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A Note on the Quantitative Measure of Image Enhancement
Through Fuzziness

SANKAR K. PAL

Abwtrecr—The “index of fuzziness” and “entropy™ of an image reflect
a kind of quantitative measure of ity enhancement quality, Their values
are found to decrsase with enhancement of an image whon different
sets of S-type membership functions with appropriate crossover puints
were considered for extracting the tuzzy propecty plane from the
spatial domain of the image.

Index Terms-Entropy, fuzzy set, image processing, index of fuzzi-

ness, property plane,

I. INTRODUCTION

The present corregpandence illustrates an application of the
theory of fuzzy sets in image processing problems, The prob-
lem is to provide a quantitative measure of enhancement gual-
ity of an image through the evaluation of its amount of fuzzi-
ness, These are explained by the terms “index of fuzziness"
and “entropy™ [1], {2] of a furzy set, Index of fuzziness
reflects the ambiguity present in an image by measuring the
distance between its fuzzy property plane and nearest ordinary
plane, The term “entropy,” on the oiher hand, uses Shannon's
function in the property plane but its meaning is quite differ-
ent from the one of classical ecntropy because no probabilistic
concept is needed to define 1t. These two terms which give an
idea of “indefiniteness™ or fuzziness of 4 s¢t may be regarded
as the measure of an average intrinsic infonmation which is
received when one has to make a decision {as in pattem
analysis) in order to classify the ensemhbles of patterns de-
scribed by a furey set. These quantities are found to decrease
with enhancement of image.

The furzy property plane has been extracted from the spatial
domain using S-type membership function [3), [4] along
with two fuzzifiers. The role of the fuszzifiors is to introduce
different amount of ambignily in & property plane by changing
the crossover point and slope of the transformation function.
The effectiveness of the algorithem with different values of
these fuzzifiers is demonstrated on a set of enhanced images.

H, Fuzzy SFE1 anD IMAGE DEVINITION

A fuzzy set {4} with its finite number of supports x;, x,,
*re XpIn the universe of discourse I is defined as

A= {(ua (20, x)} (1a)
or, in union form
A=U#I'l.'r_"f,', I=1,1,"',ﬂ (1b)
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where the membership function g4 (x7) having positive value in
the interval [0, 1] denotes the degree to which an event x;
may be 2 member of 4. If g (=)= 0.5, x; i3 said to be the
erossover poant in . .

Since g pray tone image possesses some ambiguity within the
pixels due to the possible multivalued levels of brightness,
it is justificd to apply the concept and logic of fuzzy set rather
than ordinary set theory 1o an image processing problem.
Keeping this in mind, an image X of M X & dimension and L
lewels can be considered as an array of fuzzy singletons, each
with a value of membership function denoting the degree of
having brightness relative to some brightness level I, =0, 1,
s+ L - 1. Inthe notion of fuszy sot, we may therefors write

Y= ommixmn m=1,2,--- Min=1,2,--- N
mon

(23

WHhETe P/ %mn 00 %= fan = 1) represents the grade of pos-
sessing some property P, by the (m, n)th pixel xp,,. This
fuzzy property pu, may be defined in a number of ways
with respect to any brightness level depending on the problems
to hand. This is sxplained in Section IV.

Hl, EvALUATION OF FUZZINESS OF AN IMAGE
A. fndex of Fuzziness

The index of fuzziness of a set 4 having » supporting points
is defined as [11]

2
?{AJ=n—kﬂ‘{A,AJ (3}

where did, 4) denotes the distance between fuzzy zet 4 and
its nearest ordinary set 4. The st 4 is such that ug(x=0
fuglxa=05and | for gy (x;) > 0.5 The number 2 and the
positive constant k& appedar in onder to make (4} lie between
0 and 1. The value of & depends on the tvpe of distance
function used, For example, k = 1 for a generalized Hamming
distance whereas & = 0.5 for an BEuclidean distance. The cor-
responding indexes of fuzziness are called the “linear index of
fuzsiness™ ¥, (A )and the “quadratic index of fuzziness™ y,(4).
Considering *d " tobe a generalized Hamming distance we have

(A, 4)=3_ ;}!-1_4 (p) - iy (xi}| =2 Baralxg) {4)
i i
and
5
n=—2 tanald, =120 (5)
i

where A N A s the intersection between fuzzy sot 4 and its
complement A. pgq 70x) denaotes the grade of moembership
of x; to such a fuzzy sel 4 M A and is defined as

B~ 7 = min {4 {xp), g}, forall i (Ga)
=min {pg (), (1= g (x))s,  forall i (6b)
rrom {5) it is scen that
(idpim =0 for gi=0orl {7a)
and
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¥ hipax =1 for Ry =pg =+'-=u, =05 (Th)
Furthermore, it follows that

Yil{d)=71(4%) (7c)
and

T1(d)} = 1,104} (7d)

where A% is 4 “sharpened™ version of 4 such that p¥(x) =
g () for pg (xp) & 0.5 and g () = 1y Crg) for py ()= 0.5,
Extending (3] in two-dimensional image plane we may wrnito

Y {X)= -ﬁzz Lo 7% e )

m=1,2,“',.‘1’f; n:]’E R

1

N, (8)

Equation (8) defines the amount of fuzziness present in the
property plane of an image ¥, pcorresponds to pap. X MY
is the intersection hetween fuzzy image planes X = {fumn/*mnt
and X = {1 - Pymu)f¥mn}, the complement of X. fyr £(Xmn)
denotes the degree of membership of (m, aith pixel 2, to
such a fuziy property plane X M X =0 that

Mx A X% mn) = Ban O Brgn = 000 Py, (1 = Prunlt.
forall {m, n), (%)
Similarly, for an Fuclidean distance we have
0.5
YglX)=—— \l"l'_ [ZZ (x(xmm) ~ Hx(Xmp)) ]
m=1,2, Mn=1,2,-+ N (10}

where X is the nearest ordinary image plane of fuzzy plane X,

8. Frzziness through Entropy

The entropy of a fuzzy set A having r supporting poinis 1s
defined as [1]

Higy, 0. -,m =i ]———- Yeatxp) Inlga(xg) (11
where
m(x;}=w, P, SR (12)
PNTIES]
i
The entropy is then seen to lie between 0 and 1 in 2 way
Hun=0 for gi=1, jE1,2,,n}
=0, ¥ {13a)
Huae =1 for gy =gy = =gy =1/n (130}

Itis to be mentioned here that this metheod (unlike the previous
one) does nol depend on the absolute values of g but their
relative values, In ather words, a fuzey set wilh a single non-
zero pvalue would have zero entropy and g sel having a
constant p-value for ali the elements would have /= 1, There-
fore, an image X with Mixmel=1 or O, Xmy € X (i.e, folly
bright or dark) according to this definition would be possess-
ing maximum entropy, but this is intuitively unappealing,

Be Luca and Termind |2] defined entropy of a fuzey set A
in analogy with information theoretic entropy, although quite
different conceptually, as

HiA)=

(xg)), i=1.2--- {14)

with the Shannon’s funciion

Srlphg (01 = —pr g (xg) In g (xg)
Sl - g n (1 - g (b (15}

Therefore, like the index of fusziness, thi= entropy, (14) is
also dependent on the absolute values of & and satisfies the
properties

Hoin=0 for pgy=0orl {15a)

Humax =1 for gy =gy =---=p, =045 {16h)

HiA)= H(A*) (16c)
and

Hid)= H(4). (16d)

In fact, these conditions (7) or (16} may he regarded as the
criteda to be satisfied by a function in order to measure fuxzi-
ness in a set.

With this notion, we define the entropy of an M X & dimen-
sional image plane X as

1
B = v 2 22 SntpxGeonn))

(17
with
Sl g (Xmp ) = My (X pmpd In fy {2 pn) - (1 - (X s 1)
-ln {1 = #X(xmnn
m=]12, - M nr=12---_ N (18}

. Interpretation of (X ) and H{X) for Image Enhancement

In the previows section, we have described p(X) and A(X)
for providing a measure of the fuzziness present in two-dimen-
gipnal image plane X, 4{X) measures the distance between
fuzzy property plane of X and its nearest ordinary plane.
HIX), on the ather hand, is based on the well-known property
of Shannon’s function Se{u} (15)—monotonically increasing
in the interval [0, 0.5] and monatonically decreasing in [0.5,
1] with a maximum {=1n 2) at g = 0,5—in the fugzy property
plane of X,

For gray tone image processing problem, an image pattern
X looks ambiguous to a people or device which knows only
black and white gray levels, The nature of this ambiguity
(fuzziness) in X therefore arises from the “incertitude™ present
when one has to decide whether the {#1, a)th pixel intensity
¥pmn has to be considered white or black. We may measure
this incertitude or uncertainty Wy Ly 7% ) oF ity (e D
which is O if gy (x,el=0or ! and is maximum for gy (X pmult =
(.5, the average (mormalized) amount of incerttude is mea-
sured by the terms X ) or HX )

Now through processing, if we can remove partially the un-
vertainty on the gray levels of X, we say thal we have obtained
an average amount of information given by 8y = ¥(X) - (X "y
ar B = H(X)- HX") where X' is the processed (sharpened)
version of X, The criteria WX )< y(X) and I(X )< H(X)
in order to have positive §+y and §4-values are followed from
(7c) and (16c), respec:twely If the uncertainty is completely
removed, then “}'I{X} H{X 1=0. In other words, (X ) and
Hi{X}) can be regarded as the measure of averape amount of
information {about the gray levels of pixels) which has been
lost for transforming the classical pattern (two tnne) inta a
fuzzy pattern X.

IV. PROPERTY PLANE AND FUZZIFIERS

The operations described in Section [11 are restricted in
fuzzy property plane. To enter this domain from the spatial
image plane, we need a membership function which will
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transform each x g, in the spatial domain to its corresponding
Pmg-value in the property domain, This function may be
either S-type or w-type or their complements depending on
the problem in hand. The S-function defines the compatibility
function corresponding to fuezy plane “xmy 15 Xy, " whercas
the w-function corresponds to a plane “xpp is 177 0<] <
Xmax-. The corresponding fuzzy pmg-values denote the degree
of possessing maximum brightness level x,,,, and some other
lewel [ by the (m, rlth pixel x4,

Now in our problem of measuring fuzziness of an image we
are interested in @ monotonic increasing/decreasing function
as represented by §A1 - §)-function which will result in an
one-lo-one mapping of the elements in the x-plane ranging
from 0 to xg,y to the p-plane in the interval [0, 1]/[1, 0].
To represent such an S-function, we define a simple expression

=,
+ ":-xmux = xmn}] L

Fq (19)

Pmn = Fg(Xmn) = {]

where F, and Fy are the exponential and denominational
fuzzifiers, respectively. These two positive constants have the
effect of altering the ambiguity (fuzziness) in the fuzzy
property plane by changing the crossover point and slope of
the S-function. Their effect on the ¥ and A-values has been
studied in the next section. The function @y is symmetric in
the interval [0, xgy,,] if it leads to the crossover point at
Xmax!2. Otherwise, it is said lo be nonsymmetric.

If for example, we use | (X /2) = Xy | instead of (x ., -
Twn)y (19} would represent a m-function (G ) symmetric over
X¥max/2. Since such a function would resull in the same
p-value for any two pixel intensities located symmetrically on
opposite sides of x,, (2, the conditions (Ta), (Th), and (16a),
(16b) (except for p;=0) would not convey the appropriate
interpretation of fuzziness of an image, For example, an
image X with Xy = Xpex/2. Xmn X would have pyy =
Galxmp)=1 and hence y(X)=HX)=0. Similarly, the
image X with xg5 = X a4 and Xy = 3x .0 /4, (K, 1) F (m, R1),
Xpph ¥mp =X would have (for symmetrical 7 -function)
Pmn = 0.5 and hence p(X)=H(X)=1. Both of the cases are
not intuitively appealing. Only the case when x,,,=0 or
Xmax for which pgyp =0 and X )=H(X)=0, conveys an
appropriate information regarding ambiguity in X,

Again, it is Lo be mentioned here that the above Gg-function
results in an celevel property plane where a is the value of p.,
for Xu,s = 0. Since this violates the condition (7a} or (16a)
for Xy = 0, the algorithm includes provision for constraining
all the zero xpyy-values to zero pye-value. However, the
results without using this constraint are also reported for
comparison,

V., EXAMPLE AND DMsSCUSSION

Fig. 1 shows a 96 X 99, 32-level image of handwritten script
(“Shu™). Fig. 2(a), (b), and (c) are its different enhanced
versions a5 obtained by histogram egqualization technigue,
contrast intensification technigue, and contrast intensification
along with smoothing, respectively [5]. Tahle I illustrates
the values of 7, (X), 7,(X), and H(X) for different slopes of
the symmetrical Gg-function (crossover pointat 15.5). Resulis
for different nonsymmetrical Gg-functions (for F,=2) are
explained in Table II. Here we have considered the values of
Fg to be 70, 60, 50, 45, 35, 30, 25, and 15 so that the cross-
over point of the nonsymmetrical Gg-function can lie between
the gray levels 2 and 3, 6 and 7, 10 and 11, 12 and 13, 14 and
15, 16 and 17, 18 and 19, 20 and 21, and 24 and 25,
respectively,

From Table [ it is seen that the gquadratic distance when used
in (3} results in higher effective values of ¥ as compared to
those of linear distance. The absolute y-values and H-values
for a fixed corssover point are decreased as the curve tends to
be steeper (with increase in the values of F, and £5) resulting
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Fig. 1. Original image.

in a decrease in ambiguity in p-plane. These values are mini-
mum for Fig. 2{c) and maximum for Fig. 1. This relative
order (as in Table I) for different enhanced images is seen to
b maintained as long as the crossover point is restricted in the
left half [0, 15.5] of the gray scale. As we Keep the crossover
point moving from 15.5 towards xy,, =31, the amount af
fuzziness in the equalized image [Fig. 2(a)] tends to be greater
{after the crossover points 16.5, 16.5, and 18.6 are reached
for 7, ¥g, and H, respectively) than that of input image
(Fig. 1). It is revealed under investigation that Fig. 2{a),
gince it possesses an almost uniform histogram, contains as
compared to Fig. 1, a large number of levels around the cross-
over points (as selected in the right half of gray scale) and it
is these levels which cause an increase in (Pagy M Pygn Fvalue
of Y(X) and Snl ppn-value for HIX).

As mentioned in the previous section, the above results were
obtained using the constraint @ =0 in (19). For comparison
of these results, the parameters ¥ and F were also computed
1} without using this constraint and 2} using an ideal 8-func-
tion which is defined as [3]

Pmn = 2 mn/Xmax)®  fOr xmn =P (20a)
=1 - 20 ~ XmaxWEmax)®

for f<xmp ™= Xmax {20b)

with § (crossover point)=xp../2 and 0=pyp, =1. The

results are shown only for p (Table 1) as a typical case of
llustration. The use of (19) alone (i.e., with & 5 0) results in
an increase in the absolute values of fuzziness (especially for
Fig. 2(b) and (c) having a large number of zero gray levels)
but doss not change the relative order of fuzziness for these
images, whereas (20) does change. It is also to be noted that
(200 is symmetric across § and there is no control over the
crossover point in order to make it nonsymmetric.

In a part of the experiment, the entropy under Kaufmann's
definition (11) was also computed for these images. Since
these images are neither fully bright nor fully dark (for which
it leads to an unappealing concept of A = 1), the order of their
H-values is not changed from that oblained with (14) (Table I).
Experiments were also conducted using ¢ -functions, but the
results as explained in Section IV, did not reflect the appro-
prate measure of enhancement-quality for different values of
the fuzzifiers,
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()] (c)
Fig. 2. Different enhanced images.
TABLE 1
“Innexes oF Fuzaness™ asp "Entrory™ oF IMaces ron DIEFERENT
SYMMETRICAL S-FuncTions (CrossovEr POINT AT x /2 = 155)
IMKGE ¥y 1K) To 18 Hx)
(@ 2 (s 1 (@ T O ¢ |
Fig. 1 0800 C.7ED O.7E0 O.TFhG 00285 CB04  O.TET 0.752 0966 0054 0,000 0.9k
Fig. 2a | 0711 0,681 00684 0.870 0,77 2753 0.73F 0,79 0.880  0.863  C.994% o857
Fig., b | 0.796 0,789 0.6% 088 0,403 0,503 389 033 Q.235  0.230 0,852 0,229
Fig. 2c 0,09 0091 QL5788 C.odg 0043 Q261 0.250 0,246 .13k 0.123 0.B12 00128

{1): F= 1 and Fi=

15.5: {2): F= 2 and Fgw 37.42; (331 F= 15 and F = 50.63

without the conatraint @ = 0 1n eguation (9]
ISF ueing Ideal S-Funotion (equation #0)
using equation (49}, Entrepy under Keufmasn's definition
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TARLE 11
“IMDExEs oF Frzzivess™ anp “ExTRort™ oF IMaces vor DieeeRent
MonsymMETRICAL $=-FUNcTIoNs (CorRESroymiNG Croszover Pomets,
CP eor Fo = 2 are alse MEsTIONTD)

AR Fy= 70 ¥, = &0 F, =50 Fy= 46 Fy= 40 By=3 LA Fy= @5 Fy=15
CP = 2,01 CP = 6,15 CP = W20 QP =123 OF = 14,53 OP = %65 CP = 1B,57 0P = 20.64  OF = 24,79
0,855 0,917 o, 33z 0,545 o734 735 0,663 Q. 547 .39
Flg. 1 o, 3% 0.9 o, 334 0, Blyy 0. 799 0.733 [ a, 555 o, 350
0,979 0.55% 2, 537 0, 0.90% 0.937 0. 335 0,836 o, fitk
0, 560 0.5 0,658 o, i Q4675 0,570 0.E66 0,637 a, 508
Fig. 2a 0,636 o583 0,715 o 727 0,725 0.723 oL T 0, £99 o, 558
o, v 0,290 o, §af ¢, 850 0,850 2,855 O 364 0,852 49,703
8,964 o, -0 2,85 o, 9 IR, -] 2,157 0,70 0, 166 0,120
Pig. &t Q.36° C, B . 352 a. 595 0. 299 . 585 0.371 0.3l 0, 25h
8,0 C, a2 3,08 a, 750 0,534 2,230 0,227 0. 220 a. 185
O,065 L, 095 0,08 0, 080 0,08 o - 0.4095 0,098 0, 07
Fig. Zc a, A0 o, 4 a, 2365 4, 243 0. 247 =] 0. 2565 0,258 0,253
a1 a,115 0,1 AR E 0. 27 0.431 013k o, %7 o, 238

Upper Joore! v 4K1; Hiddlie Scored % (X)) apd Lower Scors=: ALY} of aquation (940
ppet i s q
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Efficient Spiral Search in Bounded Spaces
RICHARD W, HALL

Abstrect—This cormespondence defines approaches for the efficient
generation of a spiral-fike search pattern within bounded rectangularly
tessellated regions. The defined spiral-like search paltern grows owt-
ward from a given source in a two-dimensional space, thus rending (o
minimize search time in many seqoential tracking tasks, Efficient
spiral generation is achieved by minimizing the number of operations
requited for interaction with boundaries.  Algorithms are developed

The author is with the Department of Electrical Engineering, ni-
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for both rectangular search regions and for arbitrary convex search
TEgIONE,

Fndex Termy—Convex and rectangular search regions, image track-
ing component, iterative growth techniques, search patiem generation,
spiral search pattern.

[ INTRODUCTION

An impartant facel of many imaege processing applications
is the search in a given image space for a particular object or
objects followed by some form of subsequent analysis (v.g.,
see [1)=[3]). Although many current applications wtilize
global processing with exhaustive search strategies, the order-
ing of a given search can reduce image processing lime {e.g.,
see {4]) In particular, we have heen developing an image
processing approach to the cye tracking problem [5] which
hus generated a particular interest in efficient search strategies
tor the deteclion of small (=4-5 pixcls) moving objects in a
binary image space, In one approdch we are considering the
use of a spiral-like search pattern which proceeds ocutward
from the previous known position of the object being tracked.
This allows us to economize on the size of the search space
when ohjects to be tracked are not numerous and have rela-
tively small velocities. Spiral-like search patterns found early
use in andlog character recognition approaches [6] and in light
pen lracking for random aveess CRT display technologies [ 7).

The definition of a spirallike search pattern is quite straight-
forward except when one must interact efficiently with bound-
dres a5 in our application. Consequently, characterizations
have heen developed for spiral-like search which are efficient
in use of computation time by minimizing interactions with
prbitrary boundaries in both rectangular and convex search
regions, These characterizations are the subject of this note,

I, THE SPTRAL SEARCH CHARACTERIZATION IN
BRECTANGULAR SEARCH REGIONS

A useful class of spiral-like search owver a rectanpgularly
tessellated space is illustrated and defined in Fig. 1. Irior to
redching any boundanes, we may characterize the clockwise
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