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Fuzzy feature evaluation index and
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Abstract

The present article deals with a theoretical analysis of our earlier investigation [1]
where we developed a neuro-fuzzy model for feature evaluation. This includes deriva-
tion of a fixed upper bound and a varying lower bound of the feature evaluation index.
The monotonic increasing behavior of the feature evaluation index with respect to the
lower bound is established. A relation of the evaluation index (lower bound) with in-
terclass distance and weighting coefficient is also derived.

1. Introduction

The present study is a continuation of our previous investigation [1] in which
a new fuzzy set theoretic feature evaluation index, in terms of individual class
membership, was, first of all, defined for ranking the importance of features (or
subsets of features). A neuro-fuzzy approach was then provided by designing a
new connectionist model in order to perform the task of optimizing the
aforesaid fuzzy evaluation index incorporating weighted distance for com-
puting class membership values. A set of weighting coefficients representing the
importance of the individual features was obtained by this optmization
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process. These weighting coefficients led to a transformation of the feature
space for flexible modeling of class structures,

The present article provides a theoretical analysis of the aforesaid feature
evaluation index. Here, a fixed upper bound and a varying lower bound of the
evaluation index are derived. It is shown theoretically that the index mono-
tonically increases with the lower bound. A relation of the evaluation index
(lower bound) with interclass distance and weighting coefficient is established.
Section 2 provides, in brief, our previous work on the fuzzy feature evaluation
index and its connectionist realization [1] for the convenience of the readers.
This is followed by mathematical analysis in Section 3.

2. Fuzzy feature evaluation index and connectionist realization

Let us consider an »n-dimensional feature space 2 containing
X1,X2,X3,...,Xi,...,X, features (components). Let there be M classes
C,Cy,Cs,...,C,y...,Cy. The feature evaluation index for a subset (Qy)
containing few of these n features, is defined as [1],

E = Z sk(X)

k x€C; z:k’a'ék Sk (X)

where x is constituted by the features of £ only.

si(x) = .Uc,,(x) x (1 - He, (x)) (2)

X O, (1)

and

s () = 5 (1, () % (1= 11, ()] 43 e, (0 x (1=, )] 3

He, (x) and ¢, (x) are the membership values of the pattern x in classes C; and
Cy respectively. o 1s the normalizing constant for class C; which takes care of
the effect of relative sizes of the classes [1].

Note that, s; is zero (minimum) if pe, = 1 or 0, and is 0.25 (maximum) if
#c, = 0.5. On the other hand, s is zero (minimum) when p¢, = g, =1 o0r 0,
and is 0.5 (maximum) for u;, =1, ¢, = 0 or vice-versa. Therefore, the term
Sk/ 2 S is minimum if p, =1 and pg, = 0 for all & # £, i.e., if the am-
biguity in the belongingness of a pattern x to classes C; and Cp VK #k is
minimum (i.e., the pattern belongs to only one class). It is maximum when
tic, = 0.5 for all k. In other words, the value of E decreases as the belong-
ingness of the patterns increases for only one class (i.e., compactness of indi-
vidual classes increases) and at the same time decreases for other classes (i.e.,
separation between classes increases). E increases when the patterns tend to lie
at the boundaries between classes (i.e., u — 0.5). The objective is, therefore, to
select those features for which the value of £ is minimum.
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The membership (uc, (x)) of a pattern x to a class Cy is defined with a multi-
dimensional n-function {2] which is given by,

1-2d%(x) 0<di(x) <1,
e, (X) = { 2[1 —d(x)]° 1 <di(x) <], (4)
0 otherwise.

d,(x) is the distance of the pattern x from m; (the center of class Cy). It can be
defined as,

dy(x) = [Z(x‘ ;k"”“')z] , (5)

where
Ay =12 f,{é%f[ﬂx — myl[], (6)
and
ZXEC Xi
My = ————. 7

Eqgs. (4)«7) are such that the membership u. (x) of a pattern x is 1 if it is
located at the mean of Cj, and 0.5 if it is at the boundary (i.e., ambiguous
region) for a symmetric class structure.

In practice, the class structure may not be symmetric. In that case, the
membership values of some patterns at the boundary of the class will be greater
that 0.5. Also, some patterns of other classes may have membership values
greater than 0.5 for the class under consideration. For handling this undesir-
able situation, the membership function corresponding to a class has been
transformed [1], incorporating a weighting factor corresponding to a feature.

For this purpose, we defined weighted distance from Eq. (5) as [1],

]

d(X) = {wa (x" ;k'""")z] 7, w; € [0, 1]. (8)

The membership values (i) of the sample points of a class become dependent
on w;. The values of w; (< 1) make the function of Eq. (4) flattened along the
axis of x;. The lower the value of w;, the higher is the extent of flattening.

In pattern recognition literature, the weight w; (in Eq. (8)) can be viewed to
reflect the relative importance of the feature x; in measuring the similarity (in
terms of distance) of a pattern to a class. It is such that the higher the value of
w;, the more is the importance of x; in characterizing/discriminating a class/
between classes. w; = 1 (0) indicates most (least) importance of x;.

Therefore, E (Eq. (1)) is now essentially a function of w (= [wy,w2,...,w,]),
if we consider all the n features together. The problem of feature selection/
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ranking thus reduces to finding a set of w;s for which E become minimum. The
task of minimization has been performed with gradient descent technique in a
connectionist framework (because of its massive parallelism, fault tolerance
and adaptivity) for minimizing E. A new connectionist model [1] has been
developed for this purpose. When the network attains a local minimum during
training, the weights of the feedforward links (o< w?) indicate the order of
importance of the individual features.

3. Theoretical analysis

Here, we analyze mathematically the characteristics of the feature evalua-
tion index (£) and the significance of weighting coefficients (w;). In this regard
we investigate the following:

o A fixed upper bound and a varying lower bound of £(E(x)) (£ being the ‘ex-
pectation’ operator and E(x) being the contribution of a pattern x to the
evaluation index E) are derived. The variation of &(E(x)) with respect to
the lower bound is studied.

e A relation between the lower bound, w; and interclass distance is derived.

3.1. Upper bound and lower bound of &(E(x))

We can write (Eq. (1)) as,

_ e X {1 — oy
E= ;;%Ek'#k[ﬂk X (1= ) + i x (1 — )]’ ®)
where p, = pc, (x) and pp = pc, (x). Let, E =3  E(x) = 3 >, Ev(x), where
E(X) — Z Hi X (1 - "‘k)ak (10)

3 Ll X (1= ) + e X (1= )]

and

_ e % (1 — py )t
E®) _%Zk';ék[#k X (1= pt) + e < (1 — )] (1

That is, E(x) is the contribution of a pattern x to the evaluation index (E), and
E(x) is that corresponding to the class C;. For a pattern x in class C;,

—;—Z[pk(l — o) + (1 = )] = %Z[ﬂk(l — ) + (1 — )’
K#k k#k
+ pp (1 — ).

Since (g ~ pe)’ + e (1 — )] = 0,
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M-1
3 2 [ (1 = ) + s (1 — )] 2 5 (1 — 1),
ki #k

where M is the number of classes. Since, 0 < o; < 1, we can write,

M
(M—1)

E(x) < (12)

Therefore,

2M
B(EX) < (13

where & denotes the ‘mathematical expectation’ operator.
Again, for a pattern x in class Cy, y;, g € [0, 1], we can write,

l[ﬂk(l — ) + pp (1~ )] < %

Z [ ~ spe) + pe (1 — )] < l(M—l),
2

L’;ék
1 S )
S (U — ) + (L= )] = (M= 1)
e (1 — o
w1 — 1)
k Zk’%k%[uk( — ) + (1 — ,uk) 1) Z k £ )%
Thus,

F0) 2 Gy Sl ~ )

That is,

£(E(x)) > (—Aéﬂ-f(;uk(l - uk)ak). (14)

Therefore,

(M—l (}:#k L= gy ) < E(E(x)) < (M2A_41). (15)

Note that, the upper bound (UB) of £(E(x)) is fixed, whereas the lower bound
(LB) is varying with 25 (X, (1 — o).

Let us now analyze the behaviour of E(x) with respect to Y _, u;(1 — ). For
this purpose, we substitute g, (1 — g, ) by A in Eq. (11). In that case,
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dE;(x)
dh,

Ol [Ek'#[ﬂk’(l — ) + (1 = )] (1 = 2p) — (1 — p) Zk’#k(l - 2#1:*)]

; [Zk’;ék[uk'(l — ) + (1 — #k')]]2(1 —21)

= dek/% [Z[Nk'(l = ) + (1= )] | (16)

K7k

where

Vi

. D (1 = ) + 11 = ) I — 205) — (1 = p) 3 (1 — 2)
B (1—2) -
(17)
It is clear from Eq. (16) that dE,(x)/dh; is positive/negative if v, is positive/
negative. In other words, Ei(x) increases/decreases monotonically with

(1 — u) if v is positive/negative. Simplifying the expression on the right
hand side of Eq. (17) we get,

2 Tl =2
Ve = Zﬂk’ _ H z(laei(zuk) i) ' (18)

kK #k

In order to show that E,(x) monotonically increases with u,(1 — y,) for both
non-overlapping and overlapping class structures, we consider the following
cases.

Case 1 (Non-overlapping; (Fig. 1)): Here, for a pattern x, if
|x — mg|| < Ak/2, g = 0.5 and pp < 0.5, VK’ # k. Therefore, v, > 0 (Eq. (18)),
and as a result dE;(x)/dh; > 0. This indicates E;(x) is monotonically in-
creasing with p, (1 — 14).

I (x) C Cy
1.0

3.5

Fig. 1. Non-overlapping pattern classes modeled with n-function.
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Case 2 (Overlapping; (Fig. 2)): In this case, for a pattern x, if
lIx —my || < A/2, g =05 and p 2 0.5, V&' +# k. Since the classes are over-
lapped, we consider two different possibilities: x lying outside the overlapping
zone (ie., ||x —mgll<A/2 and ||x —my| > Ax/2) and x lying within the
overlapping zone (i.e., ||x — mg|| < 4/2 and {|x — my|| < i /2).

If the pattern x lies outside the overlapping zone, then y,, < 0.5 and thereby
v > 0 (Eq. (18)). This indicates E;(x) monotonically increases with g, (1 - p,).

If x lies within the overlapping zone, both y,, i, > 0.5. Then we have three
possibilities: (a) py > pp, (b) = e and (©) pp < .

(@) e > e Let py = py — g, where ey > 0. Therefore, from Eq. (18) we
get,

[T Zkf;ek(l — 2 + 2€w)

Ve = Y (W — €w) — : (19)
; (1—2u)
ie.,
26D s e — 1 (2 — 1)(M — 1)
vi = (M — 1)y, — kak’ — e I _kz ' - (20)
K2k M
Thus, E,(x) increases monotonically with (1 — p,) if
2u3 ew — 122, — 1) (M — 1
M — 1) — Zekk’ A D ik kK 1 :‘ikg e — 1)( ) > 0. 1)
k' £k Hy
ie., if
1 #i(l = 1) 2y — 1)
— ) g > — : (22)
M—lg;k (1= ) + 12}
XY ¢ C,

Fig. 2. Overlapping pattern classes modeled with z-function.
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Since ey > 0, the above inequality always holds, and therefore, in such cases,
E,(x) always increases monotonically with p, (1 — w,).

(b) . = . : In this case, ey = 0, and therefore, the inequality (22) always
holds. Thus, in this case also, we get a monotonic increasing nature of E;(x)
with respect to p, (1 — u).

(© M < pp: In this case, e < 0. Let us replace ey by —e&w, ie.,
Uy = 4t + & - Then, the condition for Ei(x) being monotonically increasing
function with respect to u,(1 — p,) becomes,

1 el — 1) (2 — 1)
——— 6 ' < . 23
M“IZ‘“‘ (1— ) + 2 (23)

Kk
This condition provides an upper bound on the average value of ¢4 (hence on
the average value of u,) that can be allowed in order to get a monotonic in-
creasing behavior of E,(x) with respect to p,(1 — ).

First of all, the chance of y, < u,. is low for a pattern in class C,. Even if this
happens (say, for overlapping case), the chance of

1 (1 — 1) (2p — 1)
M1 > T e
ik (1 =) + i

happening is very low (as illustrated in the following two examples). Therefore,
E:(x) is most likely monotonically increasing with p, (1 — ).

Example 1. Let, p; =06 for a pattern x lying within the region
||lx —my|| < 4;/2 in class C;. Then, the condition (23) becomes,

1
— > &ax < 0.1
W12

In order to violate this condition, the average membership value of x (say, u,)
to classes other than C; should be at least 0.7. It can also be seen that whatever
be the value of y; (> 0.5), the value of p, should be greater than u,. This is
unusual. Thus, we can say that in this case the above inequality (23) will be
satisfied and thereby, we can expect a monotonic increasing behavior of E;(x)
with respect to y, (1 — ).

Example 2. Let, 4, = 0.5. In that case, the condition (23) becomes
1
—_— e < 0.
12

That is, the average membership value of x to classes other than C; should be
greater than or equal to 0.5. This situation occurs when the classes are highly
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overlapped. In other words, if there is high amount of overlap, the behavior of
E(x) becomes unpredictable for ambiguous patterns.

Thus, we can say that E;(x) always monotonically increases with g, (1 — p)
except for some ambiguous patterns in highly overlapping regions. If we take
average of E(x)(= >_, Ex(x)), we can expect this average (§(E(x))) to be always
monotonically increasing with £(3 ", 4 (1 — 4;)), the average of >, p, (1 — 1.
Therefore, it may be concluded that £(E(x)) is a monotonically increasing
function of 327 (3", (1 — ) x), as 27 and oy are positive constants.

Note from Eq. (1) that it is difficult to compute &(E(x)), and so as to de-
termine its relation with w; and interclass distance. Again, &(E(x)) is found (in
Section 3.1) to be a monotonically increasing function of the lower bound
(LB). Therefore, if one can find a relation between LB, w; and interclass dis-
tance, it will reflect the one between £(E(x)), w; and interclass distance. The
next subsection addresses this issue.

3.2. Relation between LB, interclass distance and w;

Let us now derive a relation of the lower bound of £(E(x)) with interclass
distance and weighting coefficients for some well defined class structures.

o Let us assume that the classes C, (3, ..., Cy, ..., Cy have independent, iden-
tical Gaussian distributions with respective means m;,m;,...,m,...,my
and with the same variance 62. Let 2(x|C;) be the class-conditional proba-
bility density function for class C;. Then

1 (x,‘ — mk,-)2
P(x|Cy) = exp| — Y ~—— 24
(xICh) = == p(‘;zgz (24)
e Let the membership of a pattern x in a class C; be given by,
2.2
X; — mg)w,
e = (X) = exp ( - Z(—H)—) @)

where A 1s the bandwidth of the class C;, and is the same for all the classes. The
lower bound of £(E(x)) is given by,

@@(Zﬂk(l - Hk)“k) = /(Zﬂk(l - Nk)“k) 2(x)dx, (26)

X

where
2(x) = Y BP(x|C); (27)

P, being a priori probability of class C;. Evaluating the right hand side of
Eq. (26) (see Appendix A), we have
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(-sm) oo L) M)

exp  — kw2 /(2020 +wh))

+p”ZdePk’ H (p2+w2)1/2

k K#k i

exp  — m?/ (02(p? +202)))
_H 1/2 ) (28)
i (p* + zwzz)
where p = A/o and cw; = my; — my; is a measure of interclass distance between
the classes C; and Cy along the feature axis x;.

Let us consider two classes C; and C;, with two features x; and x;. Let, C)
and C; have unit normal distribution, ie., ¢=1.0. Let, A=1.0 and
P, = o = 0.5 (Vk). c12; and ¢35y are the interclass distances between class C)
and class C; along the feature axes x; and x», respectively. We now demonstrate
graphically the variation of & (3" u(1 — 1)ox) with respect to cj21 and c12,
and w; and wy.

Fig. 3 shows the variation of &(3_, p(1 — p)ou) with respect to ¢i21 and
(5 by with W) =wry = 1. éa(zk [,tk(l — ,uk)ock) 1s maximum when Ci2l1 = Ci1np = 0,

5 6 c121

c122

Fig. 3. Graphical representation of &(3, s (1 — p)o) with respect to ¢y2y and ¢z with
w; = wy = 1.0,
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i.e., when the two classes completely overlap. &(3_, (1 — i )ox) decreases
with the increase in ci3; and cjp;. This variation is symmetric with respect to
both 121 and ¢j22. The rate of decrease in &}, p (1 — )y ) also decreases as
c121 (and c127) increases. Finally, after a certain value of ¢ (and ¢32) the rate
of decrease in &(3", (1 — s )ox) becomes infinitesimally small. This is also
evident from the way of computing u-value where u, of a pattern x with fixed
u; decreases with increase in interclass distance. If the interclass distance ex-
ceeds a certain value, p, becomes very small. Thus, the contribution of the
pattern to the evaluation index does not get affected further by the extent of the
class separation.

Fig. 4(a)(f) show the variations of &(3, (1 — 1)) with respect to the
weighting coefficients wy and w, for different interclass distances. In Fig. 4(a)-
(e) we have considered ¢y = 0 throughout whereas ¢;3; is considered to be 0.0,
0.5, 1.0, 1.5 and 2.0, respectively. The purpose of this is to show the variation of
the extent of the neighborhood region around a local minimum in the w; — wp
plane with interclass distance along an axis. Note that, &(3, u (1 — pe)o) is
zero when wy = w; = 0 which is a trivial case. (Y, s (1 — s ) ) increases as
w; (and w,) increase upto a certain value; beyond which &(3°, (1 — 1 )o)
decreases upto some local minimum value. Note from Fig. 4(a)(e) that, the
extent of the neighborhood region around a local minimum in the weight space
(basin of attraction in the weight space) of the network increases as the in-
terclass distance (cj2;) increases. This neighborhood region constitutes a zone
of operation of the network. Therefore, if interclass distance increases, zone of
operation of the network increases, i.c., the freedom of choosing the initial
weights increases. In other words, given a set of weights, if the basin of at-
traction in the weight space is large, the network has higher probability of
getting converged into the corresponding local minimum.

Here we have chosen ¢z = 0, i.e., the feature x; does not have any dis-
criminating power between the classes. This is also illustrated in Fig. 4(a)-
(e), where the value of &(3", (1 — 1)) decreases steadily with a decrease
in w,. In other words, for a minimum value of &(3°, st (1 — . )ox) in the
zone of operation of the network, w, will be very close to zero, which sig-
nifies that the feature x, is not important for classification. Similarly, a
steady decrease in &(3>, (1 — p)ox) with respect to wy in the zone of
operation of the network signifies the fact that the feature x| is important for
classification.

Fig. 4(f) shows the variation of &(3, i (1 — w)ox) when ci21 = c122 = 3.0.
Here, the variation of &(3_, u;(1 — i )ox) is symmetric with respect to both wy
and w,, which indicates that both the features x; and x; are equally important.
The zone of operation of the network becomes more or less flat which signifies
that the network can settle into any point in this zone. This is due to the fact
that any one feature or a weighted combination of the two is sufficient for
classification.



12 J. Basak et al. | Information Sciences 111 (1998) 1-17

4. Conclusions

In this article, we have provided a theoretical analysis for the performance
of our earlier investigation on feature evaluation with fuzzy set theory and
neural networks {1]. It is shown that the evaluation index has a fixed upper
bound and a varying lower bound. The monotonic increasing behavior of the
evaluation index with respect to the lower bound is established for different

E(Qma(1 — pa)en)
Emll = pa)ay).

(a)

8(;;:.(1 - pa)oa)

Hi)ay)

8(‘2"1;(] -

(e} {HH

Fig. 4. Graphical representation of &(3, (1 — u;)ox) with respect to w, and w, for different

values of ¢)7; and ¢x.
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cases. A relation of the evaluation index (LB), interclass distance and weighting
coeflicients is derived. It is shown graphically that the zone of operation of the
network increases with increase in interclass distance. Given a set of weights, if
the zone of operation of the network is large, the network has higher proba-
bility of getting converged into the corresponding local optimum.
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Appendix A. Evaluation of the expression & (s, ( — . )ot)-

Using Eq. (27), (3", me(1 — ) o) is given by,

(Zukluk ) Z/ukl—ukaﬂ’ x)dx
:E f / fe(1 = oy (Pke@(ﬂck)‘*‘zpkﬂg”(xwk')) dx; ... dx,.
k

K £k

X =—=00 Xp=—00

Let,

&) 00 1 X; — My 2
Jkt / [ Mk(lm“k)akpk\/ﬂo-e)(p(zgjz_d_)

X|=—00 Xp=—00
y y 1 (x; — M)’
= — 1) P, exp| — — |,
/ / (ﬂk luk) k k\/z_no' p Z 20_2 ’
Xp=—0C Ap—=—0CC
Ji = 7 7 (1 ‘u CCPf exp ZMX
Kk Hy k ) Ok Lk \/—J j 252
Xp=—00 Xp=—00Q
= 7 7 (u ....‘uz)o: P exp ZM
k k kL k \/—O_ i 20_2 ’
X)=—0¢ Xp=—X

so that
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(a@(;ﬂk(l - uk)ak) = Z (Jk + ZJkk’)

Kk

Let us also assume that,

% ) (o — )
/ L exp | - S g
V2no 20 22
1 - i — my)’ | — my) w? -
xp | G G mmn ]
J V2no I 20 A ]
°r 1 [ (x,- - mkfi)z (x,' - ’71]“')2\4/2 ]
St = exp | — - - dx,
wet / 2ne P 202 2,2
r 1 [ (x,- - mkr,-)z (x,— —_ mk,‘)ZW? ]
T = / ot R e

so that

Ji = 4Py (Hszl - H-Iki2)

and

Jwr = o Py (HJkk’il — HJkk’zZ)-

Therefore, from Eq. (A.1) we have

(Zﬂk (1— ) ) ZakPk (]'[Jk,1 HJM)
+3°N P (HJ,(,(,,l - HJkk:,z)

k k'£k

(A1)

(A.2)

For evaluating the integrals Jyi, Jiz, Jui and Jyn, we use the result of the

following integral,

J = fexp(—(oax2+ﬁx+v))dx.

—00

Now,
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1= [en(=a(errc B (£25))a

—xX)

~on(L-7) [om(=o(x+L) Jar

—0oC

) e @]
= exp (f—a - y) / exp ( — w?)dy,

—CcQ

where
_ B
y=x-+ 2
Therefore,

4 Va
where
z =y’
Hence,
€Xp (L—z,;_:ay ) \/7_r
J = (A.3)
Ve

We use the following transformation for evaluating Jy, Ji2, Juwin and Jypn.

-(52)-
.);I \/E'l I3

24
dx,- = —\/"‘_—dy,

!

Then we can write
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(x,- — mk,-)zwf. (x,- — mk,-)2 ] 2 ;02 2 92 2
2/12 202 i w,2 i 1 w,2 i
[ (x; - mki)zwi (xi - mki)z ] 92 2 P2
pE + 553 ——2y1.2+—%yi = :Z-{-—i2 yf,

[ (x; — m;a-)zwi2 (x; — mk’i)2] - [(x; — my) + (my — mk’i)]2

i 22 + 2q2 202

2 2
p (X — mu)Crei  Chs
st 1 —— ; -
( + w2 )y’z + G2 + 202

i

( )y2+\/_/lJ’zCkk'z+C£y,~

a2w; 202’
and

(x; — mkf)zwf (x; — my;) [(x; — mys) + (my — mies)]*
A2 + 262 ] = + 202 -

0? X; — Mg )Ciri Chyre
(24— )x +(’ Gf)*”-+ K

w? 202
\/_Ayickk’t C]%kli
( )yl + ow; + 202"
Therefore, using the result of J (Eq. (A.3)) we have
1 V24 1 P
= s W NS L o
o (148) (wF + p?)

where o = 1 + (p?/w?), $ =0, and y = 0. Similarly, the expressions for Ji;,
Jurnn and Jw» are obtained as follows:

1 V24 1 p
J2 = =—7,
k2 \/ﬂo’ Wi (2+%)1/2\/_ ( W,2+p2)1/2

where « =2+ (p*/w?), f =0, and y = 0.
pexp = (il (20%(1 + (02 WD)

(1+5)

_poxp (= (/2027 +w2))
) (0 +w)"" |

Jwin =
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where o« = 1+ (p*/w?), B = V2Acwi/o*w; and y = ¢,/ 26”.
pexp (= (e (22 + (/D))

(g
_pexp ( — (chw/(aX(p? +20D))) )
- (02 +w)"?

where a =2+ (p*/w?), B = vV24cwi/d*w;, and y = ¢2,,./262. Therefore, from
Eq. (A.2) we have,

g(;uk(l ~ uk)ock) = p"Zk:csz k {H(Eﬁ) l/z—H (7’7:13“7) 1/2}

i i

exp (= cin?/(20( + i)

JkHz‘Z =

4

+ anZaku H (02 + wi)/?

k Kk i

exp ( — (cwi/ (0(p? + 207))) )
; (o +207)""
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