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SUMMARY. Strling with thoe gencral lincar model ¥ = X+ ¢ where Elee’) = 0,V,+
ver+0,Vp, tho theory of minimum norn quudratie estimation (MINQL) eof the paramcter
8 = (0),.., Op) is doveloped. Tho mothiod depends on the choico of o natural quadratic  esti-
malor of 8 in torms of tho unubsorvablo variublo ¢ and comparing it with a quadrutio estimator
1’AY in torins of tho observablo variublo Y. Tho matrix A is deteninined Ly minimizing the
difforonca botweon two quudratic forms. 3y placing rustriclions on ¥’AY such 08 unbisscdness
(U), invarianco (I) under trundation of ¥ Ly X, different kinds of MINQE's such as
MINQE (1), MINQL(U), MINQE(U, 1), cte. aro gencrated.

A cloxs of jtorated MINQE's (IMINQE's) is developed to obtain cstimoalors freo from
apriori information used in tho construction of MINQE's. This cloas iy shown to includo maximum
likelihood (ML) and marginal ML (MML) estimatory. Thus tho MINQE principle provides o
unified thoory of cstimation of variance componcnts.

1. INTRODUCTION

MINQE (minimum norin quadratic estimation) of variance components
in o general lincar model was proposcd by the author in a series of papers
(Rao, 1970, 1971a, 1971b, 1972, 1973), tho scopo of which was oxtended to
cover a wide varicty of situations by Focko and Dowess (1972), Kloffo (1975,
1976, 1977a,b, 1978, 1979), I'ukelsheim (1977) aud Rao and Chauboy (1078).
Tho purpose of this paper is to oxtonded tho MINQE theory a littlo
further, introduce a class of cstimators called .IMINQE (itorated MINQE)
and show its relationship to MLE (maximum likclihood estimator) of Hartloy
and J. N. K. Rao (1969) and MMLE (marginal maximum likelihood estimator)
of Patterson and Thompson (1975). An oxtensive roviow of ML and MML
cstimation and tho computational algorithms is contained in a rocent paper
by Harville (1977), whero the MML was termed as the REML (rostricted
maximum likelihood).

* Tho work of thiy author is sponsorod by the Air Forco Offico of Scivntific Rescarch, Air
Forco Bystoms Command undar Contraot F $0620.70.C-0161. Roproduction in wholo or in
part is pornitted for any purposo of tho United Stales Govornmont.
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2. MINQE PRINCIFLE

Mized linear model. Tho usual mixed linear model discussed in the lito-
rature on variance components is

Y = Xp+U,D+...+ Up_ @ p_,+ P . (21

where X{nxm), Uy (nXng) aro known matrices, B is a fixed unknown vector
parameter and @; are unobservable random varinbles such that

E@) =0, E&%)=0

(2.2)
E®P) = UEI"‘, i=1..,p
using tho convention » = n,, From (2.1) and (2.2),
E(Y) = XB, DY) =0V +...4+02_Vp_+all . (23)

where Iy = UdU; > 0 (i.0.,, non-negative definite). The unknown non-nega-
tive parameters 0%, ..., 0% aro called varianco components.

Gencral linear model. \We consider a moro general model
Y = Xp+e . (24)

whero the stochastic structure of tho unobservable random variablo € is not
specified as in (2.1, 2.2) but it is known that

E(e) =0, E(ee’) = 0,Vy+...40,Vp e (2.5)
where the paramecters 0; nced not bo non-negative and the matrices ¥y aro
symmetric but need not be n.nd. Tho model (2.4, 2.6) covers both varianco

and covarianco component modols, exaraples of which aro given in Krishnaich
and Lee (1974), Kleffo (1978) and Rao and KlefTo (1079).

MINQE principle. Supposo that & in tho model (2.1, 2.2) are obsorvablo.
Thon, natural estimators of tho varinnco components nro

=Py +ny, s=1,.,p . (2.6)
and tho estimator of a linear function 3 = fiof+...4fp02 is
¥ =[5+ 0} = ENg . (2

whero E = (a7 1), ..., a5 1d,), N is o suitably chosen matrix and @y veey Op
are apriori values of 03, ..., 0%. (Note that E'NE is independent of ay).



140 O. RADOAERRISANA RAO
Let us consider an estimator of ¥ in tcrms of tho obsorvable ¥ of tho
form
(Y—XPBp) AY—XB,) . (2.8)
whero B, is an apriori valuo of @. Tho oxpression (2.8) is equal to

EUAUE+VIIX' AXKy 429K X AUE o (29)

whero v = K=Y —B,), U, = («}U; : ... : atl,), K is o positivo dofinitc matrix,
which is in the naturo of an apriori dispersion matrix of f and Kt is
a symmetrio square root of . The differenco between (2.9) and tho natural
estimator (2.7) is

U.AU—-N  UAXK} 3
€ :v) ( )- . (2.10)
KiX’AU, KX’ AXKY v

Tho MINQE (minimum norm quadratic estimator) of ¥ is (¥ — XB,)’4,(Y— XpB,)
where A, is chosen to minimizo a suitably chosen norm of the quadratio form
(2.10)

UAU,~N  U.AXE}
(2.11)

KiX’AU, KiX'AXK?

with A restricted to a chosen class of matrices depending on desired propertics
for tho cstimators, such as unbiasodness, nop-nogative dofiniteness, ote.

The choice of a natural estimator is obvious when the lincar modol is as
in (2.1, 2.2) with tho atructure of tho error component in ¥ specified in torms
of structural variables. Tho method outlined covers more gencral situations
whero E(®(®;) = Ay containing unknown varianco and covarianco components.
(sco for cxamplo tho problems considered by Rao, 1972, Rao and Klofle, 1979
and Sinha and Wicand, 1977.)

Supposo the model is given in tho form (2.4, 2.6)
Y= XB+e, D(e)=0,V,+...40,7p .o (212)

without specifying tho structure of €. Choosing @, ..., @p a3 prior valucs of
0y, ..., 0p and (B, IK) as tho prior mean and dispersion matrix of B, wo can
transform (2.12) to

(Y=XPBg) = XKW+ Viy, V, = a,V+...4a,Vp o (203)
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and define a natural cstimator of yy = f'0 as
NNy = 9 ENVIIV IV 7y v (2.14)

whero A = (4,, ..., 2p)" i3 dotermined such that E(»'N,7) = f6 which implics
that X is a solution of [//(a)]x = f whero

H(a) = (ke VAV, e (215)

Note that Jl{a) is non-singular if 8 is idontifiable, i.c.,, OV, +...+0,V, =
OVy+...40,Vp &= 0 = 0; for all i. Tho choico of a natural estimator as
in (2.14) may be justificd in the following way. Supposo ¢ in (2.12) has tho
structure of the orror term in (2.1), in which caso 7° N7 = E'ME. Thenit is
easily shown that N, is as in (2.14) if wo minimize tho Euclidean norm of
(M—N), whero .N is 28 in (2.7), with respect M subject to the condition that
E'ME is unbiased for f°6.

If the estimator of  in terms of Y is

(¥ — XBo) A(Y — XPy)
= 7 PIAVIp+VEIX AXEK w42y VIAXKY ... (2.10)

then tho norm of the diffcrenco between (2.16) and (2.14) is

VIAVI-N, VXK |
(217)

KX'AVE  OXAXE |

Tor tho MINQE cstimator of y from tho general model (2.13) wo chooso A,
which minimizes (2.17). Since the matrices A minimizing (2.11) and (2.17)
may Do different, tho MINQE estimator may bo dependent on tho form in
which the error component is specified in the linear model.

The MINQE principlo as stated requires for its application inputs such
o3 prior valuo a of 8, prior mean and dispersion (B, It) of 8, tho choico of a
natural estimator and a suitablo norm of the differenco between two quadratic
forms (as in 2.11). If we havo the necessary prior information, then thero is
no problem. Otherwiso, wo can uso various devices. For instaneo, if wo want the
estimator Y“AY to bo translation invariant, i.o., ¥’ AY=(V—XB) (V- Xp)¥ B,
which may be a desirablo property, then MINQE(]), i.o., subject to the
condition of invarianco, is indopendont of @, and K, so that any arbi-
trariness due to tho choice of prior mean and dispersion of B is climinated.
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If p‘is known to bo large compared to 6, then wo may put 8, = 0 and consider
co-MINQE, thoe limit of MINQE as tho dingonal elements of K tend to infinity
as an appropriato cstimator (sco Focke and Dowess, 1972). It is shown that
if wo chooso a simplo Euclidean norm for (2.11) and imposo tho condition of
unbiasedness, tho MINQE (U), i.o., subject to tho condition of unbinsedness,
is independent of tho choico of tho natural ostimator (whether 2.7 or 2.14 is
chosen).  Another possibility is to chooso an initial value & for 8 and computo

the MINQE, say 5,. Clioosing 6, as tho initial value wo ean recompute tho

MINQE, say 62. The limiting estimator, if it oxists and is independent of
a, is called IMINQE, (iterated MINQE). We shall examine some of these
aspects in detail in tho discussion of various MINQE’s,

3. MINQE WITII UNDIASEDNESS

Consider tho general model
Y=2X\B+e, Die) =0V +...-t0pVp = V,, . @)

whero 8¢5, an open sot in RP such that V, > 0 (i.c., positive definite) for all
0e5. (Tho condition V5 > 0 canbe relaxed to Vg 2> 0, but the results are &
little complicated.)

3.0 MINQE (U, 1). Consider a quadratic cstimator Y'Y which satisfics
tho (U, I) condition, i.c., unbiased for f® and invariant for translation
of ¥ by XB. It isscen that

"AY satisfies (U, &S trAVi=f, i=1,...,p and AX=0. ... (3.2)

Under the condition (3.2), choosing tho Euclidean norm for the difference
of quadratic forms, the squarc of (2.17) becomes

tr (VIAVI—N YVIAVI—N,)

=tr VAV, A =2 tr AVIN Vi4tr N N,. .. (33)
In viow of (3.2} and tho choico of .V, as in (2.14), tho sccond and third terms in
(3.3) are indepondent of A and tho only quantity to bo minimized is tr AV AV,

subject to (3.2). Using tho method outlined in Rao (1971), tho optimum
choico of A1 is

A, = VIR (Ep VRV . (39)
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whero R, = I—P,, P, = X(X’V;'X)—X"V;! is tho projoction operator onto
tho spacoe generatod by the columns of X and g = (yty, ..., s1p)" i3 & solution of

(o)l =S e (3.5)
whero

Hyila) = (te VIRVVIIRYY). .. (3.6)

The MINQE (U, I) of f'0 is ¥’/1,Y which can be written in tho form [é whero
8 is o solution of tho consistont oquution

[Hyi(a)]0 = kY, a) . 37
whero (Y, @) is a vector with the i-th componontans

Y'VIR VIR VY., .. (3.8)

3.2, TMINQE (U, 1), 'Tho equation (3.7) is consistent, but tho solution
is not uniquo unless 0 is identifiablo on the basis of tho distribution of T"Y tho
waximal invariant of ¥ whero T = X4, i.o,, unless tho matrices T'VT,
i=1,..,p aro lincarly independent. In such a caso Hy,(a) is non-singular
aud tho MINQE (U, I) of 8 exists and is givon by

8, = (Hur@) (Y, ). . (39)
If wo chooso él s the initial value of 8 and recomputo the MINQE (U, 1), wo
get
B, = [1uaB))™ h(Y, 8)). . (3.10)
If the process is continned and tho solution for 8 converges, tho limiting valuo
satisfics tho equation
[H1y1(0))0 = hy(Y, 6). e (301)

We define tho solution of (3.11) as IMINQE (U, I), tho iterated MINQE (U, I).
Tho oquation (3.11) can also bo written in tho form

tr V'RV = CRVEIVVERY, i=1,..,p . (822)

which aro tho MML (marginal maximum likelihood) oquations of Patterson
and Thompson (1975). IMINQE (U, I) may not bo unbiasod.
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3.3. MINQE(U). Consider the lincar model with four observatigns
Yi=ph+a Yi=pite
Yy=pten Yi=/pitey
E(e€)) = 0, E(e}) = E(€d) = 0%, E(e3) = E(s) = 0} .. (3.13)

which is a special caso of the problem considered by Focko and Dewess (1972).
It is easily scon that thoro docs not oxist a matrix /A satisfying the condition
(3.2) 8o that invariant unbiased estimators of o} and oF do not exist. In such
cases wo may imposo only the condition of unbiasedness, i.e.,

EYAY) =[S X'AX =0, trAV;=f, i=1,...,p. o (3.14)
Then tho squaro of the norm (2.17) becomes
tr (VAVI—N YVIAVI—N )+ 2 tr VIAXKX' AV . (3.15)
The terms in (3.15) which dopend on A can be written as
tr (Vo + XKX)A(V,+ XKX')A. .. (3.16)

Proceeding in the manner indicated in equations (3.4)-(3.8), MINQE (U) of
§70 is '8 whero 6 is a solution of

[Hy(@)) 0 = hy(Y, ) e (317)
whero
Hyla) = (tr (Vi+ XKX') Y Vi— P V(P )V, +XKEX')1Vy)
and tho s-th component of hy(Y, a) is
(Y= XBo) (Vo + XRX') N Vi— PV PV, + XKEX) (Y —XB) .. (3.18)
whera P, = X(X/(V,+XKX)- X)X'(V, + XEX')-,
If 8 is identifiablo, tho IMINQE (U) of 8 is tho solution of
[Hy(0)10 = hu(Y, 6). . (3.19)

Note 1. Tho oquations (3.7) and (3.11) for MINQE (U,I1) and
IMINQE (U, I) and equations (3.17) and (3.10) for MINQE(U) and IMINQE(U)
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remain the same even if wo start with tho model (2.1, 2.2) and minimize (2.11).
Thus with unbiasedness, tho MINQE is independent of the choico of tho natural
estimator as (2.7) or (2.14).

Note 2. MINQE (U, I) docs not dopend on B, It, but MINQE (U) docs.

4. MINQE WITHOUT UNBIASEDNESS

Wo shall obtain tho MINQE without unbinscdness but satisfying the
condition of invarianco for the model (2.1, 2.2) by minimizing (2.11) and for
the general model (2.4, 2.5) by minimizing (2.17). Wo denoto such an estimator
by MINQE (7). Particular casos of MINQE (I) for the modol (2.1, 2.2) have
boon studied Ly Rao and Chauboy (1978).

Alternative 1. Tor tho modcl (2.1, 2.2), tho matrix N of the natural
estimator (2.7) of £’0 is a block diagonal matrix with the i-th block cqual to
(d(ﬁ/n:)l,,‘. Tho oxpression to be minimized is

tr (U, AU,— N)U_AU,—N). o (1)
Tho minimum of (4.1) is attained at A, iff
tr (U;4,U,—N)U,DU, =0 e (4.2)

for ell D such that DX = 0 == D = R,ER, for arbitrary E. Substituting
D = R_ER,, the condition (4.2) becomes

tr (R V, A4,V R, —RUNU.R)E = 0
= VR ARV, = R(c,V,+...+c, V)R, e (13)
whero ¢; = a? fi/n;.  From (4.3),
A, = VIRVt oV RV
= ZeRVIVWVIR, e (44)
and the MINQE (7) of £8 is Y'A,Y. In particular, the MINQE (1) of 6 is
af
7y
8= hy(Y, a) v (4.5)
a
)

B3 4-3
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and tho IMINQE (7) of 8 is a solution of tho cquation
o

o
0= . MY, 8). v (4.6)
8

np

Allernative 2. Lot us consider tho general modol (2.12) with tho natural
estimator (2.14) and determine A by minimizing (2.17). Tho matrix N, of
tho natural cstimator is

P k) () ] e (47

whero A = (Ay, ..., Ap) isa solution of [L/{a)]A = f whero [l{a) = (tr VIV, V;'V)).
The oxpression to bo minimized is

tr (VIAVE—N)(VIAVI-N,). e (48)
Tho minimum of (4.8) is attainod at A, iff
tr (VIAVI—N )VIDVi =0

for all D of the form R,ER, for arbitrary E. Thon procceding as in steps
(4.2)-(4.4) wo have

A, = VIR (EAVORV;

and the MINQE (7) of §6 is ¥"A,¥, which can bo writlen as /é whero 8 is a
solution of

(U(a)}0 = kY, @) e (49
whero
H(a) = tr (V7'V V'V
{4.10)
(Y, o) = (Y'V;IR,VRV'Y, ..., YVIRV,RV;'YY.

I 0 is idontifiablo, tho BIINQE () of 6 is the solution of (4.9) and the IMINQE(/)
is tho solution of

(L(6)18 = hi(Y, 6). e (411)
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Tho equation (4.11) can bo written in tho form
trVa' Vi=Y'Ry Vi VIVi' R, Y, i=1,..,p e (4.12)
which are the maximum likelihood (ML) cquations of Hartloy and Rao (1967).

The estimators (4.6) and (4.9) and tho itorated versions (4.6) and (4.11)
aro in general difforent and dopend on the choico of the natural estimator.
It may Lo scen that if Vi > 0, then the cstimator (4.5) uses the information
on the actual structuro of the crror componont whero as (4.9) does not. The
ML mothod ignores any givon structure of tho error component.

5. MAXIMUM LIEELMIOOD (ML) ESTIMATION
5.1, ML cquations. Wo consider the general model

Y= Xp+e, D(e) =0,V i+...40,Vp =V, o (6.0)
and discuss the ML estimation of 0 undor the assumption
Yo N (XB, Vp), Beo™, O v (6.2)

Wo assumo that ¥, > 0 46 ¢ &, but do not placo any restriction on 0; such
as non-negativity or on Vy such as non-nogative definiteness. [However,
wo may noto that by a linoar transformation of 8 wo can write

Vg = 1,0V +... 47510y .. (6.3)
where TVy > 0 but 74 aro not nocessarily non-negativo.)
Tho log likelihood of tho unknown paramoters (3, 0 is
B, 8, Y) = —log | V,| —(Y— XB)'V5'(Y—XP). e (5.4)
Tho propoer ML ostimator of (f,6) is a valuo ([3, 6) such that

1@,8,Y)= sup (B, 6, Y). .o (5.5)
peyem, 8o

Tho ML cquations obtained by equating thoe derivatives of (5.4) w.r.t. (B, 6)
to zcro are

XV;'Xp = X'V;Y e (56

te V'V = (Y= XB)Y V' ViV (¥ —XB), §=1,.0p. o (57)
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Substituting for p in (6.7) from (5.6), tho equations becomo
Xp =Py, . (5.8)
[71(8)18 = Ix(Y, 6) e (5.9)
whero Py = X(X'V5'.X)— X'V and J1(6) and k(¥ 8) aro as defined in (4.9).

We make a few comments on tho ML equation (5.9) which provide direct
cstimates of 6.

(i) Tho ML cquation (5.9) is tho samo as that for the sccond alternativo
IMINQE (1) given in (4.11).

(ii) Tho equations (56.6) and (5.7) aro unbiased while (5.9) is not in tho
8CNS0

E[h(Y, )] 5 [11)(6))6. e (5.10)
Tho cquation obtained by equating (Y, 6) to its expected valuo is
(Uyi(0)}6 = hi(¥, 6) v (5.11)
which is tho MML equation of Patterson and Thompson (1975).

(iii) Thero may bo no solution to (5.9) in tho admissiblo set & to which
6 bolongs. This may happen whon tho supremum is attained at a boundary
point of F.

(iv) As obsorved by ITarvillo (1977), the MLE is invariant for translation
of ¥ by XP for any @, i.0., tho MLE is a function of the maximal invariant
T'Y of ¥ whero T = X+,

Suppose that 8 in tho model (5.1) is identifiable on the basis of tho distri-
bution of ¥ but not on the basis of tho distribution of T'Y as in tho examyplo
of Focke and Dewess (1972).  Such a situation arises when T'V(T aro lincarly
depondent whilo Py aro not. In such cases tho proper ML cstimates (5.5)
do not exist and ML equation estimates exhibit functional relationships which
may not hold for true values of tho parameters. Thus tho invarience property
of the MLE limits tho scopo of the application of the ML method. In such
situations MINQE (U) or IMINQE (U) givon by (3.17, 3.19) can bo used.

(v) Compulational algorithims: Tho equation (5.9) for tho ecstimation
of 8 is, in general, very complicated and no closod form solution is possiblo.
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One has to adopt iterative procedurcs. Ilarvillo (1977) has roviowed somo
of tho oxisting methods in the special case of the mixed model. The following
comments aro valid in the gencral caso :

(n) If Vg aro lincarly independent, then I(8) is non-singular in which
easo tho (k41)-th approximation to the solution of (5.9) may Lo obtained

using 85 the k-th approximation as

8,1 = (M hyY, B1) . {5.12)

as in the caso of IMINQE (/). Iterative proceduro of tho typo (5.12)
is mentioned by Anderson (1973), LaMotto (1973) and Rao (1972) in
differont contoxts. However, it is not known whether the proceduro
converges and provides a solution at which the supremum of the likeli-
hood is attained.

(b) Hartloy and Rao (1967), Henderson (1977) and Harville (1977)
proposed algorithms suitablo for tho special case when one of the Vi is
an identity matrix (or at least non-singular). An eoxtension of their
method for tho goneral caso is to obtain the (k+1)-th approximation of
tho i-th component of 6 os

) A\ Pt -1y r
Y(I-P;) V3 VW3 (1=Dy) ¥

tr V' 1
U

i, k141 = O s i=1L.,p ... (5.13)

In the special caso when Vi are non-negative definito and the initial 8
aro chosen a3 non-negativo, the successive approximations of 6; using the
oalgorithm (5.13) stay non-negative. This may bo a “good property” of
tho algorithm, but it is not clear what happons when the likelihood equa-
tion (5.9) docs not have a solution in the admissible region.

(¢) Iemmerlo and Hartley (1973) and Goodnight and Hemmorle (1978)
developed the method of I transformation for solving tho ML equations.
Miller (1979) has given a different approach. DPossibilities of using tho
variable-motric algorithms of Davidson-Flotcher-Powell described by
Powell (1970) aro mentioned by Harville (1977). The method of scoring
described in (Rao, 1973, p. 366) can bo used if the sccond order differ-
ontials of the likelihood can bo casily computed. As it stands, further
research is nocessary for finding a satisfactory method of solving tho
oquation (5.9) and ensuring that tho solution provides a maximum of tho
likelihood.
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6.2. Marginal maximum likelihood (M ML) equations. As observed earlior
tho ML equation (5.9) is not unbinsed, i.e.,

E[R(Y, 8]  [71(8)]6. e (6.14)
If we replaco tho equation (5.9) by

(Y, 8) = Ehy(Y, 8)] = [15:(6)0 v (5.15)
wo obtain the IMINQE (U, I) dofined in (3.11).

Tho cquation (5.15) is obtained by Patterson and Thompson (1975) by
maximizing the marginal likelihood of 8 based on T'Y, where T is any choice
of X*, which is the maximal invariant of ¥. Now

10, T'Y) = —log | T'V,T| -Y'T(T'V,T)' T'Y. ... {(8.16)
Differontiating (5.16) w.r.t. 0; wo obtain tho MML (marginal ML) cquation

te (T(T'V,T) T’V = V' T(T'V, T T'VT(T'V,T)"TY, i = 1,...,p.

(6.17)
Using tho identity (Rao, 1973, p. 77)

TT'V,T) T

=Va'-Va' X(X'VgX)\X'Pg! = (I Py) ... (5.18)

tho equation (5.17) becomes
tr (Ve(I—Py)V) = Y'Vg{I =PV (I—P)V'Y, i=1,..,p .. (519)

which is indepondent of the choico of T = X* used in the construction of tho
maximal invariant of ¥. It is easy to sco that (5.19) can be written as

(1Tu1(6)10 = Ry(Y, 6) - (6.20)
which is the cquation (5.15).

(i) Both ML and MML estimates depend on the maximal invariant
T'Y of Y. Both tho mcthods aro not applicablo whon 8 is not identifiablo
on tho basis of T'Y.,

(ii) Tho lias in MMLE may not bo as heavy as in MLE and may
bo moro uscful as a point estimator.
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(ili) Tho solution of (5.20) may not lio in tho admissiblo sot of 6 a3 in tho
caso of tho ML equation.

(iv) If 6 is tho k-th approximation, then tho (k4-1)-th approximation
can bo obtained as

Bx.1 = [Hur®n)]*hu¥, ). o (8.21)
It is not known whether tho proceess converges and yields a solution which
maximizes the marginal likclihood.

(v) Another algorithm for MMLE similar to (5.13) is to computo tho
{k+1)-th approximation to tho i-th componont of 6 as

iy p’ -1 - (1
Y(I-P; )V IViV; (1 Pﬁ.)y_

B, k01 =0, x (5.22)

=1
tr l’g.(I—Pg.)IQ

It is scon that both ML and MDIL estimators can bo obtained as iterated
MINQE's, MLE boing IMINQE (I) dofined in (4.11) and MMLE boing INMINQE
(U, I) defined in (3.11). Thero aro other iterated MINQE’s which can bo used
in casos whoro ML and MML methods are not applicable.

Note : Tho computation of MINQE's, MLE and MMLE es thoy aro dofined
by various equations involvo the inversion of V, = 0,V,+-...4-0,V5p, an n-th
order matrix, and tho ovaluation of matrices liko V-(I—Pg) whero
Py = X(X'V§5'X)—X'V5". Theso cannot be avoided in a goncral situation when
tho linoar model is specifiod in the form (2.4, 2.5), However, tho computations
can bo considerably simplified in special cascs. An elegant mothod for com-
puting V3! and terms liko tr V5! Vy'Vy which occur in the computation of
MINQE’s is given by Gicsbrecht and Burrows (1978) in tho caso of hicrar-
chical classification lincar modcl. Thompson (1979) gives similar oxpressions
for computing tho MMLI from lincar modols arising out of orthogonal block
designs.

In tho caso of & mixed modol, V, is of tho form
Vy = OUUi+...40p Up_\Uj_, +0,1 . (5.23)

in which caso wo can uso the woll-known formulao
OpVi! = I-U(U'U+GY)U’ . (5.24)
0V (I—Pg) = MI-MUU'MU+G-)-U'M . (5.25)
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whero M = I-X{X’X)=X’, U= (U;:...: Up_y) and G is a block diagonal
matrix with tho i-th block oqual to v, whoro v; = 0:/0, and n; is the number
of columns of U, (sco llarvillo, 1077, Curbeil and Scarlo, 1976 and Rao,
1973).

Lot us denoto
(U'U+G-Nt =(Ty), e (5.26)

(U'MUG = (T}, . (5.27)
w = (TAU;MA+...+ Tip . Up MY

Then tho ML cquations (5.7) can bo written as

00, = Y'MY—Y'MU(Ty)U'MY . (5.28)
A (m— tr ;‘r”) =y, i=1,..,p—1 . (5.29)

which are essentially the equations given by Ilenderson (1977) except for tho
method of computing #; and the right-hand sido expression of (5.28). Tho
MML equations (5.19) aro

(n—r) O0p = Y'MY—Y"MUT UMY .. (5.30)

o (n.—t—’}"—) =ty e (531)

where the right-hand sido expressions aro the same as thoso for ML equations
as observed carlier.

Similarly, the MINQE cquations for any apriori valuo a of 8 can Lo sct
up using tho oxpressions (5.24) and (5.25).
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