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discussion have been included in Section IV. Finally, conclud-

ing remarks are made in Section V.

II. WT-BASED FEATURE EXTRACTION

To deal with the nonstationary behavior of signals, many

research works have been carried out. Efforts are made to

overcome the disadvantages of Fourier transform [12], [13] that

assumes the signal to be stationary within its total range of

analysis using short-time Fourier transform and WT [13], [22].

WT extends the single-scale analysis to multiscale analysis that

decomposes the signal in multiple scales, where each scale rep-

resents a particular coarseness of the analyzed signal. WT tries

to identify both the scale and space information of the event

simultaneously which make it more useful for analysis of

remote-sensing images. Further, various distinguishable char-

acteristics like spatio-geometric information, energy at different

scales, etc., which are normally called the signature of a par-

ticular land cover in remote-sensing images, are preserved in

the WT-based decomposition performed with orthogonal basis

[12], [22].

We have used the wavelets from different (Daubechies,

Biorthogonal, Coiflets, and Symlets) groups [22]. Results are

given for four wavelets as their performances are (empirically)

better than others. These are Daubechies 3 (Db3), Daubechies 6

(Db6), Bior3.3, and Biorthogonal3.5 (Bior3.5) wavelets [22].

These wavelets are implemented with the multiresolution

scheme given by Mallat [12], which is briefly described next

for 2-D case.

A. Discrete WT and Multiresolution Analysis

The 2-D WT is performed by consecutively applying the

1-D WT on rows and columns of a 2-D image that decom-

poses an image into four subimages. This decomposition can

be extended to more than one level providing more detailed

information. To have an objective evaluation, we computed the

average entropy, which provides a measure of information, of

the image for each level. We found that the average-entropy

value is not changing significantly after a certain level of

decomposition, and we decided to decompose up to that level.

For the present experiments, we stopped decomposing after the

second level only. From the WT coefficients, the corresponding

reconstructed images are obtained using the inverse WT, which

represent the extracted features of the original image.

B. Feature Extraction

The aim of extraction of features using WT from the orig-

inal spectral bands is to exploit the spatial and frequency

information of the pixels. In this process, we decompose the

original image into subimages (wavelet coefficients). For each

level of decomposition, four subimages are obtained from each

band of input image. As a whole, 16 subimages are obtained

from a four-band image (original input) after one level of

decomposition. It becomes 28-band subimages with two levels

of decomposition and so on. These subimages are then used

to reconstruct (using inverse WT) the images providing spatial

and frequency information of the original image. The size of

these reconstructed images is equal to the size of the original

image, and there is a pixel-by-pixel correspondence between

these images and the original image. The pixels in these re-

constructed images, thus, maintain the functional relationship

of class labels, as maintained by the original pixels. Hence,

we have used these pixel values of the reconstructed images

as WFs for classification. These WFs are then cascaded to get

the extracted features of the original multispectral image.

III. CLASSIFICATION TECHNIQUES

The four classification methods used are briefed next.

A. FPARR

The FPARR classification method uses three steps [18]. In

the first step, it takes the input feature vector and fuzzifies it

using a π-type membership function (MF) [2]. The member-

ship matrix fd,c(xd), thus generated, expresses the degree of

belonging of features to classes, where xd is the dth feature of

pattern x with d = 1, 2, . . . , D and c = 1, 2, . . . , C.

The π-type MF can be estimated with center at r = mean(y),
where y is a feature of the training data. The two crossover

points (let p and q) are estimated as p = mean(y) − [max(y) −
min(y)]/2 and q = mean(y) + [max(y) − min(y)]/2. The

membership value at the crossover point is 0.5, and at the center

r, its value is maximum (i.e., 1). In the second step, the fuzzified

feature values are aggregated using PRODUCT reasoning rule

(PARR). It is applied on each column of the membership matrix

to get the combined membership grade of features of a pattern

to various classes. A hard classification output can be obtained

in the last step by a defuzzification process. A MAXIMUM

(MAX) operation may be used for it, and the pattern is classified

to class c with the highest class membership value.

B. FE

The FE classification method [6] also uses three steps. The

method uses Gaussian MF for fuzzification, minimum RR in

reasoning, and MAX operation for defuzzification.

C. Neural Networks (MLP)

Here, the WFs are used as input to a feed-forward MLP

network, which acts as a classifier. MLP uses back-propagation

(BP) learning [19] for weight updating. The BP algorithm

reduces the sum of squared error or cost function (CF) between

the actual and desired output of output-layer neurons in a

gradient descent manner to correct the weights. The process is

continued iteratively until a target CF is achieved. The number

of nodes in the input layer is equal to the number of original

features or wavelet-generated features. The number of nodes in

the output layer is equal to the number of classes present in the

data set. Nodes in the hidden layer are equal to the square root

of the product of the number of input- and output-layer nodes

[19]. The weight-updating process is stopped when the corre-

sponding CF reaches a desired value (here, it is 0.001). The
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values of the parameters that have been selected empirically to

get the best results are the following: momentum = 0.83 and

learning rate = 0.05.

D. NF

Fuzzy and neural techniques have certain advantages of their

own which are combined in the hybrid NF models. Major

milestones in the NF models can be found in [23]. However,

in this paper, a simple NF technique is used which is similar

to the one discussed in [20]. The membership values of the

features of each data pattern after fuzzification (by a π-type

MF [1]) are supplied as input to the neural network (NN). The

basic operations of the NN in the NF process are the same

as aforementioned. The values of the parameters for the NN

selected empirically are the following: momentum = 0.79 and

learning rate = 0.01. The weight values are initialized between

−0.5 and +0.5. The output of the NN, thus obtained, is defuzzi-

fied using a MAX operation, and a class label for the input data

pattern is assigned using the maximum output (node) value.

IV. RESULTS AND DISCUSSION

Selection of the training samples is made according to a

prior assumption of the land-cover regions. After learning the

classifier with these training samples, it is used to classify the

land covers of the whole image. Various multispectral remote-

sensing images from IRS-1A and SPOT are used. However, we

have included only two images because these bear different

characteristics like spatial resolution, number of bands, and

wavelengths, while they have similar land-cover classes. Also,

a synthetic image is used to support our objective.

A. Performance-Measurement Indexes

For labeled data sets, Kappa [24] value is normally used for

performance measurement. However, for partially labeled data

sets, as in the present case, β index [25] of homogeneity and

Xie–Beni (XB) index [26] of compactness and separation, as

described next, can be used for performance measurement.

1) β Index: β is defined [25] as the ratio of the total

variation and within-class variation. For a given image and

given number of classes, the higher the homogeneity within

the classes, the higher would be the β value. Mathemati-

cally, β can be represented as β = [
∑C

i=1

∑Mi

j=1
(xij − x)2/

∑C
i=1

∑Mi

j=1
(xij − xi)

2], where x is the mean gray value of

the image pixels (pattern vector), Mi is the number of pixels in

the ith (i = 1, 2, . . . , C) class, xij is the gray value of the jth

pixel (j = 1, 2, . . . ,Mi) in class i, and xi is the mean of the

ith class.

2) XB Index: The XB index [26] provides a validity

criterion based on a function that identifies the overall

compactness and separation of partitions (clusters). It is

mathematically expressed as the ratio of compactness (θ)

and separation (ξ), i.e., XB = [
∑C

c=1

∑Z
z=1

µ2

cz‖Vc − xz‖
2]/

[Z minc �=j ‖Vc − Vj‖
2], where Vc is the centroid of the cth

cluster, and xz is the zth pattern. µcz is the membership value

Fig. 1. Original (a) IRS-1A (band 4) and (b) SPOT (band 3) image.

of the zth pattern to the cth cluster, and Z is the total number of

patterns. The smaller the XB value, the better is the partitioning.

B. WF-Based Classification Process

At first, a preprocessing of the input image is performed

using WT, and the corresponding WFs are extracted. For fuzzy

classifiers (FPARR and FE), the extracted WFs are fuzzified

using an MF (π type and Gaussian) that provides a degree of

belonging of each WF to all classes, and a fuzzification matrix

is generated. A suitable reasoning rule is then applied on the

fuzzification matrix. At the end, a defuzzification is performed

to obtain the hard class label for the input pixels. For the neural

classifier, the WFs are directly fed to the NN. However, with

the NF classifier, the extracted WFs are fuzzified with an MF

(π type [1]), and the fuzzified values are fed to the NN. The

class label for the input pixel is obtained using the defuzzi-

fication operation performed on the NN output. Classification

accuracies of the WF-based classifiers are provided in tabular

form, whereas the classified images with the Bior3.3 wavelet

and FPARR are shown in the figures.

C. Description of Images

1) IRS-1A Image: The IRS-1A image is obtained from the

Indian Remote Sensing Satellite [21]. We have used the image

taken from the Linear Imaging Self-Scanner with a spatial

resolution of 36.25 × 36.25 m and wavelength range of 0.45–

0.86 µm. The whole spectrum range is decomposed into four

spectral bands, namely, blue, green, red, and near infrared cor-

responding to bands 1, 2, 3, and 4, respectively. Since the image

is poorly illuminated, we have presented the enhanced image

(band 4) in Fig. 1. However, the algorithms are implemented

on original image. The image covers an area around the city of

Calcutta having six major land-cover classes: pure water (PW),

turbid water (TW), concrete area (CON), habitation (HAB),

vegetation (VEG), and open spaces (OS).

2) Synthetic Image: A four-band synthetic image (size

512 × 512) has been generated with six major land-cover

classes similar to the IRS-1A image. Fig. 2(a) shows the syn-

thesized image in the near-infrared range (band 4). Methods are

tested on the corrupted image (with Gaussian noise having zero

mean and σ = 1, 2, . . . , 6) in all four bands. Fig. 2(b) shows the

noisy version of the original image with σ = 2.
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Fig. 2. Synthetic image (band 4) with (a) original and (b) noisy (σ = 2).

TABLE I
CLASSIFICATION ACCURACY (PERCENT)

FOR SYNTHETIC IMAGE (σ = 2)

Fig. 3. Classified synthetic image by (a) FPARR and (b) Bior3.3 + FPARR.

3) SPOT Image: The SPOT image shown in Fig. 1(b) is

obtained from SPOT satellite [4]. The Calcutta image has the

wavelength range of 0.50–0.89 µm in three bands (green, red,

and near infrared). This image has a higher spatial resolution of

20 × 20 m. We have considered the same six classes.

D. Classification of Images

1) Synthetic Image: A noisy version of the synthetic image

[Fig. 2(b)] is used to test the effectiveness of the classifiers.

The WFs are extracted from the four bands of noisy synthetic

image and used for the land-cover classification, and the results

are compared with those of the original-feature-based ones

(Table I). This table showed that among the four classifiers,

FPARR is providing better accuracy. Particularly, the improve-

ment is more with Bior3.3 wavelet. This is also true for all

the classifiers. For σ = 2, the classified images using FPARR

classifier with original and wavelet (Bior3.3) features are shown

in Fig. 3. The performance with different σ values for FPARR

classifier is shown in Table II. It is observed from this table that,

with the increase of noise level, the difference in percentage

TABLE II
CLASSIFICATION ACCURACY (PERCENT) FOR

SYNTHETIC IMAGE [DIFFERENT (σ)]

Fig. 4. Classified IRS-1A image by (a) FPARR and (b) Bior3.3 + FPARR.

Fig. 5. (Zoomed) Some selected regions of classified IRS-1A Calcutta image
with (a) FPARR and (b) WF (Bior3.3) + FPARR.

of classification accuracies obtained using original and WFs

increases.

2) IRS-1A Calcutta Image: From the visualization point of

view, it is observed that FPARR classification method is per-

forming better in classifying the land covers (i.e., segregating

different areas) compared to the rest three. Hence, we have

shown only the FPARR classified image in Fig. 4(a). Further,

the performance of all the classifiers is improved with WF;

also, it is found that Bior3.3 wavelet is the best for the current

problem. Thus, we have shown the classified image using

the FPARR classifier with Bior3.3 wavelet in Fig. 4(b). Here,

various objects like Airport runways, Saltlake Area, Saltlake

Stadium, Vivekananda Bridge, Howrah Bridge, and different

land-cover classes are clearly visible. These objects are more

or less visible in case of other classifiers and with different

WF. Thus, a zoomed version of some classified regions like

Saltlake Stadium and PW is shown in Fig. 5 to get an improved

visualization. From the zoomed image, it is observed that

regions are more clear and distinct with the proposed method
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TABLE III
β VALUES FOR DIFFERENT WF-BASED CLASSIFICATION METHODS

TABLE IV
XB VALUES FOR DIFFERENT WF-BASED CLASSIFICATION METHODS

compared to the original FPARR. With the use of WF, the

classes became more separated.

Further, a concrete distinction between the various classes

that are obtained by different classifiers is also justified with

the quantitative index. Two quantitative indexes, namely, β and

XB, have been used to justify these findings. Table III shows

the results of β. As expected, the β value is the highest for the

training data (9.4212) for the IRS-1A Calcutta image. Its values

are 8.1717 and 7.1312 for the two fuzzy classifiers (FPARR

and FE). With MLP, the β value is 7.1487, which is much

closer to the value obtained with FE. With NF classifier, the

β value obtained is 7.5535 which is more than that of the other

classifiers except FPARR. From these β values, it is clear that

the FPARR is a better classifier.

The β value is increased from 8.1717 to 8.6348, 8.1913,

8.7413, and 8.2012 for the WF-based FPARR classifier with

Db3, Db6, Bior3.3, and Bior3.5 wavelets, respectively. These

increments are also there for other classifiers with these

wavelets. From Table III, it is clear that the FPARR classifi-

cation with Bior3.3 wavelet is providing the highest β value.

Similar to β index, XB index also supported the superiority of

the proposed approaches. Values for XB index are shown in

Table IV. It is shown that better compaction and separation of

different regions of the images are obtained with the FPARR

classification method compared to FE, MLP, and NF. The XB

Fig. 6. Classified SPOT image by (a) FPARR and (b) Bior3.3 + FPARR.

Fig. 7. (Zoomed) One selected region of classified SPOT Calcutta image with
(a) FPARR and (b) WT (Bior3.3) + FPARR.

value for FPARR for IRS-1A Calcutta image is 0.8310, and is

0.9012, 0.9113, and 0.9001 for FE, MLP, and NF, respectively.

Again, these values are still better for the Bior3.3 wavelet.

Considering all cases, we can infer that the combination of the

FPARR and Bior3.3 wavelet is outperforming the others.

3) SPOT Calcutta Image: For SPOT Calcutta image, the

classified regions are shown in Fig. 6(a) for FPARR (original

spectral features only) and Fig. 6(b) for the FPARR with

Bior3.3 wavelet. From the figures, it is observed that all the

classes are separated along with some known regions like Race

Course, Howrah Bridge, Talis Nala (Canal), Beleghata Canal,

Khiderpore Dock, and Garden Reach Lake. A zoomed version

of a region is shown in Fig. 7 to see the differences in the classi-

fied regions more clearly. From this figure, it is evident that the

proposed method produced a well-structured and proper-shaped

regions compared to FPARR. However, a better performance

comparison with the help of β value is shown in Table III.

In a similar experiment with MLP and NF classifiers, it is

observed that the WF-based methods are providing a higher β
value (Table III) compared to its corresponding original spectral

feature-based version. A further improvement of these classi-

fiers with WF is observed with Bior3.3 wavelet. Like the β
index, the XB values (Table IV) also corroborate the earlier

findings.

V. CONCLUSION

This paper proposes a WF-based fuzzy, neural, and NF

approach for classification of multispectral remote-sensing
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images. The proposed method explores the possible advantages

of using WT to extract features from images.

The improvement in performance of the classification

scheme is verified using one synthetic image and two remote-

sensing images. Various performance measures that are used

to evaluate the classification results indicate that the addition

of WF improves the classification accuracy. More specifi-

cally, the FPARR-based classification method with the Bior3.3

wavelet outperforms the others. Visual inspection shows that

the classified regions using the proposed methods are more

crisp, homogeneous, and compact compared to those obtained

by the corresponding method with original features. Thus, in

conclusion, we can say that, for the present set of images, the

Bior3.3-based FPARR method is the best.
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