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A REVIEW ON IMAGE SEGMENTATION TECHNIQUES
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Abstract —Muny image segmeniation techniques are available i the lileradure, Some of these techniques
use only the gray Jevel hiswearam, some use spatal details while others use luzzy set theorelic approaches.
host of hese rechmugues are nat suitable for noisy cnviragments. Some works have been done using the
Markioy Random Ficld iMEF) model which is robost 1o noise, but is computationaily involved. Neural
netwark architectures which help Lo get thg,cutpur in real tme because af their parallel processing ability,
bave aiso been used for segmertation and they work fine even when the noize level is very igh. The iteralure
on cobol unage segmenialian s pel that rich s o is lor gray fane images. This paper cridically reviews and
summarizes seme of these lechnrgues. Attempls have been made e cover both luzzy snd non-fuzzy
lechmigques including color image scementation and reural network based approaches. Adequate aftention
5 paid 10 seementadion of ranee images und magnesc rosonance images. Lt also addresses 1he issuee of

guanciiative evaluation of scgmentation results,
Image segmentaticn Fuzzy sers
Markoy Randomw Fiald

1L INTRODLCTION

There are several types af images, namely, light intensity
tvisual) image, range image (depth image) nuclear
magnetic resonance image {commonky known as
magnetic resonance image (MRI)). thermal image and
sa on. Light miensity (LT} images. the most common
cvpe of images we encounter in our dady expertence,
represent the variation of light intensity on the scene,
Range image (R1). on'the other hand, s 2 map of deplh
information at different points on the scene. In a digital
L1 image the intensity is quantized, while in the case
of RI the depth vaiue is digitized. Nuclear mapnens
resonance nages represent the intensity variation of
radic waves generated by biological sysrems when ex-
posed to radio frequency pulses. Biological bodies
{humarns/animals) are built up of atoms and molecoiss.
Some of the nuclet behave like tiny magnets,"? com-
monly known as spins, Therelore, if a patient [or any
living betng) is placed in a strong magnetic field, the
magnelic nuclel iend to align with the applied maynetic
field. For MRI the patient is subjected to 2 radiws
frequency pulse. As a resutr of this the magnetic nucle]
pass into a high enerpy state. and then immediately
relieve themselves of this siress by emitting radio waves
through a process cailed relaxation. This radio wave
ts recorded to form the MRL There are twe different
types of relaxation: longitudinal relaxation and truns.
verse relaxation resulring in two types of MRTs, namely,
Tl and T2, respectively "' [n digitat MRI. the intensity
of the rudio wave is digitized wilh respect to both
intensity and spatial coordinates. Thus in general, any
image can be described by a two-dimensional function
[lx, v}, where (x, ¥} denotes the spatial coordinate and
frix, ¥) the Feature value at {x, ). Depending on the
tvpe afimage, the feature value could be light intensity,
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depth, inlensity of rudio wave or temperature. A digitat
image. an the other hand, 15 a two-dimensional discrete
function f{x, r}which has been digitized both in spatizl
coordinates und magnilude of leature value. We shall
view 3 digital image as 4 two-dimensional matnix whose
raw and column indices ideneify a pomt, called a pixel,
tn the imawe and the corresponding matrix lement
value identifies the feature imtensity level Throughout
this paper a digital image will be represented as

Fpop=[r1%11ls.g {1

where P = (0 is the sive of the imape and fix.p)eG; =
W1, ., L — 1}, the ser of discrate levels of the feature
value, Since the majority of the technmiques we are
going 1o discuss in this paper are developed primarily
for ordinury inlensity images, m our subsequent dis-
cussion, we shall usually refer to f(x, ¥y as gray value
[although it could be depth or temperature or inlenstty
of radio wavel,

Segmentacion is the first cssentfal and important
step of law level vision.*™* There are many applica-
ttons of segmentation. For example, in a vision guided
car assembly system, the robol needs 1o pick up the
approprizte companents from the bin. For this, sep-
mentation followed by recognition is required. Its ap-
plication area varies from the detection of cancerous
cells 1o the identification of un airport from remote
scosing data, ete. In all these arcas, the guality of the
final output depends largely on the quality of the
segmented output. Segmentation is a process of parti-
tioning the image into some non-intersecting regions
such that ¢ach region is homogencous and the union
of no two adjacent regions is homogeneous. Formally,
it can be defined'®! as follows: if F is the set of all pixels
and P )is & uniformity (hemogeneity) predicate defined
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on groups of connected pixels, then segmentation is a
partitioning of the st £ into a set of connected subsets
ab tegions (5, 5. ... 5,) such thar

[z 5=F with §, |'ﬂ'|5‘l = 7,

vt
=1

iw i2)

The uniformity predicate P{5;} = true for all regions
(5} and Pi5,.5)="false, when §, is adjacent to §,
Nate thal this definition i applicable to all types of
images we have described, For LT images the uniformity
predicate measures the uniformity of ltght intensity,
while for range images it could be the veiformicy of
surfuces.

Hundreds of segmentation lechniques are present in
the literature, but there is no single method which can
be caonsidered good for all images, nor are all methods
equally good for a particular type of image. Marzover,
algorithms developed for one class aof image {say or-
dinary intensity image) may not always be applied to
other classes of images (MEL/RE). This is particularly
true when the algorithm uses a specific image farmation
model. For zxample, some visual image segmentation
algorithms are based on the assumption that the gray
feved function §(x, vy can be modeted as a prodoct of
an illumination component and a refleclance com-
ponent.”! On the ather hand, in Pal and Pal*® the gray
laved distributions have been modeled as Poisson dis-
tributions, based an the theory of formation of visual
images. Such methods'™® should not be applied to
MRI/RIs However, most of the segmentation methods
devetoped for ane class of images can be easily applied;
ealended o another class of images, For example, the
variable arder surface fitting method,™" although de-
veloped for range images can be applied for other images
that can he modeled as a noisy version of piece-wise
smooth surfaces.

Thara are many challenging tssues like, the develop-
ment of 4 unfied appreach to image segmentation
which can {probakly] be spplied to all kinds of images.
Even the selection of an appropriate technique for a
speoific type of image is a diificult problem. Up to now,
to the knowledge of the authors there @s oo universally
accepred method of quantification af segmented output,
Authentication of edges is also a very important rask,
Differsnt edgs operators™™ '™ like Scbel, Prewiit,
Marr—Hildreth, ete. preduce an sdginess value at every
pixel location. However, all of them are not valid(l}
candidates for edges. Normally, edges are required to
bea threshalded, The setection of the thresheld is very
cructal as for some part of the image low intensity
variation may correspond to edges of interest, while
the other part may require high intensity vartation.
Adaptive thresholding'' '~ often is taken as a salution
to this. Obviously it cannot eliminate the probiem of
threshold sefection. A pood strategy to produce mean-
ingful segments would be to fuse region segmentation
results and cdge outputs!!* ' [ncorporation of psycho-
visual phenomanat'®? " may be good lor Hght intensity
images but not applicable for range images. Actually
sermantics and a pri'cur infarmation aboui the type of
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images are cntival 1o the solution of the sezgmentation
probiem.*® According to Pavlidis' ¥ ' jvisual) image
segmentation s a prablem of psycho-physical percep-
tion, and therefare. oot susceptible to pursly analyticat
selution. Any mathematical algorithm vsuatly should
be supplemented by heuristics which invalve semantic
information about the class of imapes under consider-
ation,

Orne may atternpt to extract the segments in a vanety
of wavs. Broadly. there are two approaches namely,
classical approach and fuzzy mathematical approach.
Linder the classicai spproach we have segmentation
techniques based on histogram threshalding, edge de-
tection, relaxation, and semantic and syntactic ap-
proaches. 171 % in addition to these, there are cartain
other methods which do not fall clearly in any one of
the above classes.'!'*~'2" Similarly, the fuzzy math-
ematical approach' 23715 alen has methods based
on edge detection, thresholding and relaxation. Some
of these methods. particularly the histogram based
metheds are not at all suitable for noisy imases. Sev-
eral attemnpts have also been made to develop image
orocessing algarithms using neural newtwork {NN)
models,' ¥ 179 particularly the Hopticld and
Kohonen networks. These algorithms work weil even
tnn & highly noisy environment and they are capable of
producing outputs in reat time, Though many algorithms
are avatlable for color image segmentation't™?7* 7™
the literature is not that rich as it is for the gray level
images. o this context it may be mentioned that the
literature is very rich on the methods of segmentation,
but not many attempts bave been made lor the objective
evaluation of segmented cutputs.

This paper attempts to critically review and sum.-
marize some of the existing methods of segmentation,
Before we proceed further, we summarize some aof the
carlier surveys on image sepmentation. Fu and Mui't™
categorized segmentation techniques into three classes:
1} characteristic feature thresholding or clustecing,
{1 edpe detection. and (3] region extraction, This sur-
vay was done from the viewpoint of cytology image
processing. A critical appreciation of several meth-
ads of thresholding, edge detection and region sxtrac-
tien*®7** has been done. This includes some graph
theoretic approaches™® also. For color image thres.
bolding, oaly a bricf mention abaut it has been given 2™
The section on edge detection makes a good summar-
ization of several edge detection approaches including
some adaptive local operators.1-32 Hueckel's' " ap-
proach of viewing edge detection as a functional ap-
proximation problem has been discussed,

Haralick and Shapire*®*' classified image segmen-
tation techniques as: (1] measurement space guided
spattal clustering, (2} single linkage region prowing
schemes, (3} bybrid linkape region growing schemes,
{4 centroid linkape regien growing schemes, {5) spatizl
clustering schemes, and (6) split and merge schemes.
According to them, the difference between clustering
and segmentation is that i ¢lustering, the prouping is
done in measurement space; while in image segmen-
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tatton, the grouping is done m the sparial domain of the
image. We like to erphasize that segmentation tries
to do the groupings in the spatial domain but it can
be achieved through groupings i the measurement
space, particularly for multispectral images'!*7"™
For multispectral data, instead of clustering in the full
measurement space, Haralick and Shupiro* suggested
te work in multiple lower order projection spaces, and
then reflect these elusters back to the full measurement
space as follows: suppose, lor example, that the cluster-
ing ts done on a four band tmage. If the clustering done
in bands ! and 2 vields clusters ¢,, ¢,. ¢, and the clustering
dene in bands 3 und 4 vields clusters ¢, and ¢, then
each possible 4-tuple from a pixel can be given a cluster
label Trom the set “{{c,,c,h {e,,c4), fe7.04) (22840
(€3 €alfes c5)}™ A detuple (x;, x5, x5, 4,) gets the cluster
labels (., cq) F{x), x4} (5 in cluster c2 and (x,.5,) i in
clustar ¢,. Hawever, this does ool seem ta be of any
use to us as this virtuaily assigns a point {a 4-tuple)
in twe different classes. Note that it is neither a prob-
abiltstic azsignment nor a fuzzy sssignment. A good
summary of different 1ypes of linkage region growing
algorithm'**~*' has also been presented.

Sahoo et al™*? surveyed only segmentation algor-
ithms based on thresholding and attempted to evaluate
the performance of some thresholding algorithms using
some uniformity and shape measures. They categor-
tzed™?! global threshelding rechnigues into two classes:
point dependent techniques (gray level histogram based)
and region dependent techniques {modiffed histogram
of co-ogcurrence based). A fairly detailed discussion
on probabilistic relaxation™?* is available. They also
reviewed several methods of malti-threshelding tech-
niques.'**"** We olfer the following comments about
the previous reviews on imxpe segmentation:

{1) Nene of these surveys!' 82442 congiders fuzzy
set theoretic segmentation techniques.

{2} Meural networks based technigues are alsoe not
included.

(3} The problem of objective evaluation of segmen-
tation results has not been adequately dexlt with ex-
cept in Sahoo e a2

(4] Color image segmentation has not been paid
proper attention,

(5} Segmentation of range images;magnetic reson-
ance images has not been considered at all.

This review paper altempts to incorporate all these
points te a limited but reasonable extent. However, by
no means is it an exhaustive survey,

L GRAY LEVEL THRESHOLDENG

Thresheolding is one of the old, simple and popular
techniques for imape segmentation. Thresholding can
be done based on global information (e.g. gray level
histogram of the entire tmage) or it can be done using
local tnformation (g co-occurrence matrix} of the
image. Taxt et al** refer to the local and global in-
Formation based techniques as contextual and non-
contextual methods, respectivety. Under each of these
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schemes (contextual/non-contextual) if oniy one thres-
hoid is used for the entire image then it is called global
thresholding. On the other hand, when the image is
partitioned into several subregions and 4 threshold is
determined for 2ach aof the subregians. it is referced to
as local thresholding " Some authors'! 13 call these
local thresholding methods adaptive thresiwlding
schemes. Thresholding technigues can also be ¢lassified
as hilevel threshelding and multithresholding, In hi-
tevel threshelding the image is partivoned intg two
regions — object (black) and background (white). When
the image is cormposed of several objects with different
surface characteristics {for a light intensity image. oh-
jects with diffegent coelficient of reflection, for 4 range
image there can be objects with different depths and
50 on) one needs several threshotds for segmentanon.
This is known as multithresholding. In such a situation
we Loy Lo get a sat of chresholds {,, ¢, ., 0] such that
all pixels with fix vielt, .0 i= G 1,... k constitute
the ith region tvpe {t, and 1,_, arc taken as 0 and
L—1, respectively). Naote that thresholding can aiso be
viewed as a classification problem. For exampiz, bilevel
segmentation is equivalent to classifying the pixcls
inte two classes: object and background. Mardia and
Hainsworth**® have shown that the main idea behind
the irerative thresholding schemes of Ridler and
Calvard™? and Lloyd™" can be defined as special
cases of the classical Baves” discrimination rule. Under
the assumption that object and background pixels are
nerrtally distdibuted with the same variance, Bayes'
allocation rule vields the formula used for threshold
computation in reference (8! With an additional as-
sumption thal the pricr probabilities for object and
background pixels are the same, Bayes® formula reduces
to the computation formula for threshold in Ridler and
Calvard '8

If the image is composed of regions with dilferent
gray tevel ranges, Le the regions are distinct, the histo-
gram of the image wsually shows different peaks, sach
corresponding to one region and adjacent peaks are
likely to be separated by a valley, For example, if the
image has a distinct abject on a background, the gray
level histogram is likely to be bimodal with a deep
vallev. In this case, the hottom of the valley (T) i3
taken as the threshold for object hackground separation.
Therefore, when the histogram bas a {or a set of) deep
valleyis), selection of threshold(s) becames easy because
tt becomes a problem of detecting valleys. However,
normally the situation is not like this and threshoid
selection ts not a trivial job. There are various meth-
odst ¥ B42° 31 yyailabie for this. For example, Otsu'32
maximized a measure of class separability. He max-
imized the ratic of the between class variance to the
local variance to obtain thresholds. Nakagawa and
Rosenfeld*' ™ assummed that the object and background
popuiations are distributed normally with digtinct
means and standard deviations. Under this assumption
they selected the threshold by minimizing the total
misclassification error. This methoed is computationally
involved. Kittler and Ilingworth,'®® under the same
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assumption of normal misters, suggested 4 compu-
rartonally less invalved method. They proposed a meth-
od which optimizes a criterion function related to
average pixel classification ercor rate that finds oot
an approximate minmmum error threshold, Pal and
Bhandari* ! optimized the same criterion function zul
assumed Potsson distributions to model the gray level
histograrm.

Pun'®*' assumed that an image is the outcame af un
L s¥ymhbol source. He maximized an upper beund of
the total a posteriort entropy of the partitioned image
Tor the purpose of selecting the threshold. Kapur
e ol an the other hand, assumed two probability
distnbutions, one for the object area and the other for
the background area, They then. maximized the total
entrapy of the parttoned image (0 order Lo arcive at
the threshold level. Wong and Sahoo'*®' maximized
the a posterior entropy of a partitioned imuge subject
1o i constraint on the uniformity measure of Lavine
atid Nazil"®™ and a shape measure. They maximized
the a posterior cntTORY OVer min (§,. 5;)and max (5. 5]
to 2et the threshold for segmentation, where 3, and s5;
are the threshold jevels at which the uniformity and
the shape measure attain the maximum values, respect-
ively. Pal and Pal'® modeled the fmage as a mixture
of two Poisson distributions and developed several
purametric methods for segmentation. The ussumption
of the Poisson distribution has been justified hased on
the theory of imags formation. These algorithms max-
imiize either entropy or minimeze the ¢? statistic. Though
these methods use anly the histogram, Lhey produce
good results due ta the incorporation of the image
formation model.

All these methods have a comman drawback, they
take into account only the histogram information
[tgnaring the spatial details). As a resuit, such an algar-
ithm may fail to detect thresholds il these are not
properly reflected as vallevs in the histogram, which
13 narmally the case, There are many threshelding
schemes that use spatial mformation, instead of histo-
gram information. For example. the busyoess measute
of Weszka and Roseofeld'™ is dependeat on the co-
oceurrence of adjzeent pixels in an tmage. They min-
imized the busyness mezsure in order to arrive at the
threshodd for sepmentation. Deravi and Pal'™ minim-
ized the conditional probability af transition across
the boundary between two regions. This method abso
uses the local information contained in the co-occur-
rence matnx of the image. However, fnally all these
metheds threshold the histogram, but since they make
use of the spatial details, they result in a more meaninglul
segmentation than the methads which use anly the
histogram mformation. Based oo the co-occurrence
matrix, Chanda et @77 have given an average cantrist
measure for scgrnentation. Pal and Palt'® %7 proposed
measures of contrast between regions and homogeneity
of regions usimg the brightness perception aspect of
the human psycho-visual system, and applied them
to segmentation. They also defined™* the higher order
entropy and conditional entropy of an image giving
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measures of homogeneity and contrast, respectively.
These measuress are firally applied o develop object
extracrion algorithms. A concept similar to the second-
order local entropy of Pal and Pal™® has been used
by abotaleb'® for segmentation. The gray value of a
prxel and the average of s neighboring pixels have
been used there for the computation of the co-cceur-
rence matrix, As a result the boundury of the segmented
object usually becomes blurred,

The philesophy behind gray level chresholding,
“pixels with gray level < T [all into one region and
the remaining pixels helong 10 another region™, may
nat he true on many occasions, purticularty, when the
tmage 1s noisy or the buckground is uneven and tlumi-
natien s poor. In such cases the objects will still be
lighter or darker than the background, bur any fixed
threshaold levet for the entire image will usually fail to
separate the objects from the background, This leads
one 1o the methods of adaptive thresholding. 1n adap-
tive threshelding'' '™ normally the image is parti-
tioned tnte severul non-overlapping Blocks of equal
area und a threshold for each Block is computed inde-
pendently. Chow and Kancka'? *' used che (sub} histo-
gram af each block 10 determine local threshold values
for the corresponding cell centers, These local thres-
holds are then interpolated over the entire image to
vield a threshold surface. They'! ! used only gray level
information. Yonowitz and Bruckstein® exrended
thisidea to use combined edge and gray level infarma-
tion. They computed the gray leve] gradient magnitude
frem a smooth version of the image. The gradient
values have then been thresholded and thinned using
4 locul muxima directed thinning process. Lacations
of these locul rradient maxima are taken as boundary
pixels between object and background. The correspond-
ing gray levels in the image are taken as loeal thresholds,
The sampled gray levels are then interpolated over the
entire image to obtain an adaptive threshold surface,
Several approaches to the two-dimensional interpola-
tion problem hive been discussed. The performance of
the algorithm is likely to depend on the cheice of the
threshold levels for the pradients and no guideline has
keen provided for this,

L ITERATIVE PIXEL CLASSIFTCATION

3l Beluxurion

Relaxation'**¥* i an itcrative approach to seg-

menmtation in which the classification deciston about
each pixel can be taken in parallel. Decisions made at
neighkoring points tn the current iteration are then
combined to make a decision i the pext lleration.
There are twa types of relaxation: probabilistic and
fuzey. We discuss here the probabilistic relaxation,
Suppose a set of pixels { N fa .., fL) 15 to be classiled
tnte m classes {C, C,....,C,}. For the probabilistic
relaxation we assume that for each pair of class assipn-
ments ;e and fieC,. therc exists a quantitative
measure ol compatikility C[¢, j; b, k) of this patr, ia. the
class asstgnmeni of pixels is interdependane, I1 is reason-
able Lo assume that 3 positive value of Cii, f; ke k)
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indicates the compatibility of fe €, and f,eC,, whiie
a negative value represents incompatibility and a zzro
don't care situation. The function C need not be sym-
metrie.

Lct py; tepresent the probability that feC 1 2 isn
and 1<i<a with0<p, =1, 3 p, =1 lotitively,

il

if e 18 high and (i fL k) is positive, we increase p;
sifice it is compalible with the high probability event
fuz O Stmilarly, if py, is high and CUEL A KD is negative,
we reduce py; as it ts incompaltible weth f, 20, On the
other hand. if py, 35 low or O0, £ R R s nearty zero, oy
is not changed ax either ;e C, has a low probability
oris treelevanete f e O The luzzy relaxation is similar.
3.2 MERF bused approaches

There are muny mage segmeniation methods! 1377

which use the spatial interuction modeks like Markow
Random Field {MRF) or Gibbs Random Field {GREF)
to model digital images. Geman and Geman''*¥ huve
propased a hierarchical stochastic model for the onginal
imuge and developed a restoration algorithm, based on
stochasue relaxation (SK) and annealing, for computing
the maximuwm a posteror estimate of the odeinal scane
given a degraded realization. Due to the use of anncaling,
the restoratieon algorithim does not stop at a lecal maxima
but finds the global maximum of ihe a postetior prab-
ability, We mention here that the probabilse refax-
ation'?* {also known as relasation labeling {R LY and
stochastic relaxation, although they share some com-
mon features fike parallelism and iccalicy. are quita
distingt. RL is essentiaily a nor-stochustic ideterministic)
process which allows jumps to states (conftgurations|
of lawer energy. On the other hand, SR transition
to a configuration whech increases the energy (decroases
the probability) is also allowed. In fact, il the new
configuration decreases the energy, the system Lransits
to 1hat state, while if the new confliguration incroases
the energy the system accepls thut state with a prob-
atility. This helps the system to avoid the local mumma.
RL usually gets stuck in a local minima. Moreover, in
RL there is nothing corresponding to an eguilibrium
state OT cven 4 juint probability law over the conbigur-
ations. Derin et al''' ™ extended the ooe-dimensional
Bayes smoothing algorithm of Askar und Derin''*"' to
two dimensions to got the optimum Bayes estimate for
the scene vaiue at svery pisncl. Lo order to reduce the
computational complesity of the algorithm. the scene
is modeled as a special class of MRF maodels, called
Markov mesh random fields which are characterized
by causal transition distributions. The processing is
done over relatively narrow strips and estimates are
abtained at the middle section of the strips. These
picces Logether with overlapping strips yield a sub-
optimal estimate of the scene, Without paralle] implemen-
tation these algorithms become computationally
prohibitive. Derinand Elliatt’**" used a doubly stoch-
astic hierarchical model for image duta. Al the 1op
level a Gibibs distribution [GD ts used to churacterize
the clusters of the image pixels into regions with similar
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features. At the bottom level. the feature or extural
properues of region types are modeled by a secand set
of G2 one for sach type of class. The segmentation
algorithuns are derived by using the maximum a pos-
terior probability (MA P eriterton. To reduce the com-
putational overhead of the exact MAP estimate, they
derived suboptimal solutions through simplifying
assumptlions in the model. They lormuiated i1 as a
dynamic programming problem. These algorichms
require only one raster scan over the image.

33 Neurul repwork based approaches

For any artificial viston upplication. one desires to
achieve robusiness of the system with respect to random
noise and failure of processors. Mareover, a system can
iprobably) be made artificially imellipent if it is able to
emulute some aspects of the human infurmation pro-
cessing systern, Another important requirement is 10
hava the outpul in real time. Neorad network hased
approaches are attempts 1o achieve these goals. Meural
netwarks are massively connected networks of cle-
mentary processors'! 379 Architecture and dyn-
amics of some networks are claimed to resemble infor-
ration processing in biological neurons.'* * ™ The mas-
sive connectionist architecture usually makes the system
rubust while the parallel processing enables the system
to produce output in real time. Several authors'*#%74"™
have attempled to segment an image using neural
networks Blanz and CGish''* used a thres-luyer {eed
forward network for imaee segmentation, where the
number of neurons in the mput laver depends on the
number of input fratures [or cach pixel and the number
of neurons in the outpat layer is equal to the number
of classes. Babaguchi er al' " used a multilayer net-
wark trained with backpropagation, for threshelding
an image, The input to the network is the histogram
while the cutput is the desiruble threshold, To this
merhod at the time of learning a laree set of sample
images with known thresholds which produce visually
suitable outputs are required. But for practical appli-
cations it is very difficuls t0 get many saumple images.

Recently Ghosh et alt'®-'%% used a massively con-
nected network for extraction of objects in a nosy
enviranment. The maximum a posterior probabilily
estimate of a scene modeled as 8 GRF and corrupled
by additive Gaussian noise has been done using
a neural network!!*® The hardware realization of
neurans Lo be vsed for such a netwark has also been sug-
gesied, This NN based method takes into account
the contestual information, because the GRF model
considers the spatial interactions among neighboring
pixels. Another robust algorithm for the extraction of
objects from highly noise corrupted scenes using a
Hopfield type ncural network has been developed in
references (167, 169), The energy function of the network
has been constructed in such a manner that in & stable
state af the net it extracts compact regions from & nolsy
scene. A multilayer neural network!'** where each
neuranin laver i (i = tlis connected 10 the correspond-
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tng neuron in laver {f — [] and some af s neghboring
neurons(in layer i — 1). has been used (o segment noisy
images. The cutput status of the neurons in the outpaut
laver has been viewed as a fuzey set (lo be defined in
Secuon 7). The wetght updating rules have been derived
to minimize the fuzziness in the systern. For this algor-
ithm the architecture of the network enforces the system
to conswder the contextual informatton. Moreover,
this algorithm tntegrates the advantages of both fuery
sels {decision [rom imprecise/incomplete knowledge)
and neural nevworks (robustnessy, Shah''™ ¥ formulated
the probiem of cdge detection in the context of an
energy minimezing model, The method is capable of
eltminating weak boundaries and small regions, Cortes
and Hertz"'"¥ proposed a NN to detect potential edpes
in different erientations. The periormance of the system
bas bean investigated through simulation studies using
simulated annealing und mean feld annealing Ino
reference (168) the image segmentation problem has
been formukated as a4 constraint satisfaction problem
[C5P) and a class of constraint sausfaction neursl net-
work (CENN) is proposed. A TSN consists of a set
ol ohjecls, a set of lahels, 4 collection of constraint
relations and a topolegical constraint describing
the neighborhood relationships among various abjects,
The CSMNN is viewed as a cotlection of interconnecied
neurons. The architecture is chosen n such a way that
il represents constraints in the ©5P. The proposed
method is found to be successful on CT (compured
wmographyimuages and MRIs. However, robustness
of the algerithm with noisy data has not heen investi-
gated, Moreover, for references (164, 168]a large num-
ber of neurons are required even for an image of
moderate size.

d. SURFACE BASED SEGMEMNTATINN

This section mamly discusses a few selected tech-
niques for range image scgmentation®l3 1582784
Besl and Jain'® have developed an image segmentation
algorithm based on the assumption that the image
data exhibits surface coherence. re. image data may he
interpretad as noisy samples from a prece-wise smaoth
surface function. Though. thes method is prohably
most useful for range imapes. it can be wsed 1o segment
any type of image that cun be modeted az a noisy
sumpled version of a picce-wise smooth graph surface,
This method is based on the fact that the signs of
Craussian and mean curvatures vield a set of zight
surface primitives: peak, pit ridge, saddls ridge, valley.
saddle valley, fat (planar) and mintmal. These primitives
possess some desirable invariant properiies and cun
be used to decompose any arbitrary smooth surfaces,
In other words, any arhitrary smaooth surface can he
decompased inte one of those eight possible surfage
tvpes. Thesezimple surfaces can be well upproximated,
far the purpose of seamentation, by bivariale poly-
nomials of order =< 4. The first stage of the algorithm
creates a surface type labe] itage based on the bocal
informazion {using mean curvature wpd Gaussiun curvs
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ature images). The second stage tokas the original
image and the surface type image as input and performs
an iterative region growing using the variable order
surfuee ftrting. In the varabbe order surface fitting, frst
it nas heen tried to represent the paints in a seed ragion
by a planar surface, [F this simple hypothesis of planar
sutface 18 found Lo be true then the seed region is grown
an the planar sucface it If this simple hypothesis fails,
thza the next more complicated hypothesis of biquad-
ratic surface fit is tried. 1 chis (s satisfied, the region is
arown hased on that form otherwise, the next compli-
cated form 15 tried. The process is terminated when
gither the region growing has converged {same region
ohtatned 1wicel or when all preselected hypotheses fail,
Tn the luter case, posstbly a higher order surface should
be tried.

Hoffman and Jain'®?' have developed a method for
segmentation and classification of range images, They
have used a clustering algorithm to seegment the image
inta surface patches. Different types of clustering algor-
ithms inciuding methods based on minimal spanning
iree, mutual nearest neighber, hierarchical clustering
and square error clustering have been attempted. The
square error clustering has been found to be the most
successful method for range images. The feature set
used contains the coordinate position (x, y), the depth
value fix. v and the estimated unit sorface normai
veclor. The unit surluce normal vector is normal o the
rangent plane at a point which is obtained by finding
the best (in the leas! square sense) fitting plane over 3
neighborhood. In the second phase af the method
these paeches are classified as planar. canvex or concave.
In order to make the method of classification more effec-
ttve they have combined three differzat methods.
namely, “non-purametric trend test for planacioy™,
“curvature piananty test”, and the “sigenvalue planarty
test™, In the final stage, boundaries berween adjacent
sucface patches are classified as crease or non-crease
edge. and thes information is then used to merge adja-
cent compatible patches to resuft in reasorabie faces
of the abject. For this type of methad, the chaice of the
netghbarhacd to compute the local parameters is an
impaertant issue and na theoretical gridelime has been
pravided far chis.

Yokoyva and Levine''™ also used a differential geo-
melric technique like Besl and Tain'! for range image
segmentation. Yokova and Levine!**' combined both
region and edge based considerations, They approxi-
mated object surfaces using biquadratic polynomials.
As in reference (9] stgns of Gaussian und mean curva.
tures (curvalure sign map have been used to get the
initial repion based seementation. Two edge maps are
formed; one for the jump edze and the other for the
roof edge. The jump edge mapnitude is obtained by
compuling the maximum dilference in depth between
4 point and its eight neighbors; while the roof edae
magnitude is computed as the maximum angular dil-
ference between adjacent unit susface normals, These
two edge maps and the curvalure sign map are then
fused to form the final sepmentation. This method oo
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reguires selection of threshold levels for the maps and
the curvature sign map. Improper choice of these
parameter values is likely to deterioratle the gualily
ol segmentation autput. At this point we note that for
range images, detection of jump edges can be done
with ordinary gradient operators, but detection of
crease edees with ordinary gradient operators becames
difficult. For an inclined plane depth value changes
stowly and hence any difference operator is fikely to
respond resulting in false edges. Oilen mugnitode of
the crease edge is computed as the maximum angular
difference between adjacent unit surface normals. Note
that the maximum angular diference methed may
jusually will} faii to detect jump edpes.

Thus for edge detecticn in range images one needs
to gecount for both creasze and jump edges separately,
Rimey and Cohen'®* formulated the probiem as a
maximum likelthood (ML) sepmentation problem.
Here also the obiective is to divide the ranpe imuge
thio windows, classify esach window as a particular
surfuce primivve, and group like windows into surface
regions. Homopgeneous windows are classilied accord-
g 10 a generalized likelihood ratie test, This test uses
tnformation from adjacent windows and s compu-
tationally simple. Onuee each window has been classi-
fied, simitar windows are merged using ML clustering
analysis.

5. SEGMENTATION OF COLOR IMAGES

Color 1s & very important perceptual phenomenon
related to human response to different wavelengths in
the visible slectromagnetic spectrum.’#*! 7! The image
is nsuully described by the distribution of three color
components B (red), G (green), B (blue). Color image
iz often alse represented by three psyeholegical qual-
ities— hue, saturation and miensity. These color foa-
tures and many others can be calculated from the
tristimuli R, Cf and B by cither a linear ar a hen-lingar
transfotmation Ohta er 2" ™ atternpted 1o find a set
of efective calor features by systematic cxperiments in
repgion scpmentation. They applied an Ohlandar 1vpe
sepmentation algorithm for the experiment!’ ™' At
every step af segmenting a region, calcuiation of the
new colar features is done far the pixels in that region
by the Karbunen-Loave (KL} transform of R, B and
G duta. Based on extensive experiments, it has been
found that the following three color features [1 = (R ~
B-GylI2=(R~-B)2or (B—Ry2and [3=[2G -
B — B}/4 canstitute an effective set of features for seg-
mentation.

Spectrum analysis is another technique of color
image segmentation in which prior knowledge about
abject colors s used to classify pixels, However, in
many real life applications prior knowledge about the
colors of the object may be difficult to gather, Under
this situation clustering techniques can be used. Ohta
e al' " pstead of using the R-B-G calor coordinate
directly, used 11, 12 and 13. Lim and Lee'* developed
4 two-stage color tmage segmentation technigue based
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an threshalding and fuzzy c-means (FCMi methods. ! ¥
The FCM method will be discussed in Section 7. This
methed' ™ can be viewed as 2 coarse to fine technigue
which trizs o reduce the computational overhead of
FCM. The method is similar to the itetative algor-
ithm proposed by Huntsberger ef o™ """ except it uses
the seale space filter for inding the number of clusters.
The coarse segmentation allemps 10 sepment using
threshoiding and then the FCM algorithm is used 1o
classily pixels which have not yet been asstgned to any
clags in the coarse segmentauen phase. Though the
method is claimed 70 find the number of classes auto-
matically, it does have some subjective cheicss. For
example, in rhe coarse scgmentation phase if the oum-
ber of pixels ina class exceeds® prespecilied threshold,
then only it ts tuken #5 & valid class. We mention here
that a color image is a spectal case of multispectral
images and algorithms developed for multispectral
immages' 7t usually can be wsed for color imupe seg-
mentation,

i FDGE DETECTION

Segmentation can also be oblained through detection
of edges of vartaus regions, which normally tries Lo
locate points of abrupt changes in gray leve! intensily
vatues. As discuszed in the previous saction, for range
images edges are declared at points of significant changes
indepth values. Since edges are local features, they are
determined based on local information. A large variery
af methods are available in the literature' 73977513
for edge finding. Davis''* " classified edge detection
technigues imto twa categories: sequential and paralled,
To the sequential technique the decision whether a
pixzel is an sdge pixel or not is dependent on the result
of the detector at some previousty examined pixels, On
the other hand, in the paratle]l method the decision
whether a point is an edge or not is made based oo the
potnt under consideration and sorme of its neighboring
poines, As a result of this the operator can be applied
1o every point in ths image simultanecusly, The perfarm-
ance of a sequential edge detection methed is depen-
dent on the choice of an appropriate starting point and
how the resulls of previous points influcnce the selection
and resuft of the next point, Kelly'""™" and Chien and
Fu't'!* used guided scarch technigues for this. Chicn
and Futlt! detacted cardiae and lung boundaries in
chest X-ray images using a sequential search 1echnique
with an evaluation function.

There are different tvpes of paraliel differentiz[ oper-
ators such as Roberts pradient, Sobel gradient, Prewitt
gradient and the Laplacian operatar.” ™ These differ-
ence operators respond 1o changes in gray level or av-
erage gray level. The gradient operators, not only re-
spond to edges but also to isolated points. For Prewitt’s
aperator the response to the diagonal edpe is weak,
while for Sobel's aperatar itis not that weak as it gives
greater weights to points lying close to the point (x.3)
under consideration. However, both Prewitt's and
Sabet’s operators possess greater noise immunity. The
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preceding operators are ¢alled the first difference oper-
ator. Laplacian, on the other hand, is a second difference
aperator. The Laplacian operatar is given by

i".:llf'

praaiisn i

The digital Laplacian being 2 second difference oper-
dtor, has a zero response 1o linear ramps. It responds
strongly to corners, lines. and tsolated points. Thus for
a noisy picture, woless if has a low conteast, the noise
wilt produce higher Laplactan values than the edges.
Moreover, the digital Laplacian is not orientation
mvariant, A good edge detector, should be a flter with
the fellowing two features, First, it should be a differ-
cntizl d'pr:ramr, taking either a first or secand spatial
dertvative of the image, Second, it should be capable
af being tuned 1o act at any desired scale. so that large
filters can ®e uscd to detect blurry shadow edges. and
small ones to detect sharply focused fine detaits, The
second requirement is very useful as intensity changes
accur al different scades o an image. According to
Marr and Hildreth'"™ the mast satisfactory operatar
fulflling these conditions is the Laplaciun of Gavssian
LG operatar, Tr is normally denoted by W6, whare
ihe Laplacian ts as given by squation (3] and

G=e|z1‘-}-:|,-{2rrol:l |:'4]

is & two-dimensional Gaussian distetbution, with stan-
dard deviation o. The Gaussian part of the LG operator
blurs the image, wiping cut all structures at scales
much smaller than the o of the Gaussian'™ The
aussian blurring function is preferted over others
because it has the desirable property of being smooth
and iccalized m both spatial and frequency domarns.
In order to find the intensity change at a given scale,
Marr and Hildreth, first filtered the image with the
VG filter and then found the zero-crossings im she
filtered image. The space described by the scale par-
ameler ¢ and the zero-crossing curves is called the
scale space. The behavior of edges in the scale space
produced by the LG operator has heen studied by Ly
and Jain."'"* In order to formulate rules far reasoning
in the scale space they studied dislocation of =dges,
false adges, and merging of edges with nics mathemati-
¢al frumes.

Accarding to Canoy ™ a pood edge detector should
have the [ollowing thres properties: (1} law probabilily
of wrongly marking non-edge points and low prob-
ability of Tailing to mark real edge poinis lie good
detection); 12} points marked as edges should bhe as
clost as passible to the center of true edges (ie. good
localization), and (3} one and only ane response (o a
single edge point {single response), Good detection can
Be achieved by maximizing signal to notse ratio (SNR),
while for good localization Canny used the recipracal
of an estimate of the r.m.s. distance of the marked edge
from the center of the true edge. To maximize simul-
taneously both good detection and localization criteria
Canny''"" maximized the product of SNR and the
reciprocal of standerd deviation {appraximate) of the
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displacement of edge points. The maximization of the
product is done subject 10 a constraint which eliminates
multiple responses to single edge points.

In the case of a noise free image. the edge angle can
be measured accurately. but in real [ife images, noise
cartnot be avended and it makes it difficult to estimate
the true edge ungles. Kirtler e af.'*® suggested thres
methods 1o improve the edge ungle estimate obrained
rom Sabel’s operalor. Al the three methods involve
averaging of the outputs of the Schel operator over
a 3 =} window, One of the methods, which ignores
the effect of the central pixel, at which the angle 2s-
limate is wished. is found to produce the best resolt,
They have justified this countarintuitve view also,
Haralick"' "' attucked the problem of edge and region
detection from a new angle. He assumed that the
abserved image is an ideal image with noise added.
Each region in the image is 2 sloped plane. In order to
determine the edge between two pixcls, best fitted
sloped planes over a neighborhoad of each pixel are
found, Edges are declared at locations having signifi-
cantly different planes on etther side of them. The least
square errar pracedure has been used to estimate the
parameters of a sloped surface for a given neighborhood.
An approprizte F statistic has beeo used to test the
significance of the difference of the estimared slope
fram a zero slope ar the significance of the difference
af estimated slapes of adjacent neighbers.

An Herative afgorithm has been develaped by
Gokmen and Li"''* using the regularization theory.
The energy functional in the standard segmentation
has been medified 1o sputially control the smoothness
over the image in order to obtain the accurate location
af edges. An algorithm far defining a small, aptimal
kernel condittoned on some mmportant aspects of the
imaging process has been suggested by Reichenbach
et al'''* for edge detection. This algorithm takes mto
account the narure of the scene, the paint spread func-
tion of the image gathering device, the effect of naise,
etc,; apd gensrates the kermel values which minimize
the expected mean square error of the sstimate of the
scene characteristics. We have discussed various oper-
alors to get edge values, All the edpes produced by
these operators are, normally, not significant (relevant)
edpes when viewed by human beings. Therefare, one
needs to find out prominent {valid) edges from the aqut-
put of the edge operators. Kundu and Pal'' ™' have sug-
gested a method of thresholding to extract the promi-
nent edges based psycho-visual phenomena. Had-
don''®® developed a technique to derive a threshold
for any edge operator, based on the noise statistics of
the image.

T. METHODS EASED OM FUZZY SET THEGRY

Zadeh imtroduced the concept of fuzzy sets in which
imprecise knowledge can be used (o define an cvent, A
fuzzy set A4 is represented as

A={ualain, =12, 0 (5]
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where u,ix,) gives the depree of belenging of the cle-
ment x, to the set 4.

The relevance of fuzzy sets thaory in pattern recog-
oition problems has adequutely Been addressed in the
literature! !5 129 1t s seen that the concept of fuzzy
sets can be used at the feature level in representing an
input paltern as an array of membership values denat-
ing the degree of possession of certuin propertes and
in representmg linguistically phrased input features;
at the classification level in representing multi-class
membership of an umbiguous puttern, gnd in providing
an estimate {or a representatton) of mssing infor-
mation o tertns of mernbership values 2% Ino other
words, fuzzy set theary may be incorporated in handling
uncertaintias (artsing from deficencies of iflormation:
the deficiencies may result from incomplete, imprecise,
ill-defined, not Fully refliable, vague, contradictory infor-
matian] in various stages ol a pattern recegnivion
system. While the application of fuzey sets in cluster
analysis und classificr design was in the process of
development, an important und related effert in fuszy
image processing and recognitiop!iSe- 1418107
was evolving more or less to parallel with the afaresaid
general developments. This evolution was based on the
realization that many of the basic concepts m image
anglysis, c.g the concept of an edge or 4 corner ot a

05

boundary ar a relation between regions. do aot lend
themselves well to precese definition. A gray wone images
possesses ambiguiry within pixels due 1o the possible
multi-valued levels of brightness in the image. This
indeterntinacy is due to inherent vagueness rather than
randomness. Iocertiude i an image patiern may be
explained in terms of grayness ambiguity or spatial
{zeometricall ambiguity or both. Grayness ambipuity
means “indefiniteness” in deciding whether a pixel is
white or black. Spatial ambiguity eefers o “indefinite.
ness” in the shape and geometry of a region within the
image.

Conventional approaches to image analysis and rec-
oenitien'? ™ consist of segmenting the image into
meaningful regions, extracting their edges and skeletons,
compuling various features/properties (e.g area per-
imeter. centroid, ele) and primitives (e.g. line, cor-
oer, curve. ete b of und relationships among the regions,
and finally, developing decision tules/grammars lor
describing, interpreting and/or classifying the image
and its subregions. In a conventional system each of
these operatidns involves crisp decisions (e yes ar oo,
black or white, O ar 1) about regions, features, primitives,
properiies. relations and inlerpretations,

Since the reglons in an image are not always crisply
defined. uncertainty can arise within every phase of the
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Fig. 1. Differemt types of membership function: (a) S-lype membership function, thi m-iype membership
funclaen,
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aforesaid tasks, Any dedsion made at a particular level
will have an impact on all higher leve] activities, A
recognition [or viston) system should have suflicient
provision for representing and manipuiating the un-
certainties involved at every processing sluges; Le in
delining tmage regions, features, matching, and refa-
tions amang them, so that the system retains as much
of the "{alermation content™ of the data as possible. If
this is done, the ultimate auiput {result) of the system
will possess minimal uwneertainty {and untike conven-
ticnal s¥stems, it may not be btased or affected as much
by lower level decistion components),

For example. consider the prohlem of object extrac-
tion Irom a scene, Now, the yuestion is "How can one
define exactly the terget ar object region in a scene
when its boundary is ill-defined™ Any hard thresholding
tnade for the extraction of the object will propagate
the assoctated uncertamnty to subsequent stages feg.
thinning, skeleton extraction, primitive selection) and
this might, in turn. affect feature analysis and recog-
nition. Consider, far example, the case of skeleton ex-
tractian of a regien through medizl axis transformation
{MAT) The MAT of a regian in a binary picture is
determined with respect o its boundary. Tna gray tone
image, the bovndaries are not well defined. Therefore,
ertors are more likely, if we compule the MAT from
the hard-segmented version of the tmage,

Thus_ it is convenient, natural and appropriste to
avold committing ousselves to  spectfic (hard) decision
[¢.0. segmeniation/threshelding, edge detection and
skeletonization), by atlowing the segments or skeletons
or contours to be furry subsets of 1he image, the
subsers oeing characterized by the possibility (degree)
to which vach pivel belongs to them. Similarly, for
describing and interpreting ill-defined strueiural infor-
mation in a pattern, il is nutural to define primitives
ilinz, carner, curve, eted und relations among them
using labels of fuzzy sets. For example, primitives
which do not lend themselves to precise definition may
be defined in terms of arcs with varying grades of
membership from O to ! representing their degree of
belonging to morz than one class. The production
ruies of 4 prammar may similarly be fuzzifiad to account
for the luzziness [imprecisensssy in physical refation
amony the primizives; therehs incrensiae the generalive
pewer of a grammar for syatactc recognitten af a
pattern.

We chall descrihe here o few methads of fuzzy seg-
mentation dkased on both gray ievel thresholding and
pixel classification) and edge detection using globul
and:or local infoarrmation of an imape spuce. We mention
hers that the result of ssgmentation should be fuzzy
subsers ruther than ordinary subsets was first suggested
by Prewi !

T Fucow thresholding

Cnfferent histagram thresholding techniques in pro-
viding both fuzry and non-fuzzy sepmented versions
by minimizing Lhe gruyness ambipuity (global enlropy,
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index of fuzziness, tndex of crispness) and geometrical
ambiguity [fuzzy compactnesst of an image have heen
described m references {136, 131). These algortthms use
different 5-type membership functions (Fig. 1a) to
define fuzzy “object regions™ and then select the one
which 15 associated with the minimum [optimum)
valuz of the aforesaid ambiguity measures. The aptimum
membership funcuon thus obtained enhances the
obiect from background and denotes the membership
vilues of the pixels for the fuzzy obiect region. Note
that the cross-over point ithe point with membercship
value of (L5 in Fig. I[a) b is the cross-over point) of
the aptimum membership funciion may he constderad
a thresheld for crisp segmentation. [rs extension 10
multithresholding has also been made. An S-type
membership function can be asymmetric also. The
mathematical framework of the algorithm including
the selection of § functions, its bandwidth and bounds
hizs been established by Murthy and Pal'*** Many
other measures of image ambiguity, a.g. fuzzy corcel-
ation,”"*" index of area coverapge.” ** adjacengyitd4 127
may similarly be used. Pal and Pal'#® 134050 g 0.
duced a measure called higher arder entropy of a Tuzzy
set and applied it i a simelar way to the object extrac-
tion problem using un adaptive membership function,

The problem of determining the appropriute mem-
bership function in tmage processing drew the attention
ol muny reseurchers. Reconsider the problem of grav
jevel thresholding using 5 functions. If there is a differ-
ence in opinion in defining an 5 function (ie, instzad
of & single membership lunction, we have a set of
monatomically non-decrsasing funchions), the cancent
of spectral fuzzy sers’' *® can be used ta provide soft
decisions {a set of threshelds alang with their certaingy
values) by giving due respect to all apinions. In makmg
such a decision, the algerithm minimizes differences in
apinions in uddition to the ambigeity measurzs men-
tioned earlier; thereby munaging the uncertainty. The
bounds for 3-rype functions have besn defined based
an the properties of fuzzy correlation' **' sa that any
function [ying in the bounds would give satisfactory
segmentation results. It therefore, demonstrates the
Nextbiliry of fuzzy algorithms. Xie and Bedrosian''*?
have also made attempts io determining snembership
functions for gray level images.

T2 Fuzzy olustering

The fuzzy c-means {FCM) dlustering algorithm' 22 has
has ulso been used in image segmentation 27138277
The fuzzy c-means algorithm uses #n iterative optime
ization of an objective function based on a weighted
similarity measure between the pixels in the image and
each of Lhe c-cluster centers. A local extremum of this
ohjective function indicates an optimal glustering of
the input data. The ohective function that is minimized
s given by
. Y
WL V= N Y (g™, ifit
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where u,, 15 the furey membership value af the kih pixel
i the ith ciuster, J, is any inner produoct induced norm
metric, m controls the nature of clustering with hard
clustertng at m = 1 and increasingly Muzzier clusiering
ar hegher values of m. ¥ s the set af c-gluster conters
and L is Lhe fursey copartition of the tmage. Trived: and
Bezdek''* ™ propased a fuzzy sel theoretic image seg-
menlation algorithm far aertal images. The method is
based upon Tegion ETowWing principles using a pyramid
daty structure. The ulgocithm is hrerarchical in nature,
Segmicntation of the image at o particufar processing
level is done by che FCM algorithm. To a multilevel
segmenlation experiment, bevet § regions are considered
homogeneous when image elements have largest cluster
membership values of grester than a prascribed hres-
hold. If the homogeneity test fails, repions ure split Lo
form the nest level regions which are apain subjected
to the FCM algarithm. This algorithm is a region
splttiing algarirhm. whera the acceptance of a region
is determined by fuzzy membership values (o different
remions. Hall er al 193 sepmented magnetic resonance
brain images using the unsupervised fuzzy c-means
and also by a supervised compuiational network 4
dynamic multilayered perceptron frainad with the
cuscade correlation learning algorithm, The different
aspects of bath approaches and their vtility lor the
diagnostic process have been discussed. However,
computational complexity of fuzzy c-mean is too high
12 apply it for real time application of MRI segmen-
tation. Canton et al” ™ suggested an approximite
verston of the algorithm thal reduces the compu-
tational overhead One of the advantages in using
fuzzy clustering algorithmsis that one can dynumically
select the appropriate number of clusters depending on
the strenach of memberships across clusters. '™ Keller
and Carpeneert' ™ used a modified version of FOM
for image segmentation. The cluster centers are up-
dated using the FCM formula bur new membarship
values for each point are caleulated using an S-tvpe
fungtion based on the feature value of each point and
the Tuzzy means. They ' *™ also proposed region grow-
ing and relaxation algorithms based an membership
values.

Backer' % developed a very generai clustering strat-
sy which has been applied to diffarent types of data
inciuding images, The set of sumples = 5 first parti-
tioned into ¢ (number of classes) disjoint sees as an in-
itia) guess of the desired parition. Then a membership
lfunction is assigned to those initialized clusters accord-
ing te some "point 1o point subset affinity” mechanism
for all points in . 1o fact, he suggested u number of
affinity mechanisms based on the distunce coneepl. the
neighborhood concept. and the prebakilistic concept.
Updating of the partitions {repartitan, rechussication)
1 then dene wnder the guidance of some criterion
function which characterizes the partition, Three dif-
ferent types of criterion funcuions, based on measurcs
ol fusriness, inter fuzey sel distunce, and measurs of
fuzzy similurity have been considered there. TEchunges
pocur in the carlier step, the process of assigning mem-
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bership function and updatng 15 repeated; otherwise,
the algorithm terminates. Fuzzy measures and fuzey
intearal have also been used [or imuge segmentation
including multispectral images.' 7+~ 14

We empiasize here that :hese developments are
mainly based on the applications of furzy operatars,
properties and mathematics. Segmentation based on
the theary of approximate reasoning {i.e. hased on
“if-4hen” rules) should constitute a field of ressarch in
the near future.

7.3 Fuzcy edge detection

Pal and King'! 2% used a non-symmetrical member-
ship function G to get the fuzzy property plane from
the intensity plane. The G4 defined as

Gife b= (14 |[* = fix v/ F,) " i7

where [* 15 a reference level, F, and F, are the expo-
nential and denominational fuzzifiers, respectively. I
* ={_,..the maxirmum gray level, then G approximares
the standard $ function*!*®' of Zadeh and when {* s
equal 1o soane other Jevel, 0 < F* < E L it approximates
the standard = function' ** of Zadeh shown in Fig. 15
The G functions under the above cases are denoled by
G and G, respectively. They used these Gg and G,
functions in conjunction with an intensification aper-
atar [NT to intensify the contrast in the image. [(MNote
that the non-fuzzy thresholds obtained automatically
from [uzzy segmentation technigues can be used in
defining G and G} Finally, an inverse transformation
is appiied 1o get the enhanced spatial domain image.
Edges of this enhanced image can then be easily found
with any spatial domain technique. Edge detection
operators bazed on max and min aperattons are avail-
able in references (1532-154) Do references (133, 131
the entropy of a furzy set deflined by an adaptive
membership function, over & neighborhood of a pixel
(.4 s used as a measure of edginess at fx, V). The use
of an adaptive membership function makes the detec.
ton algorithm robust. The framework of the algocithm
is guite general and works with any measure of am-
bizuity [fuzziness). [n the next section we compare a
few of the segmentanon techniques.

4. COMPARISON OF SOME METHODS

We have discussed several methods of segmentation
but so Tar not shown any results. In this section. lor
the sake of completeness and illustration, we consider
scpmendation results prodoced by a few technigues.
We implemeated six histogram based methods (meth-
ods of O * Pan,'® Kapur er ol ) Kitther end
Nlingwarth,'** Pal und Bhandari!™"" and Pal and
Pal'™®y, und two werative pixel clussification mathods
icelaxation'™*" and MAFP estimate of u scene using
MM €2Y, Refarence [8) has several algorithms, we have
implemented only the maximum entropy algortthm
(1hxi wses Poisson distribulions). Since the first six
algorithms ure not suitable for highly noisy images,
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{a)

it

Fig. 2. Image of Abraham Lincoln: {a) inpue; (B) cutput by algorithm of Pal and Bhandari;” ¥ (e} output ]Ja}’
algarithm of Pun;'®* (d} output by algerithm of Kapur et al;'** (¢) output by algorithin of Pal and Pal
iy output by algorithm of Otse 12

while the last two are, two input images have been
used, Figure 2(a) is an image of Abraham Lincoln and
Fig. 3(a) iz a synthctic noisy image with geometric
objects. Needless to say the first six algorithems fail for

this image. We have applicd the first six thresholding
algarithms on Fig. 2{a) and the last two algorithms on
Fig. 3a). Figures 2{b)—{f) represent different sermented
images produced by different thresholding methods
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e

Fig. 3. Moisy image of geometric objects: (a] input; (b} outpat
by the relaxation algorthm** {&) output by oeurat net
method 13

1289

far the imuge of Lincoln. We tried differenr initial
approximate thresholds for the methed of Kittler and
Ilingworth, bur it failed completely to produce any
meaningful threshold. The algorithm either does not
converge of converges awards the end of the gray
scale, {In the other hand, the algorithm i reference
(71} which essentially uses the concept of ¥Kittler and
imgworth but with Poisson distributions to model
the histogram, produces a good thresholded image
iFig. 2(b}). The segmentation results produced by the
methads of Pun'™™ and Kapur et "™ arc displayed
in Figs 2{c)and (d), respectively. Both of these methods
are based on entropy maximization. The parametric
method in reference (8} which uses the Poisson dis-
tributton based maode] (derived considering the image
formation process) produces Fig, 2(e} The result pro-
duced by the melhod of Otsu {Fig. 2{fY) is better than
Figs 2(c) and {d); but this result is alse not as good
as those produced by the Poisson distribution bused
metheds. For the noisy image (Fig. 3{a)) the probabi]-
istic retaxation method produces a reasomably good
segmentation (Fig. 3(bj). The neurs! network based
wmethod!' *?* which wses the GRF to model the nosy
seene and then uses a network to abtain the MAF esii-
mate of the scene (the segmented image] also produces
a good segmentation (Fig. 3(e)) of Fig. 3{a).

9, DRIECTIVE EVALUATION OF SEGMENTATION
RESL' LTS

We have already discussed several methods ol image
segimentation. It is known that no method is equally
good for all images and all metheds are not good for
a particular type of images. Here an important problem
remains Lo be discussed, how Lo make a quantitstive
evalueation of segmentation resulis. Such a quantitative
measure would be quite uselul far vision applications
where automatic decisions are required. Also this will
help to justify an algorithm. Unfortunartely, a2 human
being is the best judpe to evaluate the cutput of any
segmentation algorithm. However, some attempts have
already been made for the quantitative evaluation.
Levine and Nazif ' ™ used a two dimensional distance
measure that quantifies the difference between rwo
segmented imuges, one proposed by a human being the
other by an algorithm. Later on they™* defined another
set of performance parameters such as region unilorm-
ity, region contrast, line contrast, etc. These measures
have also been used {or quantitative evaluarion of
scementation algorithms. Lim and Lec' ™ attempied
ta do this by computing the probability ol error berween
the manually segmented image and the segmentation
result. Pal and Bhandani'®® used the higher order local
entropy as an index to measure the quality of the output.
They also suggested the use of symmetric divergencs
berween two praobability distributions, one for the out-
put generated by an algorithm and the other for the
manually segmented image. The correfation measurcté!t
between the original image and the segmented one has
also becn used for the purpose of quantilative eval-
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uation** We have alrsady mentioned that a human
being ts the ultimate judge 10 muke an evaluation of
the resull. However, one can use a vector of such
measures for ohtective evaluation. Far exumple. if for
some segmented image, the correlanen, uniformey,
and entropy are all high and divergence is low then
one can consider the cutput 1o be good.

W CONCLUSION

This paper reviews and summarizes some existing
methods al segmentation. The literature is not so much
rich on color image segmentation. Enough scope nlso
exasts for the flurey ser theoretic approaches Lo segmen-
tution, Meural network model based algorithms seem
tx be very promising as they can generate outpui in
real time. Maorgover, these alporithms are robust also.
Selection of an appropriate segmentation technique
fargely depends on the lype of images and application
areas. An :nleresting area of investigation is to find
methods of objective evaluation of sepmentation results.
Tt is very difficult to find a single quantitative index for
this purpose becuuse such uo index should take o
wecount many factors like homogeneity, contrast. com-
pactness, continutty. psycha-visval perception. cte.
Pozaibly the human being is the best judes loc this
However, it may be possibie to have a smail vector of
artributes which can be used for obeciive evaluation
of resules.

Avknowledgmen: —The aulhors graefuily acknoewledpe the
relerzes far their shoughtful comments that have heiped 1o
imorove the paper significanidy.
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