol line seg-
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FIGUARE Z [A] Schematic; diagram of the structure of the sys-
tem. The layers of the netwoark ara two dimensional, Each link
from the second to the third layer repressnts s bottom-up
and a top-down nk. The zelf-feedback connections in the
third layer ara not sxplicitly shown. The dashed box i the
second layer indicates a group of nodes cornected to same
input node. {(B) Connections betwasn seacand-layer nodes
connected to the same input node. The structure of sach
node Is shown explicitly. The part that campetes with other
nodes is reprasented as 8 conjugation of two nodas.

ments. The level of approximation is dependent on (the
sive of slots,

A linear structure in the image would correspond o
a closrer, in addition 0 some spurious sctivalions jn
Ilough space. Tt is therefore necessury to extract (sep-
ment ) the ¢losters oul ftom the spuricus responses. Bul
the selection ol the proper threshold for segmentation
is a prublem. Mareover. because the contribution of a

S Bosal, ¥ K Mol and N, K, Pl

cuve inimape space 15 distnbuted over i segoence of
slots in the parameicr space, the response valoes of
some of the slots mav be low and, ax a resull, gel clim-
inwled due to fhresholding. Lowering the threshold
value. on the other hand, may notl be able w climinaic
some ol the spurions responses, However, Hoogh trans-
form has ample scope Tor massive parallelism becagse
the acrivation valug in each slor can be changed inde-
pendeotly.

Because neural networks provide a robust, mas-
sively parallel computational ramework, Hoggh trans-
fornt can possibly be efficiently implemented with con-
ncelionist midels. Moreover. the problem of selecting
suiable dweshald can be avoided noa conmectionist
framework using iterative verificanion method { Stanfill
& Walle, 1986; Basak cLal | 19937

[n the iterahive verification process, the activarion
values In the slols of Hough space are verihied against
the image pixels 1ois assumed cach pixel in the imape
should vore toat most one slot in the Hough space. In
the locmation of indtal accumulator values, cach pixel
can vote tor mane than one slot (the slots that satisfy the
pararmetric cquation o the line ). The slots in the ver
ification process compete for associating the pixels
with them, and once o pixel gets associated with some
slat. i supports that sled ooly and does nol support ather
slots, Thus, if some spurious activations exist in the
pararneter space, they would ese in competition im as-
sociating the pixels, and wonld not get forther sopport
Iromn the paxels, W there exisis a negative self-Tecdback
mechanism to antoinatically decay the activation values
in L paurammeer space, then the spacrions sotiviion val-
ues would gradually decrease. whercas the genuine
peaks would ger stabilized 1o some nonzero values dus
W the suppocl rom pizcls (which the peak has win
aver).

In the commectomist implementation, @ newron is al-
located to each slot. The activation of cach neuron es-
sentighly represents the amount of contributions to that
skt The clusters in the Howgh space depend onthe T,
#1 values of the noozero pixels o the image space. A
l[cedback pathway is maintwined Irom the laver comme-
sponding 1o the parameter space o the layer represent-
ing the association between the pixels and the slows, o
properly associate the slot activarion values with the
pixels. The archilecture is deserbed 0 Secton 3 oand
the dynamics o the network is discassed im Soction 5
in detatl.

2.2. Concept of Primitive Ameregation

The activations in the Hoogh space ceprasent the basic
primitives al the structures, "Fhe basic prioitives showd
be suitably integrated to represent the higher-level lea-
tures {information ) with ooer noise toyvariance ¢ robust
featuras ). Hecanse the parern of integrating the fea-
tres is highly dependent eoe the type ol classes. il will



Connectionist Svstem for Character Recegmition

be convenient fo learn these patterns in s hierarchical
( layercd § comnectionist model onder supervised mode.

To provide better noise variaoce, the primitives
should be prouped over local neighbothood (in the
Heough space). This is due 1o the fact that even it the
pritmitive vanes in its posidon (in the Hough space)
due 1o the presence of noise, the effect would be re-
duced in the next layver of the hierarchy. Moreover, this
kind of grouping may provide insensitivity to the small
amuunt of onentations of the siroctures.

The hierarchical structore of the system should also
be ghle to exiract owl more invariant propertes oom a
group of primitives. Possibly this can be performed by
grouping the prmilives over larger neiphborhoods. A
variation of multilayered perceptron [ with suitably se-
lected nurnber ol hidden layers and nodes, the connec-
tions berween the layers being constrained within local
ncighborhawds } may be used. This is described in the
following sections.

3. STRUCTURE OF THE SYSTEM

The proposed connectionist system consists of six lay-
ers (Figure 2). The input layer of the network contains
a 2-13 array of neurons. The zize of the array is the
same as that of the image (say / = J}. Each neuron
accepls an sclivation value cgual to the normahized in-
tensity {[1), 11) of the cormesponding pixel. In the sec-
ond layer there are 16 neurons comresponding to cach
input neuron (e, second laver contains 16 X T« F
neurons ). The second layer associales the image space
with the parameter space and each groop of L6 neurons
m the second layer cormesponds to the 16 emplates, as
shown in Figure 3. The third layer corresponds 1o the
paramcier space. Each ncuron in the third layer repre-
sents a slot in the parameter space of Hough transform.
This layer essemtially approximates the stmctures (sin-
gle pixel thck skeletons of characters) by line seg-
ments, The size of the third layer depends on the al-
lowed resolution in the parameter space.

The comnections between the Arst and second layers
have been cxapgeraiced in Figure 2B Hach group oi’ 16
second-layer nevrons, connected to a single mput neu-
ron, is presented within a dotied box, Each second layer
neuron has three parts. as shown in the figure. The first
part holds the activation value corresponding 1o the re-
spective line template, The position of the second-layer
neurons within a group can be armanped according to
which templates they correspond. For sxample, the first
ncuren corresponds o the first mplate. the second one
carresponds o the second template, and sa on. The
activation level received by the lirst part of a second-
layer neuron is determined by the respective remplate
connections (o the pput layer and wput oode activa-
tions. The second part of each neuron takes parl in com-
peting with other nearons within the same group. The
vutput ol the second par always modulates the acti-
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FIQURE 3. (A} Line ssgmenis corrasponding to 16 different
templates wsed for ine datection. |B] The alght passibla di-
mectiong that car be representied by thase ssgments are
shawn.

vation level of the third part. If the second part of soime
neurnn loses in the competition, then the third part gets
inactive, and if the second part wins, then the thind part
of the neuron becomes active. The third pant of each
neuron computes the difference between the sigpals
coming from the ioput layer and the maximum feed-
back it is receiving from the third layer, The difference
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of these two sigoals 15 senL o the thitd layer 0 the
corresponding neuron is a winner within irs gronp,
The fourth layer of the network (Figure 240 takes
aetivations (rom the third snd groups {smoothes ) themn
over local neighborhoods. The abjective of the fourth
laver is to smooth the activation values present in the
third layer to achieve robusiness ol the syswm. The
ftth layer also groops activations from the fowrth laver
over Iocal neighborhoods. This leyver is intended 1o no-
tegrate tinear segments aver local peighborhoods

find some invananl struclura] propertics. The sice of

the fourth layer is the same as that of the third laver.
On the other hand, the st of the fifth layer depends
on the chosen neighborhood wize and the amount of
averlap between 1ocal neighborhodods, The sive of the
local neighborhood in the fowth and fifth layers and
the amount of overlap in the fifth layer will be dis-
cussed in Scetion 5. The number o) newures in the sixth
or the ontput layer is equal to the nomber of classes
strucogres )t be leamed and reeognized. Each neoron
in the output layer bas conaection with all nowles in the
fifth tayer.

The network works as follows. The inpu layer ac-
cepts lmages of skeletomiced structures. As mmoenlioned
carlier, cach newron in the input layer is connected o
L6 neurons in the second layer. All 16 ncurons within
a group in the second layer have competition between
then. Each neurom ip the second layer is conpocted
all peurons i e third layer through bottor-op and
top-down links. The botwm-up links carry activations
trom the sccond (o the thind layver and the thied Jayer
teeds back the activation to the second through the rop-
down links. Fach neuron in hoth seeond and third lay-
ers has a fr, 0 valoe associated with ir. The ¢, &)
vatue actually dewermines w0 which neuron it shouold
send activation aod from which it should receive, A
neurcm in the third layer would reccive setivation {from
a newron in the second laver when there is a match
between the { #. #) values resident in these neurons. The
cxact mathemastical model for activarting a neuron s
disenssed in Section 4, In addition, euch third layer
neuron has a negative sclf-feedback connection.

In the imitializatiom process, the local ine dircetions
are computed in the second layer using the template
weights embedded into the: links Irom frsl layer Lo see-
vnd layer. Then the neweons in the third layer are ac-
tivated from the ncurons in the second laver through
bolom-up links, Alter intbadization, the mudes m the
third layer feed back the activation valoes 1o the second
bayer throngh the op-down links, ‘The second layer
noides, in temn, send the differential support o the nodes
in the third laver. The activatioms of the nodes 1o the
third Layer are updated according o the negarive self-
feredback and the differeotial support In this process
the spurious activaions do nor reeeive any difierential
support and wre reduced due 1o negarive self-feadhack.
O the other haod, the true activations atain stable
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slates when the diflerenia] supporl cquals the negative
sclf-teedback,

Afiter stabilization the third layer represents the clus-
lers feommesponding o linear segments in the imagc
space ) in the parameter space. The weights of the links
from the first to the second and from second o the thicd
laver are fixed. The weighls of the hinks from the third
to fourth. fourth to fifth, and fifth to sixth layer are
learned wsmg the hack-propagation learnimg rule. If the
size of the neighborhoad in the fourth and tifth layers
i% wery lanpe, then there will be redundancy in the net-
work. and the haclk-propagation technique would re-
quire more lime b converge. On the ather haod, i the
neighborhood size is very small. then the nevwark may
nol be ghle te extract pul the invaniant propertics of the
characler nnages. As a vesull, the perfortnance of 1the
nerwork may be deteriorated. The selcclion of the ap-
proximate stae of the neighborhood is discussed in Soc-
tion 5.

The following oolalions sre wied in dw subsequent
discussions, The activation value of the ith input (first
Bayer ) meuron is represeuted by v, Y The second layer
nenions corresponding to /th inpur neuron are indexexd
s 3 (e, the Jth newron among Lthe 16 nowtons con-
nected to the ith inpur nemron). The activaton valne
nf LhL Lb nearon in the sceond layer is denoted by

", The r and # values pmesent in the th neyrom in the
au_um] layer are denoted by v und 87, respectively,
Similarly, the activation value, r, and f shor ed in the
ith third luyer neuron are denoted by w7 sl and
g, respectively, Note that indexing of oulv second-
Yayer neurons is dome depending on the lirse-luyer neu-
rons. The neurons in the other layers are indexed in-
dependently. The activation yalues in the tourth and
ifth lavers are represented by v and v, ', respec-
tively, corresponding te the frh neuron in both Layers.
The aulput layer activations are denoted as s,

d COMPUTATION OF LOCAL LINE POINTS

As mwentioned before, the second layer contains infor-
mation abont the local linc segments in the image. The
locul informalion about the possible line sepments [s
extracted by matching suitahle lomiplales at each pixel.
The wmplabes {8, ., 8 ie Vigure 3) are designed
considering all possible line serments that can appear
over a3 % 3 neighbochood o a digital grid, 1t s evident
from the nature of the rempates that they can be di-
rectly implemented in @ corneotionis! [Tamework by
proprecly assigning the weighes of the links. The links
from the first layer o the second layer represent the
lemplale connections. Note that mone than one remplate
will respond ar a junction peint. Moteover, cven il the
concerned point is not a junction paint. more than onc
template may produce noneero response values, Forex-
ample, if a vertical line semment s presenlin the lmags,
then the 7 template will produce full respomse and 7,
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% . 9% templates will produce partial responses. The
situation may becorne confusing il no template pro-
duces full response, but more than one templat: pro-
dice partial responses. As a resull, if a single lomplate
type 15 assoclated with each pixel to represent the pos-
sible line dircetion at that poind, then the resull may
beecome erroneous. It is. therefore, more 1easonable to
associate more than one lemplate Wvpe along with their
response values with a single pizel.

Another problem ol using lemplates @ extract the
local line segments is that thers can be discontinoity in
the wmplate respenscs of the paels belenging Lo the
same line. Besides. the template tvpe with the highest
response (dominant wemplate) presenl gl a particular
pixel on a line may widely change due to the presence
of a small amount of noise, For exumple, one pixel shift
uf 2 point in a vertical line segment may caose the
template #)x or &), {instead of 7)) o dominate at that
loeation.

Again. note that the 16 templates correspond to only
cight possible dircetions an [0, 180)] degrees because
of the fact that the templates determine the directions
only on the basis of 3 % 3 neighborhood. Figure 3
shows how these eight directions of a line segment are
mesasured, On the other hand, the parameler space in
the third layer should be able o cepresent all the direc-
fions of the line structures with better reselution lor
cifective primilive extraction. This problem can be
avoided if the directions represented by ditferent vem-
plates arc iteratively averagel over local neighborhood,

The emplates can be efficiendy implemented by
embedding the template welghts into the links from the
first layer to the second layer. Bach group of 16 neorons
in the second layer, connected to an input nesron, cor-
respond w 16 different template stroctures. The posi-
tien of a neuron in the group of 16 precisely identifies
the template represented by that neoron.

The orientation values { directions of local line segp-
menes) are associaled with the cormesponding neurons
in the second layer. Each peuron in the second layer
stores two dilferent values v and @ to represent the line
strength and the orientation of the line corresponding
by the: respective template. The hing strengths computed
in the second layer are then fed back to the comespond-
ing mput neurons. Bach inpul ncuron then accepts the
maximum line strength coming from the 16 second-
layer nguroms connected 1o i, Thus, the input neuron
stores the maxinum line strength of the corresponding
pixel. Depending on the local ditection of the ling. the
possible (r, #1 value in the parameter space is com-
puted at each peuron in the second layer (Figure 37
This is performed with the Tollowing equations { Figure
4y
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FIGURE 4. Threse different cases that can occur far a Iins sag-
ment In three cases tha value of 8 would have different ra-
lations with .

where [ x, ¥} 15 the coordinate of the pixel with respect
to the image reference frame. Note that the origin of
the unage teference Irame 14 Axed at the ypper lett cor-
ner of the image. The valoe of r is computed once the
value of # hus been found cut, Tt is computed by eqn
(13, which indicates that these calcwlatioms involve
only local aperations and can be implemented with lo-
cal processors.

The vricntation values are averaged according to the
following rule.

v €0+ w B mas o), (N, T

REN [
v+ e E max, | v (T T ]

dyfr— 1) =

(5}

where f represenls the number of iterations, k 15 a con-
stant that determines the relavve importance of aci-
vutions received from oeighborhoods, X is the neigh-
burhood {unction that takes valves in [0, 1) and
determines the connections between the nodes in the
second layer, and ¥, represents the template type cor-
responding to the fth node in the second layer. The
templare rype refers to one of the 16 templates (F,, .,
Het 85 mentioned before. The template type corme-
spuonding e a sceond-Tayer node is determined accord-
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ing to Lhe positton of that node with respect o the inpot
node. The wie of max|[ | operator takes care of the
facr thar a secongd-layver node alwavs responds Lo its
strongesl neighbor.

The neighborhoed function can be described in the
foollowing wuy. The 16 different template tvpes can be
presented as an ordered pair (5. ) a5 cxplained be-
low, The pair is delined by considering each line seg-
ment in Figore 3 as a collection of two seumments joined
@l the center pixel. For cxample, the type at the i th
newron can be defined as

T:',. — {'-",'.'..h 11._:.}_

7,0 and 7,5 represent two labels within the eight neigh-
borhood of the processor i as shown in Figure 5.

For example, the template tvpe ) can be represented
as =14 3, 3vor {3, 3 Similarly, F cun be rep-
resented as o= (=1, 1) or {1, —1). Mote thal any
lemplate (1), 7a) is the same us (5., ). Lel the po-
sitions of the processing elements ¢ and § (w the inpot
layer) be {x;, y, band {3, ¥, respeetively, Let g van-
able 77 be defined as

A=l — w4+ 3y — K

It is evident thal i1 §f is m the cight neighbothood ol
then o7 will teke the same sel of valves as shown in
Figure 5. The jth neoron in the second layer {of type
T, ycorresponding o the fth input neuron would alTect
the i.th neoron (af type T ) corresponding to the fth
input seuron when cither of the following conditions
holds:

AL =) A =0 M Vs — T

G:yn= Tiak A (ﬂf.lj = —ifa V¥ a2 = —fel

We eluborate it with an illusiration. Let the ¢, Lh neuron
in the second layer correspond to a template type 5 or
(2, —3). In that case, according o condifion A, inpul
neuron § should be placed in such a way that 7 = 2
[ie., f shoold be placed af the lower left comer of 1.
and 7, shouldbe 2, =) | Similarly, sccording wcon-
dition B, processing element § should be placed in such
woway that n — 3 [ic, f should be just above the (th
processing element. and T; shonld be (3. #) | I either
condition A or conditiom B is satisfied, then only fth
neuron will be allowed 1o cooperale with i,Lth ncuron
in the second layer, Mathematically, it can be writien
its
ML La=max{l = {ln  al + [4n, — w0
Holta + M= et — [ + 0]
Mth, + e L0 (6D
Tt js to e noted here thul the template typoy arc nal
changed as the orientation values change (i.c., the oo
operative connections in the second layer are fixed).
Alter computation ol possible direction ol the repre-
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FIGUHRE 3. Labels of the eight naighborhaod of a proceszar.

senlalive line segment in each newron in the sceond
laver. {r. &1 values are computed according o eqns (4}
and [ 1) The { r, &) valoes are Lthen stoted inthe seeond
laver,

M thal the size ol the inpul layer v dependent on
the size of the input image. For example, if the input
image is of size 10 X 10 then the input layer of the
network shoold have 10 > 100 newrons. Beesose Lhe
sccond laver consists of |6 newons coresponding to
cach inpul newron, the tal number of nearons in the
second layer is 16 x 137, LKach newrcn in the second
layer weprosenty a pessible line ditcotion that can be
present at a pixel. The size of the secand layer coubd
have been drastically redeced i Fir directions corme-
sponding o nplates ¥, . 56 and &y were only con-
widersd.

5 COMPUTATION OF GLOBAL LINE
STRUCTURES

The line structures present in the nnage are extracred
in the third layer. This layer actoally appregates the
local line response values (extracted in the second
layer) according L their omientations and strengrths. The
clusters of activations in the parameter space [ third
Tayer of the network b are formed atter stubilization of
the negative self-feedback and the differential support
received from the secomed layer. Each neurom in the sce-
ond layer 15 connected to all neurans in the thicd [ayer.
The weighis of the links are fixed,

The output of cach neunm also consisls ol three dil-
ferent values (v, . #). The outpot r and ¢ values of
cach newron in the $hard layer depend on the position
of the neuron. The owtput +» and # values of each sec-
ond-layer neuron depend on the position of the pixel
anel the Jocal line dircetion, which 1s computed by cons
td)and (1),

The updating of the activabon values of the nearony
in the third layer is derived by minimizing the errar of
mismatch between the activations of the secomd-layer
neurony and the feedback suppor Irom the third-laver
nenrans, The rotal error between the activations of the
second layer neurons and the fecdbuck values s given
a3

1
Lo -

E“%EIV!:EH n]:ix{:bhﬁ]]-r. (7
2 3 ey

Mot thar, the activaon yalue of 8 ngwom m the first
Fayer is denoted by o', that in the secand layer is de-
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noteed by 7, and that in the third Jayer by v, The
second-layer newvons representing the local line re-
sponse values al the ith pixel s denoted by §5. The
feedback to the ijth second-layer neurom is denoted by
.. The amount of leedback to a second-layer nevron
is dependent on the difference betwieen the resident (r,
#) vialues of the second- and third-layer neurons. The
difference is modeled by Zadeh®s standard w-function
{ Zadeh et al., 1975), The graphical representation of
i, Xp S} ik shown in Figure 6 The value of the
feedback is given as

] il Y r3; I 021
B, - Ezutﬂwqmﬂ AL P AN (8)
L

where  [s a constant that determines the average level
of activalion in the third layer after stabilication. The
i, @) values stored in the second and third layers are
denoted by (7' 87y and (rP #YY respectively.
Equation (7} indicates the fact that the nodes in the
scoond layer that cormospond W the same pixel in the
image (i.e., same input node) do not cooperate, rather
they compete belween themsclves, The use of max| ]
operator ensores that only the winner-take-all nodes in
the second layer comesponding to each pixel would be
able 1o determine the total error.

In the error expression [eqn ¢ 7)] the feedback value
is modulated by Lhe activation value 1.'::“ of the seeond-
layer oeuron. This is becanse of the fact that a second-
layer newron wilth a low activalion value may reccive
very high feedback. On the other hand, a peuron with
a high wehvation value may reeeive a low amount of
feedback. If only the feedback value was considered,
then the reunon that bus low activalion value but high
feedback would win. This may not be desirable in many
cases. T consider effects of both the present activahion
value and the feedback valoe, the product of these two
terms has been used,

in the Tormulaion of crror expression, only the mnis-
match between the activation values present in the in-
puL nades und the leedback support has been consid-
gred. The eror cxpression should be modeled in such
a way thar the redundanr activations in the third layer
get minimized. This can be achieved by adding an extra
consraini on the wial activation in the third layer.
Thus, the moditied ermor becomes

K

3 s F) I 3
1_-:.” — ma (.bi. J_'” )] + 5 wo ¥ (1Y)
v E

L
f'.=Ez

where w, provides the relative eflectivencss of the cxtra
constraint. In other words. the error expression can be
written s

- [ 3
| il b i 1 2 1.
E=EL[L', _(b"yl_“)] +;w,£(1.'1 #oom
' T A &
where i) 1% the winner-take-all node in the second layer
carresponding to the fth input node (the competition in
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FIGURE &. Graphical representation of mix, xo, JAx).

the second laver Lakes pluce wiltkin each group of 16
nodes ).
The changes in the activadon valoes of the third-
layer newrons are given as
Vi [
Av = —y = (11}
iy
where v s the constant of proportionality. The rule can
be denived as

L i. il '::.z:. i e
Ay = T{E ¥ [::EI' — b, %Jx(ﬁ';“, H‘jl'J; Fut: )
1 1)

(e ]
pd frfrih. rf'; {}.r}bif’ 'H’,L'IE,JI] 12
[t is therefore seen that w, acis as the weight of the
nepative seli-feedback . Depending on the valne of w,,
the activation values in the third layer will be deter-
tmmed. I w, 1% very high, then the proper activations
will alse be redoced 0 a greal extenl. On the olther
hand, it w, is smoall the redundant activations may not
be remowved.

Fquarion {12} can be interpreted in the following
way. Each newron in the third layer leeds hack its ac-
tivation value to the second layer (which is miven by
B, ) through wop-dewn links. A scceomd-Tayer neuron is
able to receive the feedback coming fron the third layer
only when the resident (-, #) value matches with the
fr, 81 valoe present in the third-layer vearon. This
matching 15 modeled in termy of the standard 7-func-
lion. as shown w eqo (8}, The way ol incorporating
the m-function is deseribed later. Fach second-laver
neuron has two parts. Ooe of them retaing the sctual
achivalion value 1'%’ The other compuotes the modu-
Tated activation value ¢ A, (vl /0" )y, The weeond part
of all second-layer nodes {retaining the modulated ac-
tivation value ), connected te the spme Input node, com-
pele between themselves, After competition is over,
only the witmer-take-all node becomes able to send ac-
fivation to the thicd layer through bottom-up links. The
amcdint ol activation lrom the second layer ro the thivd
Layer | given as (J.IEU - b,-l.(t.‘hnh,"fl : })fr‘.;ﬂh! :-” 1] s de-
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pendent nn the inpur activation and modulawed fecd-

back acuvation. The amount of activation is delincd as

differential support. The differental support from a

second-layer newron can be matheratically modcled as
22 12

N e
[v:l' — b, ﬁj — Al by zoemb forall Tosd
0= |
0 ritherwise

£13)

whers

A peuron io the third layer would be able 1o receive
differential support from a nenren in the second layer
only when the resident (#. 1} values in the second- and
third-layer neurons match. The matching in the (v, #)
values berween the second- and thind-layer neurons is
also modeled in terms of w-tunction {eqn (12)]. Note
that the A and A8 values Tor matehing in the second
and third layers are the same [eqns (8)and {12)]. The
activation values in the third layer arc updated aceord-
ing to the difference between the differential supports
recoived from the second fayer and the nogatrve self-
leedback. Itis evident from the devivation of A feqn
{L1)] thar the error value always decreases (o, AR
= (1}, Because the error value is always finite [egn
19}, in the limit, AE — 0 and, as a result, Av}” = 0
for ail & (e, the system will reach a stable state ).

The system needs the standard s« -function to be im-
plemented into the links between the second and thind
lavers. The weights of the links are set fixed whenever
the second-layer neurons got activated and the com
putation of (r, 8) values is complete, The weiphts (of
both hottom-up anpd top-down links) are set inthe Tol-
lowing way:

1 i ] s

Wi = IF—‘JTQ'!'.'}‘1 5 If";l', &IUJI'.':'{rf', r ' Al
= ;
[ : o

F Efr{fi:;“, 0T Ay, e A

where wi; is the weight of the bottom-up {ink from the
ith seeond-layer node (o the kth third-layer node. and
i, 15 the weight of the wop-down link from the &th third-
layer node W the §th seoond-layer node. In the setting
of the weights the (r, #) valoes wre available al the
terminal nodes of the links. {This process of weight
seerfing should not be treated as a learning process.) The
process hecomes active whenever a new image {s pre-
sepled fo the network and the computation of (r, #)
valoes in the sccond layer s completed. This 15 nec-
crsary both for learning and reeogoidon. ‘The weights
remain fixed so long as the input image is nol changed.
Whenever a4 new image is presented to the network the

Lo Basak. NOR Pad, and 5K Ped

welrhils ure resel and lixed sccording 1o the new (r, #)
values, compured in the second layer,

The activation kevelin the third layer depends on the
value of k and self-teedback w,. In the followmy dis-
cussion we show an ermpirical relation between the we-
tivation evel () in the third layer and !t and w,. Let
an image conlgin a straight line scpment of lensth |
i Le..f pixels ), Let each pixel on the line comespend to
4 line sireugih of unity. When the imaye is mapped onto
the connectionist model, ali pixels will activate a single
third-luyer neuron under noiseless, ides] conditien.
Therefore, the updarting of the activation value of that
third-layer newron represenling the line scyment can be
wiitken as

; Iy TR
g L R | LAY O

Au f[h(.: - ] i :] (14

Under stable condition, Au™ = 0 Therefore, +' will

1ake a valae
i ih
FLEET e 15
} P+ ow b by

If wob” == felben o™ — (0w, and if e w b then
""" — k. Therefore, m the first case the information
ahont the length of the line sepgments s preserved. In
ather waords, with the first conditiom the activation val-
ucs in the third laver would comespond o the oricinal
aceumplator eontents (with some scaling ), and with
the second condition, the activation values in the third
lager will have peaks of constant magnitude, This re-
veals an empirical purametric relation for choosing the
parameters like w, and £ in the connectionist imple-
menlation ol the Hoogh transtorm. In the proescnl in-
vestigation. the values of & and w, are chosen in such
A way thul the information ahoal the line scpmienls
the image is also restored in the activation values of
the third-Tayer neurons.

The third layer of the networl represents the param-
cter space ol Hough transiorm. The stee ol the third
layer depends on the chosen resolution of the parameter
values used in the Hough transtom. Using the connee -
tionist framework for computing the peaks i Hough
space, the problom ol selecting suitable threshold 1o
segment oul the peaks in Hough space has been omir-
led. However, e neoral nebwork miodel also, we
need 1o choase the parameter values like w, and it. Bur
becanse an cmricel relation between these purarelers
has alrcady been denived |egn ¢ 153, it may provide 4
better parameter selection criteria. Moreover, the pres-
enl scheme provides an alternarive way to selecr the
peabs insead of using lhe thresholding scheme. al-
thaugh sclection ol proper threshold in the standaed
Hough ansform leehnique may provide comparabic
autpues,

f. FEATURE INTEGRATION

The activation values in the third layer represent the
line segments present in the input image sieuctures, The
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activation values also store the information about the
length of the line segments with properly selected pa-
rameter values. These Hnear segments are hierarchi-
cally inteprated ro recognize the shapes of the siroctures
presenied we the network. The integration of the sep-
ments s performed with a moltilayered perceptron
moidel that aceepts the activation values from the third
layer of the system.

The MIFP we considered has fwo hidden Tayers
{Tourth and fifth layers of the system) and one cutpot
layer (1.2, the sixth layer of the system). The connee-
tions between two consecutive layers in the MLFP
model are resticted over local neighborhoods ¢ Figure
7. The restricuon of the links rids the network of un-
necessary details, and cnables it o learn the strucetore
with a greater speed. The size of each hidden layer and
the mature of connections with ils previouws layer ure
determined secording to the desired function off the
layer. The way of selecting the size of hidden layers is
dizcussed below.

The fourth layer of the system groups activation val-
ucy from the third layer over local neighborhoods. The
purpose of this layver is to smooth the activaton values
prosent in the thitd layer over local neighborhoods. The
size of this laver is exactly the same as that of the third
layer. The siee of the thind layer is 54 > 35, The manner
of selection of the size is discussed in the next section.
Every node in the fourth Tayer is connected toa 7 ¥ 3
neighborhood of the corcesponding node in the third
layer. The weights of the links are set during the back-
propagaliion leaming process.

The fifth layer groups the activation values from the
fourth layer over locil neighborhoalds. The purpese of
the Afth layer is to extract out the structural properties
within the neighborhood of a primitive. The neighbyor-
hoods in the fourth layer are selected in such a way thai
there exists sutheienr overlap between lwo neighboring
regions of activities. In faci, the size of the fifih layer
would depend both an the nature of the desired overlap
and the size of the neighborhoods. The relationship be-
rween the size of the layer, the size of the neighbor-
houd, and Lhe nature of overlap is denved below.

The shape of neighborhoods is chosen to be rectan-
gular, et cuch neighborhood be of siem 2 n Lol g,
and p, be the fraction of overlaps io the two orthogonal
directions, respectively, which means that pan and pa
newans [ of the fourth layer) send activations to two
neighboring oearons i the Blth layer. Let the sive of
the fourth laver be M > A, In that case, each pair of
two nelghboring neurons i the Ofth layver comresponds
wa gap of m{l - p.)neurons in the fourth layer in
one direction and s | — p.) ncurons i the other di-
rection, Therefors, the size of the fifth layer (say, M’
MY a5 given by
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FIGURE 7. The nalghborhaod connections betwasn two dif-
ferant layers. Thiz is valkd for conneciions from the third to
fourth and fowrth to fifth layers.
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The sixth or the output layer finds cut the clobal sirmce-
ture of the character, This layer accepts the activation
values from all neurons in the fifth layer.

The nule used tor hack propagation is given as

(rII I'—IZI

&w;.- = nd; L16)

where wj,-"_ "' stands for the weight of the link connect-
ing the jth node in layer § — | o the fth node in Jayer
{. The & values are given by

% =i - e f e

where u}m 1% the Lotal input to the jth node in the sixth
or curpot layver. ft ) is the transter function of the
nudes. For other layvers, the & values are given by

5@-‘: =J|-|{ U.-}E:,;I:'II_; -'r_.

Becavse the size of the third layer depends only on the
resolution ol the Howgh space, it is virtoally indepen-
dent of the size of the inpul imape. This indicates that
the back-propagation lewrning rule taking place from
the third layer 1o the sixth layer can e independent of
the 1mage size. It the image size is increased, the values
w, ot b can be increased aceordingly so that the acti-
vatiom levcls io fhe third layer remain unaffected. For
cxample, if image size is doubled in both x and ¥ di-
rectioms, then alza the acrivation level in the third layer
remains unchanged If the valne of w, is doubled. This
indicates one novelty of this sysiwm. Once the system
learns the inpul struclure sei, the same system can be
used Uy recogmize structures of different sizes. The
modifications only need 1o be done in ghe [rst and sec-
ond layers. Nole that this modilication does not involve
any learning process.
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7. RESULTS

The merthodology described in the provious scetions
was implemented on handwritten Bengali {one of the
muafar [ndian language } characler recognition problem.
Twelve different Bengali characters were chosen for
leaming and recognition. The experiment was per-
formed in bwo separate phases. In the first phase, only
17 samples of each character were taken and the system
wus rained with these samplas. The performance of the
system was then tested with noisy versions of the sam-
ples, I the second phase of the experiment, we en-
larged cur data set and considered 30 samples for each
character. Noise was injected Lo these samples, and
these samples were then divided oo training aned test
set. It was found that with the merease in the number
of samples, the performance of the system gets en-
hanced. Ideally, for such kind of tasks dealing with
handwritten characters, the required number of samples
is very high. Bur due to the lunited computational fa-
cility. we have restmicted o s small data set and have
shown a clear improvement in the performance with
the increase in the number o samplos.

In the first part of the experiment, characters were
wrillen by 17 different persons. Therclore, the char-
acter set contamed 17 = 12 (Le.. 204 characters from
12 ditferent categaries ), Note that the character sel we
considered containg linear structares, Moreover. some
ol them have similar shapes. This patticular set was
considered to extablish the discriminating abilicy of the
propaosed system cven wilhin less vananl categorics. In
other waords, the result we get is more meaningtul.

The chamaclers were preprocessed before presenta-
tion Uy the network. The gray level images wore seyg-
mented to get binary images using pray level rhresh-
olding. The curpet was then smoothed and cleaned to
remove noise. This was performed by growing and
shrinking vperations over cight neighborhood ( Bosen-
teld & Kak, 19282}, The image way then normalized o

size (100 x 100), The rvo-tone images were then
thinned wsing the thinging slgonithm as presented by
Rosenfeld and Kak (1982}, The thinped versions of
some of the characlers are shown in Digone 8

The thinped versions were presented as input to the
proposed systern. The mpul image was then oans-
formed inte the parameter space as described mn Sec-
tivns 4 and 5, In the present case, for Lhe suke of ace
coracy and robustness, afl 16 emplates  were
considercd. But in the actual simulation process there
is nor need o allocate space lor all nearons. by the pres-
eni systemn. neurons were allocared anly tor the nonzero
pixels, and for each nonzero pinel the fest four prom-
inant direchions were considered. The valoe of « [cgn
(5] was chosen as 0.5; this makes the conwtbanon of
the concemed pixel and those of its neighbors to be the
sarws daring Lhe semoothing process of line direchions.
The line directions prescnt in Lhe second-Tayer neurons
were iterated 10 times,

Congidering the complicacy of Bengali characiens,
the resolution in the Hough space was chosen as &¢ =
4 and 44 = 3. Nole that the values of Ar and A# | ego
( 123] may be ditferent from the resolution (i.c., dr and
&, respectively). However, in the present work they
wore chusen W@ be the same. For most of the Indian
character set this may provide good results. For the
English character set, these values would certainly
waork boecagse the English alphabeis are simpler in
stricture compated 1o Bengali alphabets. The oomber
ol slots the paramueler spaces along Lhe 8 axis was de-
termingd as 72 RBecause durting the computation of
Hough transform the origin of the mage coordinale
systemn 15 considerad ar one particular corner of the im-
age, the  values lying in the thind quadran: are redun-
dant. As & result. the required nomber of slots 1 the
Hough space along the # axis becomes 54, Pacamerer
rrepresents the aormal distsnce of 4 Hne in the inage
space (Tom the orpin of the hoege coordingle sysiem,
The masimum distanee can ocewr along the dizgonal
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TABLE 1
Recognition Seore for Distortad Charactars {Probahility
Value Indicating Laval of Distortion)

Prabability Value
iteration Na. 0.05 0.1 0.2

1 95.08 93.14 85.78

2 93.62 80.6848 72.55

of the image. Therefure, in the present case it can be
128 5 42 which is approximately 35, Thus, size of the
third layer was chosen as 54 X 35, IUis o be noted
here thal the size of the third layer can be kept fixed
independent of Lhe size of the image.

The valoes of fr and w, wete chosen in such a way
that the activation values in the culput layer retain in-
lormation about the lengths of the linear strucires. In
cther words. the conditiom w, A7 & [ is considered. Lo
Lhis image we bhave [ < 100 (note that { denotes the
number of pixels Ina linear siruclure ). The value of #
wias chosen as 1O { Le., IHh < 010, The value of 3/
# was selected as 0.1 and w f was sclecled ax (0.5,
Therefore, the value of w, happens to be 5 % 10 * and
v becomes 10, Wote that the factor «/f determines the
rate of updating of the states of the nodes in the net-
work, Theretore, it v/ is too small then the frse three
layers of the sysbem would take s long lime to conyverge
and. cn the other hand, if v/# 1s Targe then there can
he oscilludions in the updating process. The vatues of
A oand w, were selected depending on the maximum
length of the mapee.

The size of the fourth layver was considerad o be
of the sume size as the third laver. With a neighbor-
hood size of 7 = 5 this pives an overlap of approxi-
mately B2% between adjscent neighborhoods in the
third layer. In the fourth layer, approximately 50%
overlap {berween adjacent neighbuorhoods ) 15 conyid-
cred with a neighborhood size of % » 7. Therefore.
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the size of the fifth layer becomes 12 X 100 We used
neighborhowds of size 13 % 11, which provides
slightly more than 309t overlap. Becavse in the pres-
ent work only 12 characters were uscd, the outpul
layer consists of 12 rodes. Each node is connected 1o
all ncurons in Lthe fitth tuyer.

The value of 5 (rate of learning ) in the back-prop-
agation mle was vancd Imom o higher value tooa smaller
one. The learning started with 7 equal 10 0.5. After each
20 iterations i was decreased by 0.1 until it hecame
(1.2, Then p was decreased to (0.1 after 30 iterations and
to 05 after another 3 treratioms. The linal tunang of
the weighils was performed o another 30 iterations with
a value of 1 equal to .05, The network was tramed
with un-hoe learming. and the change in weights of the
links was noted atter every epoch. Finally, the normal-
taed change in wweiphes redoced below 000005 after
150 itevations. The total processing time for learning
the charscler sel was found 1o be approximately 25 h
{24 h 3% min 38 3) on a SPARC | workstarion { withoot
Rosting poinl coprocessor). The traiming wuas per-
formed with the entire character set ( 204 samples ). At-
ter the traiming was aver, the samde sel ol characters was
presented 1o the network for recognition, and it was
lirumd that the swstem was able o cormectly recopmize
all characters,

In the next phase of the experiment, we demon-
strated the effectiveness ol the traioed sysiem in
identifying distorted structural patterns. To generate
distoricd  versions, each pixel can be randomly
shifled {with g probability value) within its eight
neighborhood, preserving the connectivity. This pro-
cess can also be donc wteratively to provide severe
distortion.

The recognition score of the trained system is shown
in Table 1 when different distorted versions (as gen-
crated by various probability valuces and iterations they
are onj were given as inpul Some ot the distorted ver-
sions are shoswn in Figure % as an illustration. From
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FIGURE 9. A sample set of distorted versions of the characters with probability of distortion = 0.2 and fteration no. = 2.
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Table 1 it is clear thar the performance of the network
gracefully deprades with the level of distortion. Note
that the clteet of Two llerations with a low probabilicy
value (0.1 ) is more severe than that in 2 single iteraton
with a higher probability value {(.2). The connection-
ist system is therefore seen to e abie w0 recognize the
handwntten characters even when some of their basic
hocar structures are distorted.

In the second part of the experiment, the dats set
wus exlended w inclode 30 difforent samples of each
handwritten character. Noise was injected into these 30
samples (with a noise level of 20% with two iterations )
to generate another 30 samples for each character. We
have Lken 2% oripginal sumples and 30 poisy sanples
for training the system. The ser of weight vectors ob-
lained tn Lhe hrst part of the experiment was nsed a5 a
starting point in the second part of the experiment. The
tate ol learning was decreased whenever it was found
that the network was poing Lo oscillate around some
minima. We started with & high value of v equal to (1.5
and the wrights were updated lor 14 ilerations. Then
the value of ¢ was decreased to 0.4 and the weights
werg updated for 12 iterations. 1 wus then chosen as
0.3 and the weights were updated for 13 iterations. The
weights were updated for cight Heralions with 4 value
of n equal to 0.2 and 15 iterations with a value of «
cgual w {1, This part of the expeniment (braiming
phase ) ok approximately 83 h of CPL tine in the
same SPARC workstation.

The remaining five samples of each character { total
o) samples} were then presented to the nebwork for
recoghition. The syslem was [ound Lo recognive all 60
samples correctly. This indicares the generalization ca-
pahility of the syslem to an extenl, with the inorease in
the number of training samples. Althongh we have re-
sircted {0 a mediom-sized dats sel dee to insallicicnt
computing facility, it seems that the performance of the
system would get enhanced with a cven Targer diara sel
We also tested the performance of the sysrem with an-
other sel o noisy data sampics: 20% noise wus injectod
inta the 30 samples of each character {(with one itera-
tion) and the resulting 3600 samples were lesled with
the trained systenl. The network was found o success-
lully recognive almost 6% ol the samples, The per-
formance of the nerwork was akso tested with the wain-
ing samples (jncluding the noisy samples chosen Tor
trainimg ) and the notwork was tound B recognize them
carrectly in 98% of the cases,

5. DISCUSSION AND CONCLUSION

In the present article § conmectionist system for learning
and recognition of structoral patterns has been devel-
oped. This meludes a scheme for robust fealure extrac-
tion, and integration of featores psing moliilayeved per-
ceptron inodel. The merits of the proposed system lie
10 the fact that 11 can select peaks avlomatically in the

f Rogak, N B Pul, and 5. K Pal

Hough space without using any threshold selection
scheme, and can perform selective integralion ol the
features during learning. Another advantage of this syvs-
tem is that it is able o learn structures independent of
their size. If the sizes of the structures sre increased,
the parameters in the third layer of the syswem can be
adjusted 1o gl the same gelivation levels in the thivd
layer. Therefore. the same MLP model {ic., foom Lhe
third o the sixth layer of the system) can be used for
further learning. Because the systein approXimalcs
curves with line segments wang Hough mapsform, it
scems 1o be efficiant in bandling broken line segtnents
also.

To demonstrate the effectiveness of the model, we
considered, as n example, the problem of reoogmizing
handwritten Benpali characters of similar shapes. It was
found that the performance pracetolly degrades with
the distortion level in input. The system was found W
generalize, W 4 corlain exienl, reasonably well within
the limitations of computing facility. The methodology
can also e applicd [ recognition of other structoral
patterns such as indosirial objects. [n that case, shkele-
wmizcd imapes of lhe indusmal parts shoold be pre-
senced with a suitable frama of reference. In this model,
fcalures comsiderad consigronly of linc segments, It the
structural patterns consist of other fratares, like blobs,
then the secomnd and third layers necd to be suitably
modified.
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