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Granulation is also a computing paradigm, among others such as self-reproduction, self-organization, functioning of

the brain, Darwinian evolution, group behavior, cell membranes, and morphogenesis, that are abstracted from natural

phenomena. A good survey on natural computing explaining its different facets is provided in [4]. Granulation is inherent in

human thinking and reasoning processes. Granular computing (GrC) provides an information processing framework, where

computation and operations are performed on information granules, and it is based on the realization that precision is

sometimes expensive and not very meaningful in modeling and controlling complex systems. When a problem involves

incomplete, uncertain, and vague information, it may be difficult to differentiate distinct elements and one may find it

convenient to consider granules for its handling.

The present article describes a granular neural network within the natural computing paradigm, where the structure

of granulation is defined on fuzzy rough sets. In this consortium, artificial neural networks, fuzzy logic, and rough sets

work synergistically, and use the principle of granular computing. The system exploits the tolerance for imprecision,

uncertainty, approximate reasoning, and partial truth under the soft computing framework, and is capable of achieving

tractability, robustness, and close resemblance with human-like (natural) decision making for pattern recognition in

ambiguous situations [5].

Several authors have described different granular neural network architectures [31] in the past few years. Zhang et al.

described granular neural networks in [32], incorporating fuzzy input data to neural networks. Vasilakos and Stathakis

explained land-use classification from remote sensing images by fuzzy neural networks [33]. Granular neural networks

using fuzzy sets as their formalism and an evolutionary training algorithm are reported in [34]. A good introduction to

neuro-fuzzy inference systems may be found in [35]. One of the earlier neuro-fuzzy systems for classification, named a

fuzzy neural network, was developed by Pal and Mitra [10]. As a part of determining the initial weights, Dick and Kandel

built a novel neuro-fuzzy system architecture called a linguistic neural network based on information granules to simplify

the knowledge representation in the neural networks [36]. Banerjee et al. described a knowledge-based network in [13],

where domain knowledge is extracted from data in the form of decision rules using rough set theoretic techniques. Szczuka

developed a rule-based rough neural network in [37], where rough sets are used mainly for generating the initial weights

of the network.

Integration of fuzzy sets [6,7] and rough sets [14–17] under fuzzy rough computing or rough fuzzy computing has recently

drawn the attention of researchers. Many relationships have been established to extend and integrate the underlying

concepts of these two methodologies judiciously to deal with additional aspects of data imperfection, especially in the

context of granular computing. The main purpose of such hybridization [19] is to provide a high degree of flexibility [20],

robust solutions and advanced tools for data analysis [21], and a framework for efficient uncertainty handling [22]. This rough

fuzzy paradigm may also be considered as a tool for modeling the aforesaid f-granular characteristics of perception-based

computing. In rough set theory, one starts with crisp equivalence classes, in the sameway that fuzzy equivalence classes are

central to the fuzzy rough sets approach. Each equivalence class may be used as a granule. The concept of crisp equivalence

classes can be extended to fuzzy equivalence classes by the inclusion of a fuzzy tolerance relation on the universe, which

determines the extent that two elements are similar in a relation. Fuzzy rough sets [11], based on a fuzzy tolerance relation,

provide a means by which discrete or real-valued noisy data can be effectively reduced without any additional information

about the data (such as thresholds on a particular domain of universe) for its analysis. The granulation structure produced

by an equivalence class provides a partition of the universe. The intension of it is to approximate an imprecise concept in

the domain of universe by a pair of approximation concepts, called lower and upper approximations. These approximations

are used to define the notion of positive degree of each object, and this is used to define the dependency factor of each

conditional attribute, all of which are then used to extract the domain knowledge about the data.

The granular network proposed in this paper integrates fuzzy rough sets with a fuzzy neural network that uses the

dependency factors of all conditional attributes in the form of initial weights of the network (or network parameters), and

neurons with a logistic activation function. The proposed system, called a fuzzy rough granular neural network (FRGNN),

stores the domain knowledge about the data as a pattern of connectionweights between simple processing units. It uses the

theory of granulation structures in fuzzy rough sets [11,12], based on a fuzzy similarity relation, defining the dependency

factors of attributes from the decision table. We considered three layers in the FRGNN. The appropriate number of hidden

nodes in the network is determined by the number of classes, unlike other methods [13,36]. The number of nodes of the

input layer is determined by the 3n-dimensional linguistic features (in terms of fuzzy properties low, medium, and high) of

the pattern. Clearly, if the input pattern contains n-dimensional features, the input layer is determined by 3n neurons.

The components of the input vector consist ofmembership values to the overlapping partitions of the linguistic properties

low,medium or high, corresponding to each input feature. In thisway an n-dimensional feature space is characterized by a 3n-

dimensional linguistic feature space. Each linguistic term is associated with a granule. The 3n-dimensional linguistic feature

space gives us conditional attributes which are presented in the decision table along with the decision class attributes. The

decision table is divided into c decision tables corresponding to c classes. From the c decision tables, the dependency factor

of each conditional attribute and the average value of all the dependency factors of the conditional attributes with respect

to the decision classes are determined as the initial weights between the input layer and the hidden layer, and the hidden

layer and the output layer, respectively, of the network. While the input vector that is presented to the network is in terms

of a 3n-dimensional linguistic vector, the output vector is in terms of a class membership value and zeros. This provides a

scope for enhancing the robustness of the network in tackling ambiguous patterns and overlapping classes. Superiority of

the model is demonstrated on various real-life datasets.
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Fig. 1. Architecture of an FRGNN with a granular input layer, and hidden and output layers with the same number of nodes.

The paper is organized as follows: A brief description of the FRGNN architecture with the back-propagation algorithm

is provided in Section 2. We describe the input vector and output vector of the FRGNN in Section 3. After recalling some

preliminaries of granulations and approximations in rough sets and fuzzy sets, the proposed granulation structure in a

fuzzy rough set theoretic framework is provided in Section 4. This includes both crisp and fuzzy cases for selecting the

initial weights. Based on this granulation structure, we describe the knowledge encoding and network configuration of the

FRGNN in Section 5. In Section 6, the FRGNN model is implemented on several real-life data sets for classification. This

includes a comparison with some other versions of the fuzzy MLP (multilayer perceptron) integrated with rough sets. The

paper is concluded in Section 7.

2. FRGNN architecture

In this section, we describe the architecture of an FRGNNbased on amultilayer perceptron [8,9] using a back-propagation

algorithm. The neurons are arranged in a layered feed-forward neural network shown in Fig. 1. Each neuron in the hidden

layer is fully connected to the neurons in the next layer and the previous layer. The input layer is composed of non-

computational units, each of which receives a single input, and distributes it to all the neurons in the next layer. A granular

input vector is supplied as the input to the neurons in the input layer, and the output of the input layer is supplied as

activation values to the neurons in the hidden layer. Similarly, the output of the hidden layer is provided as activation values

to the output layer. During training, the node in the output layer corresponding to a class is clamped to the membership

value of a pattern corresponding to that class, while the other nodes are clamped to zeros. The dependency factor of each

conditional attribute and the average value of all the dependency factors of conditional attributes, with respect to the

decision classes from all the decision tables, are encoded into the network as initial weights between the nodes of the input

layer and the hidden layer, and the hidden layer and the output layer, respectively.
The back-propagation algorithm used in the FRGNN is described as follows.

Input

D, a data set consisting of the training patterns in granular form and their associated target vectors in terms of

membership values and zeros.
η, the learning rate.
α, a momentum term.
b = bj, the bias b is kept constant at each node j in the hidden and output layers network, creating a granular

feed-forward network.
Output

A trained neural network.
Method

1. Initialweights are determined by fuzzy rough sets based on a fuzzy similarity relation, among the nodes (units)

of all layers in the network;
2. While the terminating condition is not satisfied{
3. for each training pattern

Propagate the inputs forward:
4. for each unit j of the input layer {
5. xj = Ij; } here, the output of an input unit is its actual input value
6. for each unit j of the hidden or output layer, compute the net input of each unit jwith respect to the previous

layer, i {
7. Ij =

∑

i wjixi + b; }
8. Apply logistic activation function to compute the output of each unit j {
9. φ(xj) = 1

1+e
−Ij

; }
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Back propagation:

10. for each unit j in the output layer, compute the error {

11. Error j = φ(xj)(1 − φ(xj))(Tj − φ(xj)), where Tj denotes the target value for each unit j in the output layer

12. for each unit j in the hidden layer, compute the error with respect to the next higher layer (unit k in the output

layer)

13. γj = φ(xj)(1 − φ(xj))
∑

k Errorkwjk; }

14. for each weight wij in the network {

15. ∆wij = (η)xiγj;

16. ∆wij(t) = (η)xiγj + (α)∆wij(t − 1); }

17. for each constant value of bias b in the network {

∆b = (η)γj;

b(t)+ = ∆b(t − 1);} }

Here, the momentum term α is used to escape local minima in the weight space. The value of the bias b is kept constant

at each node of the hidden and output layers of the network, and t denotes an epoch, i.e., the number of times the training

data will be presented to the network for updating the weight parameters wij and bias b. The resulting trained network is

used for classifying the test patterns.

3. Input vector representation in granular form

In general, human minds can perform a wide variety of physical and mental tasks without any measurement or

computation. Familiar examples of such tasks include parking a car, driving in heavy traffic, and understanding speech.

For performing such tasks, one needs perceptions of size, distance, weight, speed, time, direction, smell, color, shape, force,

etc. But a fundamental difference between such measurements on the one hand and perception on the other is that the

measurements are crisp numbers, whereas perceptions are fuzzy numbers or, more generally, fuzzy granules [23].

A formal definition of a fuzzy granule is a group of objects defined by the generalized constraint form ‘X is r R’

where ‘R’ is a constrained relation, ‘r’ is a random set constraint, which is a combination of probabilistic and possibilistic

constraints, and ‘X’ is a fuzzy set valued random variable which takes the values low, medium, and high. Using fuzzy set

theoretic techniques [7,24], a pattern point x, belonging to the universe U , may be assigned a grade of membership with a

membership function µA(x) to a fuzzy set A. This is defined as

A = {(µA(x), x)}, x ∈ U, µA(x) ∈ [0, 1]. (1)

The π membership function, with range [0,1] and x ∈ Rn, is defined as

π(x, c, λ) =















2

(

1 −
‖x − c‖2

λ

)2

, for λ
2

≤ ‖x − c‖2 ≤ λ,

1 − 2

(
‖x − c‖2

λ

)2

, for 0 ≤ ‖x − c‖2 ≤ λ
2
,

0, otherwise,

(2)

where λ > 0 is a scaling factor (radius) of the π function with c as a central point, and ‖ · ‖2 denotes the Euclidian norm.

The π membership function has been explained in the article by Pal and Mitra [10].

3.1. Incorporation of granular concept

An n-dimensional pattern is represented as a 3n-dimensional linguistic vector [7]

−→
F i = [µlow(Fi1)(

−→
F i), µmedium(Fi1)(

−→
F i), µhigh(Fi1)(

−→
F i), . . . , µhigh(Fin)(

−→
F i)], (3)

where µ indicates the value of π membership function corresponding to a fuzzy granule low, medium or high along each

feature axis. The fuzzy granule is quantified as

low ≡
{
0.689

L
, 0.980

M
, 0.998

H

}

,

medium ≡
{
0.054

L
, 0.991

M
, 0.217

H

}

, and

high ≡
{
0.979

L
, 0.919

M
, 0.199

H

}

.

When the input is numerical, we use the π membership function of (2) with appropriate values of the center C and scaling

factor λ. Their selection is explained in Section 3.2.



5838 A. Ganivada et al. / Theoretical Computer Science 412 (2011) 5834–5853

Fig. 2. Linguistic forms: low,medium, and high. (a) Parameters, (b) overlapping linguistic π sets.

3.2. Choice of parameters of π functions for numerical features

Let {Fij} for i = 1, 2, . . . , s, j = 1, 2, . . . , n, represent a set of s patterns with n features of a given data set, and Fjminm
and

Fjmaxm
denote the minimum and maximum values along the jth feature considering all the s patterns. Initially, the average

of feature values of all the s patterns along the jth feature Fj is considered as the center of the linguistic term medium along

that feature and denoted by rmj
, as shown in Fig. 2(a). Then, the average values (along the jth feature Fj) of the patterns

having the label values in the ranges [Fjminm
, rmj

) and ( rmj
, Fjmaxm

] are defined as the means of the linguistic terms low and

high, and denoted by rlj and rhj , respectively. Similarly, considering the patterns having label values in the ranges [Fjminm
, rmj

)

and (rmj
, Fjmaxm

] along jth axis, we define Fjminl
= Fjminm

, Fjmaxl
= rmj

, Fjminh
= rmj

, and Fjmaxh
= Fjmaxm

. Then the center C and

corresponding scaling factor λ for the linguistic terms low, medium, and high along the jth feature Fj are as follows.

Cmediumj
= rmj

,

p1 = Cmediumj
−

Fjmaxm
− Fjminm

2
,

q1 = Cmediumj
+

Fjmaxm
− Fjminm

2
,

λmj
= q1 − p1,

λmedium =

n∑

j=1

λmj

n
.

(4)

Clowj
= rlj ,

p2 = Clowj
−

Fjmaxl
− Fjminl

2
,

q2 = Clowj
+

Fjmaxl
− Fjminl

2
,

λlj = q2 − p2,

λlow =

n∑

j=1

λlj

n
.

(5)

Chighj = rhj ,

p3 = Chighj −
Fjmaxh

− Fjminh

2
,

q3 = Chighj +
Fjmaxh

− Fjminh

2
,

λhj = q3 − p3,

λhigh =

n∑

j=1

λhj

n
.

(6)
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Clearly, the λ-value for a particular linguistic term along the axis would remain the same. Eqs. (4)–(6) automatically ensure

that each input feature value along the jth axis for a pattern
−→
F i is assigned three membership values corresponding to the

three-dimensional (3D) granular space of Eq. (3) in such a way that at least one of the µlow(Fi1)(
−→
F i), µmedium(Fi1)(

−→
F i) and

µhigh(Fi1)(
−→
F i) is greater than 0.5. In other words, this allows a pattern

−→
F i to have a strong membership to at least one of the

linguistic properties low,medium, or high. This representation is shown diagrammatically in Fig. 2(b).

3.3. Class memberships as output vectors

The membership of the ith pattern to a class ck is defined as

µk(
−→
F i) =

1

1 + (
Zik
fd

)fe
, (7)

where Zik is the weighted distance, and fd and fe are the denominational and exponential fuzzy generators [29] controlling

the amount of fuzziness in the class membership. Obviously, the class membership lies in [0, 1]. We use

Zik =

√
√
√
√

n∑

j=1

[
3∑

p=1

1

3
(µp(Fij) − µp(okj))2

]

, for k = 1, 2, . . . , c, (8)

where okj is the center of the jth feature vector from the kth class, and c is the number of classes. In the fuzziest case, we

may use a fuzzy modifier, namely, a contrast internification (INT) operator [7,10], to enhance the contrast in membership

values of each pattern within that class in order to decrease the ambiguity in taking a decision.

3.4. Applying the membership concept to the target vector

The target vector at the output layer is defined by amembership value and zeros Eq. (9). For example, if a training pattern

belongs to the kth class, its desired output vector would have only one non-zero membership value corresponding to the

kth node representing that class and zero value for the remaining nodes in the output layer. Therefore, for the ith training

pattern
−→
Fi from the kth class, we define the desired output of the kth output node, considering the fuzziest case, as

dk =

{

µINT (
−→
Fi ), if the ith pattern is from kth class representing the kth output node,

0, otherwise.
(9)

The network then back propagates the errors with respect to the desired membership values at the output stage.

4. Granulations and approximations in fuzzy rough sets

Here, we describe first some preliminaries on granulations based on rough sets and fuzzy sets. Then, the proposed

structure of granulation on fuzzy rough sets is explained for two different cases.

4.1. Rough set theory: granulation by partitions

The granulation structure used in rough set theory is typically a partition of the universe. In rough set analysis [14–17],

data represented as an information system is a pair (U, A), where U is a non-empty finite set, called the universe, and A is

a non-empty finite set of attributes. For every ‘a’ in A, we define a mapping a : U → Va, where Va is the value set of ‘a’ over

U . An information system can be defined as an attribute value table, in which rows and columns are labeled by objects of

the universe and attributes, respectively. For every B ⊆ A, the B-indiscernibility relation RB is defined as

RB = {(x, y) ∈ U2 | ∀a ∈ B, a(x) = a(y)}, (10)

where RB is an equivalence relation. It partitions the universe U into disjoint subsets, and each partition may be viewed as a

granule consisting of indistinguishable elements. It is also referred to as an equivalence granule [x̃]RB in [18]. Given A ⊆ U

an arbitrary set, it may not be possible to describe U directly using the equivalence granules [x̃]RB . In this case, one may

characterize A by a pair of lower and upper approximations

RB ↓ A = {x ∈ U|[x̃]RB ⊆ A}, (11)

RB ↑ A = {x ∈ U|[x̃]RB ∩ A 6= ∅}. (12)

The pair (RB ↓ A, RB ↑ A) is called a rough set. In information system, a decision system is characterized by (U, A∪d), where

d (d /∈ A) is called a decision attribute and its equivalence classes [x̃]Rd are called decision classes (decision granules). Given

B ⊆ A, the B-positive region can be defined as

POSB =
⋃

x∈U

RB ↓ [x̃]Rd . (13)
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The positive region contains all the objects of U that can be classified into the equivalence granules of RB using the

information in the attribute B. The degree of dependency of an attribute in B is then measured by

γB =
|POSB|

|U|
, (14)

where | · | denotes the cardinality of a set U .

4.2. Fuzzy sets: granulation by partitions

In the context of fuzzy rough set theory [20,21], fuzzy set theory [7,24] allows that an object belongs to a set, and a couple

of objects belong to a relation, to a given degree. Recall that Eq. (1) is defined as a fuzzy set in U . A fuzzy relation R in U is

a mapping U × U → [0, 1], where the mapping is expressed by the membership function R(x, y) of the relation R; i.e.,

R = {((x, y), R(x, y)) | (R(x, y)) ∈ [0, 1], x ∈ U , y ∈ U }.

For each y ∈ U , the R-foreset of y is the fuzzy set Ry defined by

Ry(x) = R(x, y),

for all x in U .

In fuzzy rough set theory, a similarity between objects in U is modeled by a fuzzy tolerance relation R; i.e.,

R(x, x) = 1 (reflexive),

R(x, y) = R(y, x) (symmetry), and

T (R(x, y)R(y, z)) ≤ R(x, z) (T -transitivity),

for all x, y, z in U . Given a t-norm (or a T -norm), R is then called a fuzzy T -equivalence relation or a fuzzy similarity relation

(fuzzy tolerance relation). The fuzzy similarity relations are commonly considered to measure the approximate equality of

objects, which is explained in Section 4.3. In general, for the fuzzy tolerance relation R, we call Ry a fuzzy T -equivalence

class (fuzzy equivalence granule) of y. The fuzzy logical counterparts of the connectives [24] are used in the generalization

of lower approximation (11) and upper approximation (12) in fuzzy rough set theory. We now recall some definitions. A

t-norm (triangular norm) T : [0, 1]2 → [0, 1] satisfies T (1, x) = x. We use TM and TL to represent t-norms, and these are

defined as

TM(x, y) = min(x, y), and

TL(x, y) = max(0, x + y − 1) (Lukasiewicz t-norm),

for all x, y ∈ [0, 1]. On the other hand, amapping I : [0, 1]×[0, 1] → [0, 1] satisfies I(0, 0) = 1, I(1, x) = x for all x ∈ [0, 1],
where I is an implicator. For all x, y ∈ [0, 1], the implicators IM and IL are defined by

IM(x, y) = max(1 − x, y) (Kleene–Dienes implicator), and

IL(x, y) = min(1, 1 − x + y) (Lukasiewicz implicator).

4.3. Fuzzy rough sets: granulation by partitions

Research on fuzzifying lower and upper approximations in the spirit of Pawlak [14] emerged in late 1980s. The proposals

had emerged due to Nakamura [27], Dubois and Prade [20], and Banerjee and Pal [22], who drew inspiration from an earlier

publication by Cerro and Prade [26]. Several other researchers have reported their contributions on hybridization of fuzzy

sets and rough sets [11,12,19,25,28]. In doing so, the following two principles were adopted for fuzzyfication of the formulae

(11) and (12) for the lower and upper approximations of a set.

1. A set A may be generalized to a fuzzy set in U allowing that objects can belong to a given concept (i.e., subset of the

universe) with membership degrees in [0, 1].
2. Usually, ‘object indistinguishability’ (for instance, with respect to their attribute values in an information system) is

described by means of an equivalence relation R in U in Pawlak’s rough approximation. Rather than doing so, the

approximation equality of objects can be represented by a fuzzy similarity relation R in generalized approximation space.

As a result, objects are categorized into different classes or granuleswith ‘‘soft’’ boundaries based on the similarity among

them.

In fuzzy rough sets [12], an information system is a pair (U, A), where U = {x1, x2, . . . , xs} and A = {a1, a2, . . . , an}
are finite non-empty sets of objects and conditional attributes, respectively. In our work, the values of conditional attributes

can be quantitative (real valued). Let ‘a’ be a quantitative attribute inA. We express the fuzzy similarity relation Ra between

any two objects x and y in U with respect to the attribute ‘a’ as

Ra(x, y) = max

(

min

(
a(y) − a(x) + σa

σa

,
a(x) − a(y) + σa

σa

)

, 0

)

, (15)
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where σa denotes the standard deviation of the attribute ‘a’. Ra is also called a fuzzy a-indiscernibility relation. It may be

noted that the relation Ra does not necessarily satisfy the T -transitivity property. For any B ⊆ A, the fuzzy B-indiscernibility

relation RB based on the fuzzy similarity relation R is induced by

RB(x, y) = T (Ra(x, y))
︸ ︷︷ ︸

a∈B

, (16)

where T represents a t-norm. For each y ∈ U , the fuzzy tolerance class of RB is defined by RBy(x) = RB(x, y) ∀ x in U . The

fuzzy tolerance classes of RB can be used to approximate the fuzzy sets (called concepts) in U .
A decision system (U, A ∪ {d}) is a special kind of information system, in which d (d /∈ A) is called a decision attribute

and it can be qualitative (discrete valued). Based on these values, the set U is partitioned into a number of non-overlapping

decision concepts Rd(xk), k = 1, 2, . . . , c , where each decision concept corresponds to a decision class. Each object xi ∈ U

is classified by the decision classes. Each decision class may be represented by a crisp set or a fuzzy set. For a qualitative

attribute ‘a’ in {d}, the decision classes are defined in the following two methods.
Method I (crisp case): crisp way of defining decision classes

Ra(x, y) =

{
1, if a(x) = a(y),

0, otherwise,
(17)

for all x, y in U . The crisp-valued decision class implies that objects in the universe U corresponding to the decision

equivalence granule would take values only from the set {0, 1}. A fuzzy set A ⊆ U can be approximated only by constructing

the lower and upper approximations of A with respect to crisp decision classes.
In real-life problems, the data are generally ill defined, with overlapping class boundaries. Each pattern used in the fuzzy

set A ⊆ U may belong to more than one class. To model such data, we extend the concept of a crisp decision granule into a

fuzzy decision granule by inclusion of the fuzzy concept to crisp decision granules. The fuzzy decision classes are defined as

follows.
Method II (fuzzy case): fuzzy way of defining decision classes
Consider a c-class problem domain where we have c decision classes of a decision attribute in a decision system. Let the

n-dimensional vectors Okj and Vkj, j = 1,2, . . . , n, denote the mean and standard deviation of the data for the kth class in the

given decision system. The weighted distance of a pattern
−→
Fi from the kth class is defined as

Zik =

√
√
√
√

n∑

j=1

[
Fij − Okj

Vkj

]2

, for k = 1, 2, . . . , c, (18)

where Fij is the value of the jth component of the ith pattern. The parameter 1

Vkj
acts as the weighting coefficient, such that

the larger the value of Vkj, the less is the importance of the jth feature in characterizing the kth class. Note that when the

value of a feature for all the patterns in a class is the same, the standard deviation of those patterns along that feature will

be zero. In that case, we consider Vkj = 0.000001 (a very small value, instead of zero for the sake of computation) so that

the weighting distance Zik becomes high and the membership values of the ith pattern to the kth class along that feature

become low (Eq. (7)).

It may be noted that when a pattern
−→
F i has different membership values corresponding to c decision classes then its

decision attribute becomes quantitative, i.e., each pattern has varyingmembership value. The quantitative decision attribute

can be made qualitative (as in Method I, crisp case) in two ways, namely, (i) by computing the average of the membership

values over all the patterns in the kth class to its own class, and assigning it to each pattern
−→
F i in its kth decision class, and (ii)

by computing the average of the membership values over all the patterns in the kth class to the other classes, and assigning

it to each pattern
−→
F i in other decision classes (other than the kth class). So the average membership value (qualitative) of

all the patterns in the kth class to its own class is defined as

Dkk =

mk∑

i=1

µk(
−→
F i)

|mk|
, if k = r, (19)

and the average membership values (qualitative) of all the patterns in the kth class to other decision classes are defined as

Dkr =

mk∑

i=1

µr(
−→
F i)

|mk|
, if k 6= r, (20)

where |mk| indicates the number of patterns in the kth class, and k, r = 1, 2, . . . , c.
For a qualitative attribute ‘a’ ∈ {d}, the fuzzy decision classes are defined as

Ra(x, y) =

{
Dkk, if a(x) = a(y),

Dkr , otherwise,
(21)
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for all x, y in U . Here, Dkk corresponds to an average membership value of all the patterns that belong to the same class

(k = r), and Dkr corresponds to an average membership values of all the patterns from classes other than k (k 6= r). The
way of implementing the aforesaid Methods I and II is explained through examples in Section 5.2.

For computing the lower and upper approximations of the fuzzy set A ⊆ U with a fuzzy similarity relation R under fuzzy

logic connectives (a t-norm T and an implicator I), we extend Eqs. (11) and (12) with the definitions given in [12] as

(R ↓ A)(y) = inf
x∈U

I(R(x, y), A(x)), (22)

(R ↑ A)(y) = sup
x∈U

T (R(x, y), A(x)), (23)

for all y in U , where the fuzzy similarity relation R is used to measure the approximate equality between any two objects in

U . The fuzzy positive region can be defined based on the fuzzy B-indiscernibility relation as

POSB(y) =

(

⋃

x∈U

RB ↓ Rdx

)

(y), (24)

for all x, y ∈ U . The positive region of a fuzzy set characterizes a region with maximum membership value. Considering y

belonging to a fuzzy set which is a subset of U , the fuzzy positive region Eq. (24) can be simplified as

POSB(y) = (RB ↓ Rdx) (y). (25)

The method of simplification is explained in [12]. The degree of dependency of d on the set of attributes B ⊆ A is defined

as

γB =

∑

x∈U

POSB(x)

|U|
, (26)

where | · | denotes the cardinality of a set U , and γ is 0 ≤ γ ≤ 1. The fuzzy set A ⊆ U is said to be completely dependent on

B if γ = 1.

It may be noted that the aforesaid procedure of determining the dependency factor of each conditional attribute with

respect to the decision granule in either the crisp case or the fuzzy case enables the proposed FRGNN to encode its initial

weight parameters from the training samples. The initial weights in the fuzzy case (Method II) are seen to provide better

performance in handling the overlapping class boundaries than those of the crisp case (Method I). These are explained in

the following sections.

5. Configuration of the FRGNN using fuzzy rough sets

In this section, we first show how the decision tables can be used to explain the concept of granulation by partitions and

fuzzy rough set approximations based on a fuzzy similarity relation. Based on this principle, the initial weights of the FRGNN

are then determined; thereby providing a knowledge-based network. Such a network is found to bemore efficient than other

similar types of granular neural network [13,36] and the conventional MLP [9]. During training, these networks search for

a set of connection weights that corresponds to some local minima. Note that there may be a large number of such minima

corresponding to various good solutions. Therefore, if we can initially set weights of the network so as to correspond nearby

one such solution, the searching space may be reduced and learning thereby becomes faster. Further, the architecture of the

network can be made simpler by fixing the number of nodes in the hidden layer based on the class information. These are

the characteristics that the proposed FRGNN is capable of achieving. The knowledge encoding procedure is described in the

next section using the concepts of fuzzy rough sets and a fuzzy similarity relation (Fig. 3).

5.1. Knowledge encoding procedure

Let S = (U, A ∪ {d}) be a decision table, with A = {a1, a2, . . . , an} its set of conditional attributes, and with decision

attributes {d}, whereU = {x1, x2, . . . , xs}, its set of objects, form c classes and objects having labeled values corresponding to

each n-dimensional conditional attribute.We split the decision table S = (U, A∪{d}) into c decision tables Sl = (Ul, A∪{d}),
l = 1, 2, . . . , c, corresponding to c classes, and the objects are added to each decision table from all the c classes succession.

Moreover, Sl satisfies the following conditions:

Ul 6= ø,

c⋃

l

Ul = U,

c⋂

l=1

Ul = ø. (27)

The size of each Sl, l = 1, 2, . . . , c, is dependent on the available number of objects from all the classes. If all the classes

have an equal number of patterns, then the number of objects that will be added to each Sl will be same; otherwise, it will

be different.
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Fig. 3. Block diagram of knowledge encoding.

Let us consider the case of feature Fj for Sl, l = 1, 2, . . . , c. The ith representative pattern
−→
F i is mapped to a point in

the 3D feature space of µlow(Fi1)(
−→
F i), µmedium(Fi1)(

−→
F i), µhigh(Fi1)(

−→
F i) by Eq. (3). In this manner, an n-dimensional attribute

valued decision table can be transformed into a 3n-dimensional attribute valued decision table. We apply the following

procedure for each decision table Sl, l = 1, 2, . . . , c.

Step 1:

Obtain additional granulation structures using the fuzzy similarity relation, defined in Eq. (15), on each conditional

attribute by generating a fuzzy similarity matrix.

Step 2:

Use Step 1 to compute lower approximations, defined in Eq. (22), of each concept for each conditional attribute

with respect to the decision classes, defined in Eq. (17) or (21), based on the fuzzy logic connective (Lukasiewicz

implicator).

Step 3:

Calculate the fuzzy positive region, defined in Eq. (25), of each object for each conditional attribute.

Step 4:

Calculate the degree of dependency, defined in Eq. (26), of each conditional attribute, and then the resulting values

are determined as initial weights between the nodes of the input layer and hidden layer.

Step 5:

Calculate the degree of dependency, defined in Eq. (26), of each conditional attribute corresponding to the objects

within the class with respect to each decision class and average value of all those degree of dependencies, and then

the resulting values are determined as initial weights between the nodes of the hidden layer and the output layer.

Let us now design the initial structure of the three-layered FRGNN. The number of input layer nodes consists of the 3n-

dimensional attribute values and the output layer is represented by c classes. The hidden layer nodes are modeled with

the class information. Next, we explain the procedure of encoding the initial weights of the network. Let the dependency

degrees for conditional attributes of a decision table S1, for instance, be γi, i ∈ A = {a1, a2, . . . , an}. The weightwli between

an input node i and a hidden node l is defined as follows, for instance, when l = 1:

γ
S1
i =

∑

x∈U

POSi(x)

|U|
. (28)

Let βl denote the connection weight between a hidden node and an output node. The weight wkl between the hidden

node l and the output node k, for instance, when k = 1, is defined as follows. Given c decision classes for a decision table

{d1, d2, d3, . . . , dc},

β
S1
l =

n∑

i=1

γ l
i

|n|
, (29)
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Table 1

Dataset.

U a b c d

1 −0.4 −0.3 −0.5 1

2 −0.4 0.2 −0.1 2

3 −0.3 −0.4 0.3 1

4 0.3 −0.3 0 2

5 0.2 −0.3 0 2

6 0.2 0 0 1

Table 2

Decision table.

U L1 M1 H1 L2 M2 H2 L3 M3 H3 d

1 0.875 0.395062 0 0.929687 0.924383 0 0.125 0.347222 0 1

2 0.875 0.395062 0 0 0.260802 0.125 0 0.986111 0.382812 2

3 0.5 0.697531 0 0.382812 0.739198 0 0.125 0.875 0 1

4 0 0.302469 0.5 0.929687 0.924383 0 0 0.875 0.929688 2

5 0 0.604938 0.875 0.929687 0.924383 0 0 0.875 0.929688 2

6 0 0.604938 0.875 0 0.813272 0.125 0 0.875 0.929688 1

where γ l
i is defined as

γ l
i =

∑

x∈Udl

POSi(x)

|Udl |
, l = 1, 2, . . . , c. (30)

A similar procedure is applied to the rest of the decision tables Sl. Then the degrees of dependency of conditional

attributes, γ
Sl
i , for l = 1, 2, . . . , c , are used as the initial weights between the nodes of the input layer and the hidden

layer. The initial weight between nodes of the hidden and output layers is set to β
Sl
l . The connection weights, so encoded,

are refined by training the network on a set of patterns supplied as input.

5.2. Example

We apply the operations of fuzzy rough sets based on the similarity relation on an example dataset as given in Table 1 to

determine the initial weights of the FRGNN.

Crisp case

Each conditional attribute in Table 1 can be transformed into a 3D granular space. Then the resulting decision table is

shown in Table 2.

Apply Step 1 of Section 5.1 to Table 2. The resulting similarity matrices of the conditional attributes L1 and M1 are as

follows:

RL1(x, y) =









1 1 0.555 0 0 0

1 1 0.555 0 0 0

0.555 0.555 1 0.407 0.407 0.407
0 0 0.407 1 1 1

0 0 0.407 1 1 1

0 0 0.407 1 1 1









RM1
(x, y) =









1 1 0.691 0.905 0.785 0.785
1 1 0.691 0.905 0.785 0.785

0.691 0.691 1 0.596 0.905 0.905
0.905 0.905 0.596 1 0.691 0.691
0.785 0.785 0.905 0.691 1 1

0.785 0.785 0.905 0.691 1 1









.

Similarly, the similarity matrices for the remaining attributes RH1
(x, y), RL2(x, y), RM2

(x, y), RH2
(x, y), RL3(x, y), RM3

(x, y),
RH3

(x, y) can be determined. We then calculate the lower approximations (from Step II) of the concepts x0 = {1, 3, 6} and
x1 = {2, 4, 5} for every conditional attribute with respect to the decision classes Rd(x, y), where y belongs to x0 and x1, and

x belongs to U .

Apply Step 2 from Section 5.1 to the concept x0.

(RL1 ↓ Rdx)(y) = infx∈UI{RL1(x, y), Rd(x, y)}.
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For object 1, this is

(RL1 ↓ Rdx)(1) = infx∈UI{RL1(x, 1), Rd(x, 1)},

= min {I(1, 1), I(1, 0), I(0.555, 1), I(0, 0), I(0, 0), I(0, 1)},

= 0.0.

For object 3, this is

(RL1 ↓ Rdx)(3) = min {I(0.555, 1), I(0.555, 0), I(1, 1), I(0.407, 0), I(0.407, 0), I(0.407, 1)},

= 0.444.

For object 6, (RL1 ↓ Rdx)(6) = 0.0.

Similarly, apply Step 2 from Section 5.1 to the concept x1.

(RL1 ↓ Rdx)(2) = 0.0, (RL1 ↓ Rdx)(4) = 0.0, (RL1 ↓ Rdx)(5) = 0.0.

For any qualitative attribute ‘a’ ∈ {d}, the lower approximations are equivalent to positive degrees of objects in both the

concepts x0 and x1. The resulting dependency degree of a conditional attribute L1 is γ{L1} = 0.074.

Calculating the dependency degrees for the remaining conditional attributes from Table 2, we have

γ{M1} = 0.031, γ{H1} = 0.074,

γ{L2} = 0.077, γ{M2} = 0.506,

γ{H2} = 0.000, γ{L3} = 0.042,

γ{M3} = 0.111, and γ{H3} = 0.233.

These resulting dependency degrees are considered as the initial connection weights from nine input layer nodes to one

hidden layer node of the FRGNN corresponding to class 1. Next, we define the connection weights from the hidden layer

nodes to one output layer node as follows.

The positive degrees of objects in the concept x0 = {1, 3, 6} with respect to the decision class Rd(x0) for the attribute L1
are

POSL1(1) = 0.0, POSL1(3) = 0.444, POSL1(6) = 0.0.

Hence, the resulting degree of dependency is

γ{L1}(x0) =
0.0 + 0.444 + 0.0

3
= 0.148.

The positive degrees of objects with respect to the decision class Rd(x1) for the attribute L1 are

POSL1(2) = 0.0, POSL1(4) = 0, POSL1(5) = 0.0.

Hence, the resulting degree of dependency is

γ{L1}(x1) =
0.0 + 0.0 + 0.0

3
= 0.0.

The dependency degrees for the rest of the attributes with respect to each decision class are as follows.

γ{M1}(x0) = 0.031, γ{M1}(x1) = 0.031,

γ{H1}(x0) = 0.0, γ{H1}(x1) = 0.148,

γ{L2}(x0) = 0.155, γ{L2}(x1) = 0.0,

γ{M2}(x0) = 0.104, γ{M2}(x1) = 0.168,

γ{H2}(x0) = 0.0, γ{H2}(x1) = 0.0,

γ{L3}(x0) = 0.183, γ{L3}(x1) = 0.0,

γ{M3}(x0) = 0.183, γ{M3}(x1) = 0.038,

γ{H3}(x0) = 0.310, and γ{H3}(x1) = 0.155.

The average dependency degrees of all the conditional attributes with respect to the decision classes are characterized by

γ (x0) = 0.113 and γ (x1) = 0.060. These values are used to represent the initial connection weights of two hidden layer

nodes to one output layer node of the FRGNN that corresponds to class 1.

Fuzzy case

Each conditional attribute in Table 1 can be transformed into the 3n-dimensional granular space of Eq. (3). Then the

resulting values are shown in Table 3. The average membership values of Eqs. (19) and (20) are presented in Table 3 under

the decision attribute columns Dkk and Dkr .

We then calculate the lower approximations (from Step II) of the concepts x0 = {1, 3, 6} and x1 = {2, 4, 5} for every

conditional attribute with respect to the fuzzy decision classes Rd(x, y), where y belongs to x0 and x1, and x belongs to U .
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Table 3

Decision table.

U L1 M1 H1 L2 M2 H2 L3 M3 H3 d Dkk Dkr

1 0.875 0.395 0 0.929 0.924 0 0.125 0.347 0 1 0.257 0.180

3 0.5 0.697 0 0.382 0.739 0 0.125 0.875 0 1 0.257 0.180

6 0 0.604 0.875 0 0.813 0.125 0 0.875 0.929 1 0.257 0.180

2 0.875 0.395 0 0 0.260 0.125 0 0.986 0.382 2 0.276 0.084

4 0 0.302 0.5 0.929 0.924 0 0 0.875 0.929 2 0.276 0.084

5 0 0.604 0.875 0.929 0.924 0 0 0.875 0.929 2 0.276 0.084

For the concept x0 = {1, 3, 6},
(RL1 ↓ Rdx)(y) = infx∈UI{RL1(x, y), Rd(x, y)}.
For object 1, this is

(RL1 ↓ Rdx)(1) = infx∈UI{RL1(x, 1), Rd(x, 1)},
= min {I(1, 0.257), I(1, 0.180), I(0.555, 0.257),

I(0, 0.180), I(0, 0.180), I(0, 0.257)},
= 0.180.

For object 3, this is

(RL1 ↓ Rdx)(3) = infx∈UI{RL1(x, 3), Rd(x, 3)},
= min {I(0.555, 0.257), I(0.555, 0.180), I(1, 0.257),

I(0.407, 0.180), I(0.407, 0.180), I(0.407, 0.257)},
= 0.257.

(RL1 ↓ Rdx)(6) = infx∈UI{RL1(x, 6), Rd(x, 6)},
= min {I(0, 0.257), I(0, 0.180), I(0.407, 0.257),

I(1, 0.180), I(1, 0.180), I(1, 0.257)},
= 0.180.

For the concept x1 = {2, 4, 5},

(RL1 ↓ Rdx)(2) = 0.084, (RL1 ↓ Rdx)(4) = 0.084, (RL1 ↓ Rdx)(5) = 0.084.

The resulting degree of dependency of the conditional attribute L1 is γ{L1} = 0.145. Calculating the dependency degrees for

the remaining features from Table 3 results in

γ{M1} = 0.160, γ{H1} = 0.164,

γ{L2} = 0.145, γ{M2} = 0.190,

γ{H2} = 0.132, γ{L3} = 0.158,

γ{M3} = 0.164, and γ{H3} = 0.190.

These resulting dependency degrees are used as the initial connectionweights between the input layer nodes to one node in

the hidden layer of the FRGNN that corresponds to class 1. Similarly, one can determine from Table 3 the initial connection

weights from the hidden layer nodes to one output layer node of the FRGNN corresponding to class 1. The resulting average

degrees of dependency of all the conditional attributes with respect to the decision classes are characterized by γ (x0) =

0.209 and γ (x1) = 0.113.

So far, we have discussed the procedure for determining the connection weights corresponding to one decision table. If

a similar procedure is applied to the other decision table in both crisp and fuzzy cases then a fully connected FRGNN with

initial weight parameters would be generated.

6. Implementation and experimental results

The proposed FRGNNwhich incorporates fuzzy granular concepts at various levels has been implemented in C on several

real-life data sets. We describe their characteristics in Table 4.

The speech data ‘‘vowel’’ deals with 871 Indian Telugu vowel sounds [29]. These were uttered in a consonant–vowel–

consonant context by three male speakers in the age group 30–35 years. The data set has three features, F1, F2, and F3,

corresponding to the first, second, and third vowel format frequencies obtained through spectrum analysis of speech data.

Fig. 4(a) shows a two-dimensional (2D) projection of the 3D feature space of the six vowel classes in the F1–F2 plane. All the

other data sets (such as pima Indian, sonar, and thyroid) are taken from the UCI Machine Learning Repository [30]. Fig. 4(b)

shows a 3D projection of the 60D feature space of the two classes of sonar data in the F1–F2–F3 space. Fig. 5(a) shows a 3D

projection of the 18D feature space of the four classes of lymphography data in the F1–F2–F3 space. Fig. 5(b) shows a 3D

projection of the 5D feature space of the three classes of thyroid data in the F1–F2–F3 space.

During learning, we have used an n-fold cross-validation design with stratified sampling. The training is done on (n− 1)
folds of the data selected randomly from each of the classes. The remaining one-fold data is considered as the test set. This

is repeated n times, and the overall performance of the FRGNN is computed taking an average over n sets of folds. In our
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Table 4

Data set characteristics.

Dataset name Number of patterns Features Classes Origin

Telugu vowel 871 3 6 [29]

Pima Indian 768 8 2 UCI

Sonar 208 60 2 UCI

Lymphography 148 18 4 UCI

Glass 214 9 6 UCI

Ionosphere 351 33 2 UCI

Thyroid 215 5 3 UCI

Wine 178 12 3 UCI

Fig. 4. (a) Vowel data in the F1–F2 plane. (b) Sonar data in the F1–F2–F3 space.

Fig. 5. (a) Lymphography data in the F1–F2–F3 space. (b) Thyroid data in the F1–F2–F3 space.

experiment, we considered n = 10 or 9 based on the size of the data sets. The parameters in Eq. (7) were chosen as fd = 6

and fe = 1 for all the data sets. However, themomentum parameter α, learning rate η, and the bias b of the FRGNN traversed

a range of values between 0 and 1, and had different values depending on the folds used for learning. For example, in the

case of vowel data, the appropriate values were α = 0.98, η = 0.0858, b = 0.00958 in the crisp case, and α = 0.958,
η = 0.06558, b = 0.0958 in the fuzzy case. It is observed that the FRGNN converges to a local minimum at the 2000th

epoch for glass data and ionosphere data. For the vowel data and the remaining data sets, the proposed FRGNN converges

to a local minimum at the 1500th epoch.

Before providing the performance of the FRGNN on the test sets for all the data, we explain the implementation process

for its training on Telugu vowel data, as an example. Here, the FRGNN has nine nodes in the input layer, and six nodes

in each of hidden and output layers. The data is first transformed into a 3D granular space using Eq. (3). The appropriate

values of the center C and scaling factor λ for each feature of granules, e.g., low, medium, or high, are determined as Clow1
=

368.932, Cmedium1
= 470.482, Chigh1 = 583.616, Clow2

= 1110.323, Cmedium2
= 1514.684, Chigh2 = 2047.021, Clow3

= 2359.322,

Cmedium3
= 2561.021, Chigh3 = 2755.891, and λlow = 586.666, λmedium = 1300.000, λhigh = 666.666. Then, the 3D patterns

have numerical components which are mapped into a 9D granular space with components L1,M1, H1, L2,M2, H2, L3,M3, H3,

while the desired vector has components d1, d2, d3, d4, d5, d6 corresponding to the six vowel classes. Table 5 provides some

examples of a granular input vector
−→
F i, and the desired output vector dk, k = 1, 2, . . . , 6, for a set of sample patterns.
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Table 5

Input target vectors for a set of sample patterns presented to the proposed model.

Input features Input vector Desired vector

F1 F2 F3 L1 M1 H1 L2 M2 H2 L3 M3 H3 d1 d2 d3 d4 d5 d6

700 1500 2600 0.37 0.94 0.93 0.22 0.99 0.06 0.66 0.99 0.89 0.9 0.0 0.0 0.0 0.0 0.0

650 1200 2500 0.54 0.96 0.98 0.95 0.88 0.00 0.88 0.99 0.70 0.0 0.9 0.0 0.0 0.0 0.0

300 2100 2600 0.97 0.96 0.63 0.00 0.59 0.98 0.66 0.99 0.89 0.0 0.0 0.9 0.0 0.0 0.0

400 1150 2500 0.99 0.99 0.84 0.99 0.84 0.00 0.88 0.99 0.70 0.0 0.0 0.0 0.9 0.0 0.0

500 2000 2750 0.90 0.99 0.96 0.00 0.72 0.99 0.22 0.95 0.99 0.0 0.0 0.0 0.0 0.9 0.0

400 900 2700 0.99 0.99 0.84 0.74 0.55 0.00 0.35 0.97 0.98 0.0 0.0 0.0 0.0 0.0 0.9

Table 6

The FRGNN with initial connection weights in the crisp case for Telugu vowel data.

Input to hidden layer (wij) Hidden to output layer (wjk)

0.0051 0.0045 0.0019 0.0002 0.0003 0.0014 0.0883 0.1574 0.0453 0.0346 0.0179 0.0258

0.0236 0.0085 0.0021 0.0016 0.0008 0.0006 0.0523 0.1377 0.0290 0.0348 0.02523 0.04833

0.03815 0.01357 0.0061 0.0133 0.0001 0.0004 0.1524 0.1084 0.0617 0.0876 0.0224 0.0348

0.0027 0.0020 0.0013 0.0029 0.0018 0.0023 0.1247 0.0586 0.0119 0.01556 0.0185 0.0141

0.0096 0.0057 0.0061 0.0076 0.0046 0.0066 0.0976 0.0081 0.0215 0.0195 0.0182 0.0425

0.0029 0.0097 0.0030 0.0030 0.0006 0.0002 0.0350 0.0112 0.0169 0.0407 0.0025 0.0596

0.0026 0.0055 0.0009 0.0023 0.0029 0.0071

0.0004 0.0018 0.0015 0.0005 0.0011 0.0051

0.0060 0.0068 0.0045 0.0026 0.0025 0.0059

Table 7

The FRGNN with initial connection weights in the fuzzy case for Telugu vowel data.

Input to hidden layer (wij) Hidden to output layer (wjk)

0.0747 0.0832 0.0759 0.0849 0.0937 0.0892 0.0936 0.097 0.1214 0.1347 0.1294 0.1371

0.0634 0.06202 0.0661 0.0713 0.0761 0.0757 0.0648 0.0615 0.0881 0.1101 0.0813 0.0950

0.0642 0.0655 0.0741 0.0868 0.0737 0.0798 0.0362 0.0472 0.0477 0.0603 0.0532 0.0463

0.1117 0.0948 0.1024 0.1079 0.1104 0.0862 0.0166 0.0082 0.0237 0.0172 0.0197 0.0179

0.0778 0.0893 0.0981 0.1114 0.1232 0.0962 0.1588 0.1616 0.1601 0.1636 0.1629 0.1663

0.1044 0.0890 0.1286 0.1106 0.1047 0.12675 0.0793 0.0675 0.0904 0.078 0.0836 0.0844

0.0681 0.0768 0.0868 0.0899 0.0763 0.09251

0.06290 0.0620 0.0824 0.0697 0.0695 0.0845

0.0768 0.0713 0.0870 0.0941 0.0765 0.0855

Knowledge extraction procedure for Telugu vowel data:

Let the decision table S = (U, A∪{d}) be used to represent the entire training data set. The decision table S is then divided

into six decision tables corresponding to six vowel classes, namely, Sl = (Ul, A ∪ {d}). Each Sl, l = 1, 2, . . . , 6, need not be

of the same size. Each Sl is transformed into a 3D granular space with Eq. (3). We apply the knowledge encoding procedure

(which was explained before with respect to the data set in Table 1) for each decision table Sl, and the resulting domain

knowledge is then encoded into the proposed FRGNN in the form of initial connection weights. Tables 6 and 7 provide the

initial connection weights of the FRGNN in the crisp case (Method I of Section 4.3) and fuzzy case (Method II of Section 4.3),

respectively. The values of the fuzzifiers fd and fe in Eq. (7) were considered to be 1. The complete FRGNN architecture thus

generated for the vowel data is shown in Fig. 6. The network refines its initial weight parameters using the training samples.

The trained network is then used to classify the test pattern set.

Note that, if the number of training patterns in any class is less than the number of classes, then it may not be possible

to define the average dependency factors of all the conditional attributes with respect to a decision class. To avoid this,

we include some training patterns with zero attribute value to that particular class so as to make the number of training

patterns in that class equal to the number of classes.

Performance of the FRGNN on test sets:

The experimental results of the FRGNN on all the real-life data sets are shown in Table 8. The results correspond to three

types of the initial weights of the FRGNN. These are (i) random numbers in [−0.5, 0.5], (ii) the crisp case (Method 1 of

Section 4.3) and (iii) the fuzzy case (Method 2 of Section 4.3). Onemay note that considering the random initial weights (i.e.,

type (i)) makes the FRGNN equivalent to a fuzzy MLP [10].

The performance of the FRGNN is seen to vary over different folds. For example, in the ten-fold cross-validation, for

Telugu vowel data with initial weights in the random case, the crisp case, and the fuzzy case, the recognition scores of the

FRGNN are seen to vary between 79.01% (minimum) and 88.51% (maximum) with an average accuracy of 84.75%; 81.61%

(minimum) and 90.80% (maximum) with an average accuracy of 86.55%; and 85.06% (minimum) and 94.25% (maximum)

with an average accuracy of 87.71%, respectively. In the nine-fold cross-validation, for Pima Indiandatawith initialweights in

the random case, the crisp case, and the fuzzy case, these figures are found to be 72.94% (minimum) and 83.53% (maximum)
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Fig. 6. The FRGNN for Telugu vowel data.

Table 8

Experimental results for the FRGNN.

Dataset # Initial Each fold accuracy Average

name folds weights case accuracy

Random 82.76 85.06 83.91 85.06 85.06 86.21 86.21 79.01 88.51 85.06 84.75

Telugu vowel 10 Crisp 85.06 85.06 90.8 87.36 87.36 86.21 85.06 81.61 88.51 88.51 86.55

Fuzzy 86.21 86.21 94.25 89.66 86.21 86.21 86.21 85.06 88.51 88.51 87.71

Random 75.29 82.35 70.59 80 72.94 74.12 72.94 74.12 78.82 – 75.69

Pima Indian 9 Crisp 77.65 83.53 74.12 81.18 74.12 75.29 76.47 74.12 78.82 – 77.26

Fuzzy 77.65 83.53 74.12 81.18 74.12 76.47 76.47 74.12 84.71 – 78.04

Random 86.96 86.96 73.91 86.96 91.3 82.61 82.61 86.96 86.96 – 85.03

Sonar 9 Crisp 91.3 91.3 73.91 86.96 91.3 82.61 82.61 86.96 91.3 – 86.47

Fuzzy 95.65 91.3 78.26 86.96 100 86.96 78.26 86.96 95.65 – 88.89

Random 87.5 81.25 75 75 81.25 81.25 75 87.5 75 – 79.86

Lymphography 9 Crisp 87.5 87.5 75.00 75.00 87.5 81.25 81.25 93.75 81.25 – 83.33

Fuzzy 100 87.5 75 81.25 93.75 81.25 81.25 100 81.25 – 86.81

Random 71.43 71.43 76.19 76.19 76.19 71.43 76.19 71.43 71.43 71.43 73.34

Glass 10 Crispe 71.43 71.43 80.95 71.43 80.95 76.19 71.43 76.19 80.95 76.19 75.71

Fuzzy 71.43 76.19 80.95 76.19 80.95 76.19 71.43 71.43 71.43 85.71 76.19

Random 91.43 88.57 91.43 91.43 88.57 88.57 88.57 97.14 88.57 94.29 90.86

Ionosphere 10 Crisp 88.57 94.29 91.43 91.43 91.43 91.43 88.57 97.14 88.57 94.29 91.72

Fuzzy 88.57 94.29 91.43 91.43 91.43 91.43 91.43 97.14 91.43 94.29 92.29

Random 95.45 95.45 95.45 95.24 95.45 86.36 90.48 100.00 100.00 100.00 95.39

Thyroid 10 Crisp 95.45 95.45 95.45 95.24 95.45 90.48 95.24 100.00 100.00 100.00 96.28

Fuzzy 95.45 95.45 95.45 95.24 95.45 90.48 95.24 100.00 100.00 100.00 96.28

Random 95.45 95.45 90.91 100 90.91 95.45 95.45 100.00 100.00 100.00 96.36

Wine 10 Crisp 95.45 95.45 90.91 100 90.91 100.00 100.00 100.00 100.00 100.00 97.27

Fuzzy 95.45 95.45 90.91 100 90.91 100.00 100.00 100.00 100.00 100.00 97.27

with an average accuracy of 75.69%; 74.12% (minimum) and 90.80% (maximum) with an average accuracy of 77.26%; and

74.12% (minimum) and 83.53% (maximum) with an average accuracy of 78.04%, respectively. For sonar data with nine-fold

validation, the corresponding figures are found to be 73.91% (minimum) and 91.30% (maximum) with an average accuracy

of 85.03%; 73.91% (minimum) and 91.30% (maximum) with an average accuracy of 86.47%; and 78.26% (minimum) and

100.00% (maximum) with an average accuracy of 88.89%.

The generalization ability of the FRGNN is seen to depend on the characteristics of the data. If the correlation among

input variables is high, the generalization ability is not so high, and vice versa. For example, the generalization ability of the

FRGNN for Telugu vowel, pima Indian, sonar, lymphography, and glass data is below 90% because of the high correlation

among their input variables, whereas it is above 90% for thyroid, wine, and ionosphere data, which have comparatively less

correlation among the input variables.

From Table 8, we can conclude that the performance of the FRGNN with initial connection weights corresponding to

both fuzzy and crisp cases is superior to that of the fuzzy MLP (i.e., the FRGNN with initial weights corresponding to the
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Fig. 7. Comparison of squared errors of the FRGNN with initial weights for Telugu vowel data. 1: random case, 2: crisp case, 3: fuzzy case.

Fig. 8. Block diagram of the knowledge encoding procedure in Method I.

random case) for all the data sets. Weight selection by Method II of Section 4.3 (fuzzy case) results in better performance

thanMethod I of Section 4.3 (crisp case). Further, their difference is more apparent for overlapping classes; for example, see

Fig. 5(a) for lymphography data, where the difference is seen to be more than 3%.

Fig. 7 presents the variation of the squared error with the number of epochs carried out during training of the FRGNN

with initial weights in random, crisp, and fuzzy cases. This comparative result is shown, as an example, only for Telugu vowel

data. Here, the results correspond to one fold over ten folds. As expected, the squared error decreases with the number of

epochs. The error drops significantly at lower number of epochs for the crisp and fuzzy cases than the random case of weight

selection, because the former two cases enable the FRGNN to start learning from amuch better position than the latter case.

Among the crisp and fuzzy cases, although the crisp one is seen to provide slightly better results for the particular fold of

vowel data (considered in Fig. 7), in overall performance, the fuzzy case of weight selection is the best for all the data sets

(see Table 8).

Comparison with the rough fuzzy MLP:

In order to compare the performance of our network against an existing well-known network of a rough fuzzy MLP [13],

we consider the Telugu vowel data, as an example. The domain knowledge encoding procedure in the rough fuzzy MLP is

explained in the following two methods.

Method I

Fig. 8 shows a complete algorithm for Method I. Here, the data is first transformed into a 3D linguistic space. A threshold

Th (0.5 ≤ Th < 1) is imposed on the resultant linguistic data in order tomake them binary (0 or 1). Themost representative

template, i.e., the onewith themaximumnumber of occurrences, is selected from the set of all the templates in the resultant

binary-valued data to serve as an object in a decision table. Similarly, the other most representative templates are selected

from the remaining classes of the resultant binary-valued data. Then the resultant information is represented in the decision

table. Knowledge reduction now consists of eliminating superfluous values of the conditional attributes by computing their

generalized decision reducts (D-reducts). For each D-reduct, the discernibility matrix is defined such that the discernibility

functions are obtained from the discernibility matrix. Each discernibility function gives rise to a decision rule. These rules

are used to define the dependency factors which are encoded into the conventional MLP.

Method II

Fig. 9 shows a complete algorithm forMethod II, inwhich the data is first transformed into a 3D linguistic space andmade

binary, as inMethod I. The binary-valued data is represented in a decision table S. Then the decision table S is divided into Si,

i = 1, 2, . . . , c , corresponding to c decision attributes, where c is the number of classes. For each decision table Si, objects are
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Fig. 9. Block diagram of the knowledge encoding procedure in Method II.

Table 9

Experimental results for the rough fuzzy MLP.

Dataset # Method Each fold accuracy Average

name folds accuracy

80.46 89.66 82.76 86.21 83.91 87.36 83.91 86.21 87.36 90.8 85.86

83.91 83.91 87.36 90.80 80.46 87.6 83.91 82.76 88.51 89.66 85.86

Telugu 10 Method I 83.91 87.36 82.76 87.36 82.76 87.36 85.06 81.61 87.36 88.51 86.41

vowel 83.91 85.06 81.61 89.66 80.46 88.51 83.91 82.76 89.66 90.80 85.63

10 Method II 81.61 83.91 87.36 88.51 87.36 87.36 87.36 83.91 88.51 89.66 86.55

Fig. 10. Comparison of squared errors of the FRGNN and rough fuzzy MLP.

grouped into different sets based on the number of occurrences of the patterns of same attribute values. The objects in the

decision table are arranged in decreasing order based on the frequency of occurrences of the set ofmulti-objects. A threshold

value (Tr) is determined based on the frequency of occurrences of the set of multi-objects. All objects having frequency of

occurrences less than the threshold (Tr) are eliminated from the decision table. Thus the reduced decision table Ti is created

with the help of a threshold (Tr). For each Ti, a discernibility matrix is defined. A discernibility function fci , i = 1, 2, . . . , c , is
generated corresponding to the discernibility matrix. Based on the discernibility matrix, Ti-decision reducts are generated

using the disjunctive normal form. For each Ti-decision reduct, the discernibility matrix is defined, so is the discernibility

function f
xj
ci for each object xj in Ti. Each discernibility function gives rise to a decision rule. The rules, thus formed, are used

to determine the dependency factors dfi, i = 1, 2, . . . , c , which are then considered as the initial connection weights of the

conventional MLP.

Table 9 demonstrates the performance of the rough fuzzy MLP, with one hidden layer as in the FRGNN, for classification

of vowels after 1500 epochs for a typical set of ten folds. The parameters of themembership function (fd and fe), learning rate

(η), momentumparameter (α), and bias bwere assigned the same values as in the FRGNN for the purpose of fair comparison.

Note that Method I produces four reducts combing all the six classes, and each reduct represents a set of six decision rules

corresponding to six vowel classes. On the other hand, inMethod II, we have obtained one reduct for each class representing

its decision rule, thereby generating six decision rules for six vowel classes. That is why Table 9 has four rows for Method

I but one row for Method II. Comparing Tables 8 and 9, we can say that the performance of the FRGNN with weights in the

fuzzy case is better than those of both Methods I and II of the rough fuzzy MLP.

In Fig. 10, we present the comparison of squared errors of the FRGNN (with initial weights in the fuzzy case) and the

rough fuzzy MLP (Method II) for one of the ten-folds, considered in Table 9, for which both the FRGNN and rough fuzzy MLP
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have given the best classification accuracy within their respective sets of folds for vowel data. In the FRGNN, the number of

nodes in the hidden layer is equal to the number of classes, which is six in the case of vowel data. Interestingly, the same

number of nodes was also obtained automatically in the rough fuzzy MLP using its rough dependency factors. Again, the

minimum values in both the cases were reached at 1500th epoch. Considering the variation of average accuracy rate, Fig. 10

further supports the earlier findings regarding the superiority of the FRGNN over the rough fuzzyMLP for Telugu vowel data.

Although the comparative result is shown here only for vowel data, to restrict the size of the paper, the same observation

holds good for other data sets too.

Salient points of the difference between the FRGNN and the rough fuzzy MLP:

In the rough fuzzyMLP, basically rough sets are integrated with a fuzzy MLP for encoding domain knowledge in network

parameters, whereas it is fuzzy rough sets which are integrated with a fuzzy MLP in the FRGNN.

As stated in Method II of the rough fuzzy MLP, a threshold value (Tr) is used to eliminate the noisy patterns from input

data. In contrast, no such threshold value is required in the FRGNN, and the problem of removing noisy patterns is resolved

by incorporating the concept of fuzzy rough sets in determining the initial weights of the network. Again, in Method II of

the rough fuzzy MLP, it was found that the attribute reducts could not be deducted for class 3 of the thyroid data since the

reduced attribute table contained only one pattern after applying the threshold (Tr) to the samples of class 3. So, the decision

rules could not be generated for class 3. This problem did not occur in the FRGNN.

In the rough fuzzy MLP, the decision rules are generated for each reduct of the reduct set, and the dependency factors of

these rules are mapped into the connection weights of the network. In contrast, no such attribute reducts are generated in

the FRGNN, and the dependency factors of all the conditional attributes and the average value of all the dependency factors

of all conditional attributes, with respect to the decision classes, are defined in the form of initial connection weights of the

network.

In the rough fuzzy MLP, the network architecture is modeled for each reduct of the reduct set, and every such network

gives a recognition score for the test set. The maximum recognition score computed over them is then considered as the

performance measure of the rough fuzzy for the concerned test set. In contrast, only one network architecture is modeled

in the FRGNN corresponding to the entire training data, and the network is seen to perform better than the rough fuzzyMLP

for the same test set.

7. Conclusions

In this paper, we have presented the design procedure of a new granular neural network model in a natural computing

framework by integrating the concept of fuzzy rough sets with a multilayer perceptron (MLP) using a back-propagation

algorithm. Granularity is incorporated both at the input level and in determining the weights of the network. The network

accepts input in terms of fuzzy granules (low,medium and high), and provides output decisions in terms of classmembership

values and zeros. The dependency factors, generated by the object space, are partitioned into fuzzy equivalence granules

based on fuzzy similarity relations, and then used in the form of initial connectionweights of the network instead of random

numeric connection weights. This investigation not only demonstrates a way of integrating fuzzy rough sets with a fuzzy

neural network, but also provides a methodology that is capable of generating a granular neural network architecture

and improving its performance. The fuzzy rough set provides a means by which discrete real-valued noise data can be

effectively reduced without the need for any user-supplied information. Additionally, the fuzzy partitions corresponding to

each attribute can be automatically derived by fuzzy similarity relations and fuzzy logical connectives.

We have examined two special types of granular computation; one is induced by low, medium, and high fuzzy granules

and the other has classes of granulation structures induced by a set of fuzzy equivalence granules based on a fuzzy similarity

relation. With respect to the classes of granulation structures, stratified fuzzy rough set approximations are obtained to

determine the dependency factors of all conditional attributes to obtain the initial weights of the FRGNN. The incorporation

of granularity at various levels of the conventional MLP helps the resulting FRGNN to efficiently handle uncertain and

ambiguous input information. This is demonstrated with extensive experimental results on a set of eight real-life data sets

with varying dimension and size. The FRGNN was found to be superior to a rough fuzzy MLP which uses rough sets, rather

than fuzzy rough sets, for knowledge encoding. Although the comparative results are shown only for vowel data, the same

observation holds for all other data sets considered in the experiment. The FRGNN architecture reflects a useful application

of granular computing to real-world classification problems.
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