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Abstrace—Quantifying ambiguities in images using fuzzy set
theory has been of utmost interest to researchers in the field of
image processing. In this paper, we present the use of rough set
theory and its certain generalizations for quantifying ambiguities
in images and compare it to the use of fuzzy set theory. We propose
classes of entropy measures based on mugh set ﬂlEﬂl‘\' and its
certain generalizations, and perform rigorous theoretical analysis
to provide some properties which they satisfv. Grayness and spa-
tial ambiguities in images are then guantified using the proposed
entropy measures. We demonstrate the utility and effectiveness of
the proposed entropy measures by considering some elementary
image processing applications. We also propose a new measure
called average image ambignity in this context.

Index Terms—Ambiguity measures, entropy, generalized rough
sets, image processing, rough set theory.

I. INTRODUCTION

EAL-LIFE mmages are mherently embedded with van-

ous ambiguities. For example, imprecision of values at
various pixels results in ambiguity, or value gradations canse
vague nature of definitions such as region boundaries. Hence,
it 15 natural and appropriate o use technigues that incorporate
the ambiguities in order to pedorm image processing tasks.
Fuzzy set theory [1] has been extensively used in order 1o define
various fuzziness measures of an image. The word “fuzziness”
has been, in general, related o the ambiguites ansing due 1o
the vague definition of region boundaries.

Let us now consider, for example, a 1001 = 1001 grayscale
tmage [see Fig. 1(a)] that has smusowrdal gray value gradations
in horteontal direction. When an attempt s made o mark the
boundary of an arbitrary region in the image, an exact boundary
cannot be defined as a consequence of the presence of steadily
changing gray values (gray value gradatwon). This s evident
from Fig. 1ib) that shows a portion of the image, where it
15 known that the pixels in the “white” shaded area uniguely
belong to a region. However, the boundary (on the lefl and right
sides) of this region is vague as it can lie anywhere in the gray
value gradations present in the porton. Value gradation is a
common phenomenon in real-life images, and hence, it is wide-
ly accepted that regions inoan image have fuzzy boundaries.

The values at vanous pixels m grayscale mmages are consid-
ered 1o be imprecise, both in lerms of the location and the gray
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Fig. 1. Ambiguities in a grayscale image with sinusoidal gray valve gra-
dations in hodzontal direction. {a) A gmyscale image. (h) Furzy boundary.
{c) Rough resemblance.

level, This means that a gray value at a pixel represents those
at its neighboring pixels o certam extents. It also means that
a gray value represents nearby gray levels o certin extents.
Moreover, pixels in a neighborhood with nearby gray levels
have limited discemibility due to the inadequacy of contrast.
For example, Fig. 1{c) shows a6 = 6 porton cut from the image
i Fig. 1a). Although this portion contains gray values sepa-
rated by six gray levels, it appears 1o be almost homogeneous.

Therefore, from the aforementioned analysis, we find that the
ambiguities in 8 grayscale image are due to the following.

1y Warious regions have fuzzy boundanes.

2y Nearby gray levels rowghly mesemble each other, and

values at nearby pixels have rough resemblance.

Ambiguities in a grayscale image are of two Lypes, namely,
grayness ambiguily and spatial ambiguity [2]. Grayness am-
biguity can be guantified considering the fuzzy boundaries
of regions based on global gray value distribution and the
rough mesemblance between nearby gray levels. On the other
hand, spatial ambiguity can be quantified considering the fuzey
boundanes of regions based on organzation of gray values at
varnous pixels and the rough resemblance between values at
nearby pixels.

The fuzzy set theory of Lofti Zadeh is based on the concept
of vague boundaries of sets in the universe of discourse [1]. The
rough set theory of Zdzislaw Pawlak, on the other hand, focuses
on ambiguity in terms of limited discemibility of sets in the
doman of discourse [3]. Therefore, fuezy sets can be vsed 1o
represent the ambiguities in images due o the vague definition
of region boundanes (fuzzy boundaries), and mough sets can
be vsed to represent the ambiguities due o the indiscernibality
between individual or groups of pixels or gray levels (rough
resemblance).

Rough set theory, which was initially developed considering
crisp equivalence approximation spaces [ 3], has been generl-
ized by considering fuzzy [4] and tolerance [5] approximation
spaces. Furthermore, rough set theory, which was imtally
developed o approximate cnsp sets, has also been generalized

wpproximate fuzzy sets [4].
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In this paper, we study the rough set theory and its certain
generalizations 1o quantfy ambiguities in images. Here, the
generalizations o rough set theory based on the approximation
of crisp and fuzey sels considering crisp equivalence, fuezzy
equivalence, crisptolerance, and fuzzy olerance approximation
spaces in different combinations are studied. All these combi-
nations give fse o different concepts for modeling vagueness,
which can be quantified using the roughness measure [3].

We propose classes of entropy measures which use the
roughness measures obtained considering the aforementioned
varous concepts for modeling vagueness. We perform dgorous
theoretcal analysis of the proposed entropy measures and
provide some properties which they sansfy. We then use the
proposed entropy measures to quantify ambiguities in images,
giving an account of the manner in which the ambiguities are
captured. We show that the aforesaid generalizations 1o rough
sel theory regarding the approximation of fuzzy sets can be used
Lo quantify ambiguities due w both fuzzy boundaries and rough
resemiblance.

The utility of the proposed measures in guantifying image
ambiguities 15 demonstrated using SOme Mage processing op-
erations like enhancement evaluation, segmentation, and edge
detection. A new measure called average image ambiguily
(ALA)Y 15 also defined in this context. The effectiveness of
some of the proposed measures 1s shown by gualitative and
quantitative comparisons of their use in image analysis with that
of certain fuzziness measures.

The proposed entropy measures and their properties are
presented i Section 1L and their utility in quantifying grayness
and spatial ambiguities s shownin Section 11 Experiments are
presented in Section IV 1o demonstrate the effectiveness of the
proposed measures. This paper concludes with Secton V.

1L ENTROPY MEASURES WITH RESPECT TO THE
DEFINABILITY OF A SET OF ELEMENTS

Defining entropy measures based on rough set theory has
been considered by researchers in the past decade. Probably, the
first of such work was reported in [6], where a “rough entropy™
of a set in a universe has been proposed. This rough entropy
measure is defined based on the uncertainty in granulation
{obtained using a relation defined over universe [3]) and the
definability of the set. Other entropy measures that guantify
the uncertainty in crisp or fuzey granulation alone have been
reported in lierature [6]-[9]. An entropy measure 15 presented
in [ 10}, which, although not based on rough set theory, quan-
tifies information with the underlying elements having limited
discermibility between them.

Incompleteness of knowledge about a universe leads w gran-
ulation [3], and hence, a measure of the uncerainly in granu-
lation quantifies this incompleteness of knowledge. Therefore,
apart from the “rough entropy™ in [6] which quantifies the
incompleteness of knowledge aboul a sel in a universe, the
other aforesaid entropy measures quantify the incompleteness
of knowledge about auniverse. The effect of the incompleteness
of knowledge about a universe becomes evident only when an
attempt is made to define a set in it. Note that the definability
of a set in a universe is not always affected by a change in the

uncertainty in granulation. This is evident in a few examples
givenin [6], which we do not repeat here for the sake of brevity.
Hence, a measure of the incompleteness of knowledge about a
universe with respect to only the definability of a setis required.

The first attempt of formulating an entropy measure with
respect to the definability of a set was made by Pal er al [11],
which was used for image segmentation. However, as pointed
out in [ 12], this measure does not satisfy the necessary propery
that the entropy value is maximum (or optimum) when the
uncertainty (in this case, incompleteness of knowledge) is
MAX T,

In this section, we propose classes of entropy measures,
which guantify the incompleteness of knowledge about a uni-
verse with respect o the definability of a set of elements
(in the umiverse) holding a particular property (represenling a
calegory ). An inexactness measure of a set, like the “roughness™
measure [3], quantifies the definability of the set. We measure
the incompleteness of knowledge about a universe with respect
to the definability of a set by considering the roughness measure
of the set and also that of its complement in the universe.

A. Roughness of a Set in a Universe

Let [ denote a universe of elements and X be an arbitrary
set of elements in [7 holding a particular propery. Accord-
ing to rough set theory [3] and is generalizations, limited
discemibility draws elements in [ together governed by an
indiscernibility relation B, and hence, granules of elements
are formed in [V, An indiscemibility relation [3] in a universe
refers to the similarities that every element in the universe
has with the other elements of the universe. The family of all
granules oblained using the relation B is represented as U/ R,
The indiscernibility relation among elements and sets in [V
results in an inexact defimtion of X, However, the set X can
be approximately represented by two exactly definable sets BY
and RX in [7, which are obtained as

BRX =\ J{y eU/R:Y Cc X} (1)
RX=|{yv eU/R: Y nX £0}. (2)

In the aforesaid expressions, BX and RX are called the
F-lower approximation and the R-upper approximation of X,
respectively. In essence, the pair of sets {RX, FEX) is the
representation of any arbitrary set X © [V in the approximation
space { U, 1), where X cannot be defined. As given in [3], an
inexactness measure of the set X can be defined as

|RX]|

PRIX)=1-— BXI (3)

where |RX| and |RX| are the cardinalities of the sets RX
and BX in U, respectively. The inexactness measure pg(X)
is called the R-roughness measure of X, and it takes a value in
the mterval ;:'[]. 1'

B. Lower and Upper Approximations of a Set

The expressions for the lower and upper approximations of
the set X depend on the type of relation & and whether X
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TABLE 1
[MFFERENT MAMES OF { BY, RX) AND (L7, R)
| x| i | < R TN = IR
Criap wrey Ll {0 I erdsp eduivilznce telation) roupk sel ol & crisp equivalencs appeasimalion space
bu ey wivp () e J0L T} fomsn equivalenoe melidisn) rirh-Tueey sel ol X Crisp euivilence approEimanim space
Crisp mwv (& [0, 1 {fuzzy equivilance relationd fuzzy rough set of X | fuzzy equivalence approximation space
Fusey vty () O[O0 D dNwesy ecquivalance celalinn [eey rougl-Tuesy sel ol W Jwewy egquivalence gpprosinslion spoce
Crsp [ &g 07w 07— 1,1} fecisp oleranee relarin] Ieleranue mough qee of & CRsp HHeTanee approxitrion e
Forzy | &L <L — J0, L} forisp talerance relation) talcranee rongh fozzy st of X cisp telerance approximation space
Criap o= T e L (lugey wolerwce relaliond wilerance Tucey cougl sel ool X Jweay tolerance wpgresinaion spuce
Pucey | &g o 07w I5 — G071 ey wilerimee reladfon? | kilemnce Tuesy rongh-Fuooe see ol 5 Mgy wleranee appresimalion space

is o crisp [1] or a fuzey [1] set Here, we shall consider the
upper and lower approximations of the set X when B denotes
an equivalence, a fuzzy equivalence, a tolerance, or a fuzzy
tolerance relation and X is a crisp or a fuzzy sel.

When X is acrisp or a fuzzy set and the relation B is a crisp
or a fuezy equivalence relation, the expressions for the lower
and upper approximations of the set X are given as

BX = {(u, M(x :I e U}
RX ={(u,M(u)) ju € U} (4)
whene
Miu) = Z My (1) = jLL{rltL:Lx{l — 1y (), iy lo))
Yell/R
M{u) = Z my (1) x sup min (my (), px(y))  (5)

Vell/ R

where the membership function mey represents the belonging-
ness of every element (u) in the universe (L') to a granule
[0,1] such that
¥y my(u) =1, and py, which takes values in the interval
[0, 1], is the membership function associated with X. When X
is o crisp set, gy would take values only from the set {0, 1}
Similady, when I is a crsp equivalence relation, my would
take values only from the set {0, 1}. The symbols 3~ (sum)
and x (product) in (3) represent specific fuzey union and in-
tersection operations [ 1], mespectively, which are chosen based
on their suitability with respect o the undedying application of
measuring ambiguily.

Note that, ull now, we have considered the indiscemibility
relation B C UV = I7 to be an equivalence welation, ie, R
satisfies crisp or fuzey reflexivity, symmetry, and transitvity
properties [1]. However, ift F does not satisfy any one of these
three properties, the expressions in (4) can no longer be used.
We shall consider here the case when the tmnsitivily property 15
not satisfied. Such a relation R is said 0 be a wolerance relation,
and the space (I, B) obtained is referred o as a tolerance
approximation space [5]. When B is a tolerance relation, the
expressions for the membership values corresponding to the
lower and upper approximations [see (5)] of an arbitrary set X
in [/ are given as

Y e U/R and it takes values in the interval

Miu) = -i"rf-' max (1l — Sglu, o), px(e))

M{u) =sup min (Sg(u, ), px(e) (6)

-
well

where 5w, ) is 8 value representing the wlerance relation B
between wand 4.

The pair of sets (HX. BX) and the approximation space
{I1, /) are referred o differently, depending on whether X is
a crsp or a fuzey set; the relation & is a crisp or a fuzezy equiv-
alence, or a crisp or a fuzey wlermnce relaton. The different
names are listed n Table L

C. Entropy Measures

As mentioned earlier, the lower and upper approximations of
a vaguely definable set X in a universe [ can be used in the
expression given in (3) in order Lo Zel an inexaclness measurs
of the set X called the roughness measure pgp| X)) The vague
definition of X in [V signifies the incompleteness of knowledge
about [V,

Here, we propose two classes of entropy measures based on
the roughness measures of a set and its complement in order
to quantify the incompleteness of knowledge about a universe.
One of the proposed two classes of entropy measures is ob-
tained by measuring the “gain in information™ or, in ow case,
the “gain in incompleteness™ using a logarithmic function as
suggested in Shannon’s theory. This proposed class of entropy
measures for quantifying the incompleteness of knowledge
about [V with respect to the definability of a set X CU is
ZIVen as

HE(X) = —= [ +m-;x“:|] 9
where 2 D) = pr (D) logg(pr( D)/ 3) forany set D C U, 3
denotes the base of the logarithmic function used, and Xtcp
stands for the complement of the set X in the universe. The
vanous entropy measures of this class are obtaned by calculat-
ing the roughness values pr(X ) and pgr(XC) considering the
different ways of obtaining the lower and upper approximations
of the vaguely definable set X Note that the “gain in incom-
pleteness™ term is taken as — log(pr /@) in (7), and for 3 = 1,
it takes a value in the interval [1, oo|. The other class of entropy
measures proposed 15 obtained by considering an exponential
function [13] w measure the “gain in incompleteness.” This
second proposed class of entropy measures for guantifying
the incompleteness of knowledge about [ with respect o the
definability of aset X' C [/ is given as

HE(X) = & [pa(X)8#50 4 pp(xO)3(00)] @)
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where (D) = 1 — pr(D) for any set D C [V and 3 denotes
the base of the exponential function used. Pal and Pal [13] had
considered only the case when (3 equaled e. Similar to the class
of entropy measures H §, the various entropy measures of this
class are obtained by using the different ways of obtaining the
lowwer and upper uE}pmximaLinns of X in order o calculate
priX) and pr(X"). The “gain in incompleteness™ tenmm is
taken as 31780 i (8), and for 3 = 1. it takes a value in the
finite interval |1, 3. Note that an analysis on the appropriate
values that 3 in HE and HE can take will be given later in
Section 11-E-1.

We shall name a proposed entropy measure using attributes
that represent the class (loganthmic or exponential) it belongs
to and the type of the pair of sets (RX, BX) considered. For
example, if {RX, BX) represents a tolerance rough—fuzzy set
and the expression of the proposed entropy in (8) is considered,
then we call such an entropy as the exponential tolemnce
rough—fuzey entropy. Some other examples of names for the
proposed entropy measures are the logarithmic rough entropy,
the exponential fuzzy rough entropy, and the logarithmic toler-
ance fuzzy rough—fuzzy entropy.

D. Relation Between pr( X)) and pr( XT)

Let us first consider & brief discussion on fuzey-set-theory-
based uncertainty measures. Assume that a set FS is fuzzy in
nature, and it is associated with a membership function pps.
As mentioned in [14], most of the approprate fuzey-set-theory-
based uncenamty measures can be grouped into two classes,
namely, the muluplcative class and the additive class. 1t should
be noted from [14] that the measures belonging o these classes
are functions of pipg and p .o, where pipg = 1 — pio.

MNow, as mentoned in [14], the existence of an exact rela-
tion between prs and pper suggests that they “theoretically™
convey the same. However, somelimes, such unnecessary Lerms
should be retained, as dropping them would cause the come-
sponding measures 1o fail certain important properties.

We shall now analyze the relation between pr(X) and
prl( XT) and show that there exist no unnecessary terms in the
classes of entropy measures [see (7) and (8)] proposed using
rough set theory and its certain generalizations. Now, as pp( X
takes a value in the interval [0, 1], let us consider

prlN) = l 1 < < oa. 9

)

Let us now find the range of values that pr(XT) can take when
the value of pg(X) is given. Let the total number of elements
in the universe U7 under consideration be n. As we have X U
XC =1, it can be easily deduced that X U BX® = [V and
EX UERXE = 7. Therefore, from (3), we el

. |RX|
priIX1=1- 'E_"(I (1)
Oy _ o |BXY| . n—|RX]
pr(X") =1 i " IRX] (11)

From (9, (10) and (11), we deduce that

IRX| 1( IRX]|

. 12
”—!E.‘{i) kil

We shall now separately consider three cases of (12), where we
havel < O < 00, O =1, and O = ¢

When we have 1 < ' < oo, we get the relation ((RX|/
IRX|) = (C —1)/C from (9). Using this relation in (12),
we oblain

X0 — oy BXL L
pr(X") = pr( :',,_!E_"{I «

1 fIRX) [+E5)
'(E fhigica — 1A 0-1 13
pRIXY) C ( n— |RX]| (5)
Alter some algebraic manipulations, we deduce that
, 1 1
pr(XE) = — R : (14)
-1 R 1

Note that when 1< (' < oo, prplX) takes a wvalue in the
interval {0, 1). Therefore, in this case, the value of [RX | could
range {rom a positive infinitesimal quantity, for example, €, o a
maximum value of n. Hence, we have

2 = b |RX| < n%. (15)
Using (15) in (14}, we get
£ -
SR .| S 0 4 ) e 3 16
WO —elC—1) = PR < Ve

As 1< < oo, e 1, and, usually, 77 1, we may wrile (16) as

0< pu(X%) <1. (17)

Thus, we may conclude that, for a given nonzero and nonunity
value of pr(X), pr(XC) may take any value in the inter-
val (0,1].

When ' = 1 or pr(X) takes a unity value, |BX| =10, and
the value of [RX | could range from ¢ to a maximum value of .
Therefore, it is easily evident from (12) that pr(XT) may take
any value in the interval (0, 1] when pr(X) = 1.

Let us now consider the case when ' = oo or pp( X)) = 0.
In such a case, the value of |RX| could range from zero to
a maximum value of n, and |[RX| = |[RX|. As evident from
(12), when ' = oo, irrespective of any other lerm, we get
pr(XT) = 0. This is cbvious, as an exactly definable set X
should imply an exactly definable set XC.

Therefore, we find that the relation between pgr(X) and
pﬁ{.‘(nj is such that if one of them is considered to take a
nonzero value (i.e., the underlying set is vaguely definable or
mexact), the value of the other, which would also be a nonzero
quantity, cannot be uniguely specified. Therefore, there exist no
unnecessary lerms in the proposed classes of entropy measures
given in (7) and (8). However, from (10) and (11), it is easily
evident that pi (X ) and pr(XC) are positively correlated.

E. Pwperties of the Proposed Classes of Entropy Measures

In this secton, till now, we have proposed two classes of
entropy measures, and we have shown that the expressions for
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the proposed entropy measures do nol have any unnecessary
terms. However, the base parameters 37 [see (7) and (8)] of the
two classes of entropy measures incur cerain restriclions, so
that the proposed entropies satisfy some important propertics.
In this section, we shall discuss the reswictions regarding the
base parameters and then provide few properties of the pro-
posed entropies.

1) Range of Values for the Base 3: The proposed classes of
entropy measures HE and HY givenin (7) and (8), respectively,
must be consisient with the fact that maximum information
{entropy) is available when the uncertainty s maximum and
the entropy is zero when there is no uncertainty. Nole that, in
our case, maximum uncerlainly represents maximum possible
incompleteness of knowledge about the universe. Therefore,
maximum uncerainty occurs when both the roughness values
used in HE and HE equal unity, and uncertainty is zero when
both of them are zero. 1t can be easily shown that in order 1o
satisfy the aforesaid condition, the base 7 in Hﬁ must Lake a
finite value greater than orequal to e = 2.7183), and the base 4
in HE must take a value in the interval (1, ¢]. When 3 = e in
Hfg and 1 < 3 < ¢ in HE, the values taken by both HE and
Hy; liein the range [(), 1] Note that for an appropriate 7 value,
the proposed entropy measures attain the minimum value of
zeroonly when pp( X) = pr( XC) = 0 and the maximum value
of unity only when pr(X) = pr(X®t) = 1.

2) Properties: Here, we present few properties of the pro-
posed logarthmic and exponential classes of entropy mea-
sures expressing Hi and HE as functions of two parameters
representing roughness measures. We may rewrte the expres-
stons given in (7) and (8) in parametdc form as follows,
respectively:

1 A B
HE(A,B) = — - [A log 5 (—;) + Blogg, (—;)] (18)

1
HE(A,B) =5 [A_.ra“-*” + B_{i“‘B]]

(19)

where the parameters A (€ [0,1]) and B (€ [0,1]) represent
the roughness values pg(X) and pr(XC). respectively. Con-
sidering the convention Olog, 0= 0, let us now discuss the
following properties of HE(A, B) and HE(A, B) along the
lines of [15].

1) Nonnegativity: We have HE(A, B) >0 and HE(A,
) = 0 with equality in both the cases if and only if
A=0and BE=1).

2) Continuity: Both HE( A, B) and HE( A, B) are continu-
ous functions of A and B, where A, B € [0,1].

3) Sharpness: Both HE( A, B) and HE (A, B) equal zero if
and only if the roughness values A and I3 equal zero, ie.,
Aand B are “sharp.”

4) Maximality and Normality: Both HE (A, B) and HE (A,
) attain their maximum valve of unity if and only
if the roughness values A and B are unity. That is,
we have HE(A, B) < HE(1,1)=1 and HE(A,B) <
HE(1,1) =1, where A, B € [0,1].

5) Resolution: We have HE(A* B*) < HE(A,B) and
HE(A*,B*) < HE(A,B), where A* and B* are the

b
Bt
;

Fig. 2. Plots of the proposed classes of entropy measures for vanous rough-
ness vilues A and B, (a) Loganthmic. (h) Exponential.
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Fig. 3. Proposed entropy measures for a few different 7 values, when A = B,

sharpened versions of 4 and B, respectively, ie., A* < A
and B* =< B,

6) Symmetry: Both H5(A, B) and HE (A, B) are symmet-
ric about the line 4 = B,

7) Monotonicity: Both HE(A, B) and HE(A B)
monotonically nondecreasing functions of A and 5.

8) Concavity: Both HE(A, B) and HE(A, B) are concave
functions of A and I,

are

The plots of the proposed classes of entropies Hf and HE as
functions of A and B are shown in Figs. 2 and 3, respectively.
In Fig. 2, the values of HE and HE are shown for all possible
values of the roughness measures A and B considerng 7 = e
Fig. 3 shows the plots of the proposed entropies for different
values of the base 3, when A = B

HI. MEASURING AMBIGUITIES IN IMAGES

Ambiguities in grayscale images are due to fuzzy boundaries
between regions, and rough resemblance between nearby gray
levels and between values at nearby pixels (see Section 1). In
this section, we shall use the entropy measures proposed in the
previous section in order o quantify ambiguities in a grayscale
image. As we shall see later, the entropy measures based on the
generalization of rough set theory regarding the approximation
of fuzzy sets (ie, when the set X considered in the previous
section is fuzey) can be wvsed w0 quantify ambiguities due 1o
both fuzzy boundaries and rough resemblance, whereas the
entropy measures based on the generalization of rough set
theory regarding the approximation of crisp sets (i.e., when the
sel X considered in the previous section is crisp) can be used to
quantify ambiguities only due to rough resemblance.
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As mentioned in Section 1, ambiguities in a grayscale image
are of two types, namely, grayness and spatial ambiguities.
Grayness ambiguity measure can be obtamed by considering
the furzy boundaries of regions based on global gray value
distribution and the mough resemblance between nearby gray
levels. In this case, the image should be considered as an
array of gray values, and the measure of consequence of the
incompleteness of knowledge about the universe of gray levels
in the array would quantify the ambiguities. Spatial ambiguity
measure can be obtained by considering the fuzzy boundaries
of regions based on organization of gray values at various pixels
and the rough resemblance between values al nearby pixels.
In this case, the image should be considered as a universe of
pixels, and the measure of the incompleteness of knowledge
about the universe of pixels would gquantify the ambiguities. In
the aforesaid discussion, the measure of the incompleteness of
knowledge about a universe with respect to the definability of a
set should be used, as the set would be employed o capture the
vagueness in region boundanes.

MNote that although the discussion o this section will be
on grayscale mages, 1t 15 also apphicable o images obtamed
by carrying oul operations on grayscale images, for example,
images of edge srengths.

A, Grayness Ambiguity Measwre: Ambiguities in an Image
Represented as an Arvay of Gray Values

Let (5 be the universe of gray levels and T be asetin (7, i.e.,
Ty C (7, whose elements hold a particular property Lo exients
given by a membership function g defined on (5. Let us now
take up the problem of quantifying ambiguities in an image [
considering it as an array of gray values. Let O be the gray-
level histogram of the image 1. The fuzzy boundaries and rough
resemblance in 1 causing the ambiguites are related 1o the
incompleteness of knowledge about (7, which can be quantified
using the proposed entropy measures in Section 1-C.

We shall consider Tr such that it represents the calegory
“dark areas”™ in the image [, and the associated properly

“darkness™ given by the membership function pp shall be
modeled as
1, f<T-A
[I—(T— :.]]"- -
pril) = e [ x o] Toasl (20)
[ rcicraa
0, [ =T+A

where ! € (7 and 7" and A are called the crossover point and the
bandwidth, respectively. We shall consider that A is a constant
and that different definitions of the property “darkness™ can be
obtained by changing the value of 7', where T € .

In order to quantify the ambiguities in the image I using
the proposed classes of entropy measures, we consider the
following sets:

L pril | e G}
MLl —pr(D e G}

T
i3 (21)

The fuzzy sets T and Tgn previously considered capture the
fuzey boundary aspect of the ambiguities. Furthermore, we
consider limited discemibility among the elements in (5 that
results in vague definitions of the fuzzy sets Ty and T$~, and
hence, the rough resemblance aspect of the ambiguities is also
captured.

Granules, with crisp or fuzzy boundaries, are induced in (5 as
its elements are drawn together due to the presence of limited
discemibility (or indiscernibility relation) among them, and this
process is referred to as the gray-level granulation. We assume
that the indiscemibility relation is uniform in (7, and hence, the
granules formed have a constant support cardinality (size) w.
Now, using (4)—(6), we get general expressions for the differ-
ent lower and upper approximations of Ty and T% obtained
considering the different indiscemibility relations discussed in

Section [I-B as follows:
g {(E_Mk{fj) } T - {(E_MTT{H)}

T8 = {({_,-‘I.ITE_{H) } 18 = { (f. .-‘uT—E_{e))} (22)

where [ € (7. We have

My () = Zm; =(1) x _|_|Lf max (= (), priy))

=1 ?
}Uﬁ{ﬂj = ‘Zl:m; A1) = HFI:([jmln. {1y _{,_.:I pﬂ,_.:l]
Ml = Zl:”” mibix dul max (1= (), jir ()
M;E—_U:' = Z’-‘”; =(l) % _H_I:Emm (= (). fir(p))  (23)

i=1
when equivalence indiscemibility relation is considered, with
mp=(p)=1—mp=(p) and pr(p)=1-—pr(y), and we
have

My, (1) = inf max (Sl

wEG

@), pr())

Me—(l) = sup min { 5.(l,
el

@), pr(w))

”’r“ (1) = inf max (S.(1,

wEG

@), ()

M— T {1 = sup min { 5.(1, (24)

wEG

@), fir(e))

when tolerance indiscermibility relation 18 considered, with
S.Le)=1-=58_(l). In (23), ~v denotes the number of
granules formed in the universe (&, and my = (1) gives the mem-
bership grade of [ in the ith granule £, These membership
grades may be calculated vsing any concave, symmetric, and
normal membership function (with support cardinality w), such
as the one having a triangular, trapezoidal, or bell (for example,
the 7 function) shape. Note that the sum of these membership
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Fig. 4. [Different forms that the lower and upper approximations of Tp can
take when wsed 1o get the grayness ambiguity measure. (o) Crisp T and
Crisp £, (b) Fuzzy Ty and Crisp F35. {c) Crisp Ty and Fuzy J7.
{d) [-u:-_zy Ty and Fuzzy F7'. {e) C]’I*.T.I Ty and 5, : & =G — {0, l}
() Fuzzy T and 5. @ & = G {0.1}. 4g) Crisp Troand 5, : 7w & —
[0, 1]. th) Fuzzey T and S @ o= G — [0, 1].

grades over all the granules must be unity for a particular
value of [. In (24), 5, : G x G — [0,1], which can be any
concave and symmetric function, gives the relation between
any two gray levels in (. The value of 5(1, ) is zero when
the difference between ! and o is greater than w, and 5 (1, &)
equals unity when [ equals

The lower and upper approximations of the sets T and
T% take different forms, depending on the natwre of rough
resemblance considered and whether the need 15 o capture am-
biguities due w both fuzey boundaries and rough resemblance
or only those due 1o rough resemblance. The nature of rough
resemblance may be considered such that an equivalence rela-
tion between gray levels induces granules having crisp (crisp
FPor fuzey (fuzey £ ) boundaries, or there exists a tolerance
relation between gray levels that may be crisp (5, : G = 7 —
{0,1}) or fuzzy (5, : G x G — [0,1]). When the sets Tr and
TE considered are fuzzy sets, ambiguities due to both fuzzy
boundaries and rough resemblance would be captured, whereas
when the sets Tr and TE considered are crisp sets, only the
ambiguities due o rough resemblance would be captured. The
different forms of the lower and upper approximations of T
are shown graphically in Fig. 4.

We shall now quantify the ambiguities inthe image I by mea-
suring the consequence of the incompleteness of knowledge
aboul the universe of gray levels (¢ in I, This measurement is
done by calculating the following values:

_ Yieq My, (1O:(1)
w(Yr) =1-——7m—
gu{Tr) e Mr—(1)01(1)
g g D BOO0
Bt =1l- = ’ =
oo\ T Yiea Mg ll)O:(l)

The ambiguity measure A of [ is obtained as a function of T,
which characterizes the underlying set T, as follows:
- 1 . 1
ALT) = 5 [;fq‘I‘Tj e (TE)‘ (26)
where 2 D) = p (D ogq(p.(D)/3) for any set D C G
Note that the aforementioned expression is obtained by using
o Tr) and [;_,{qu:l in the proposed logarithmic class of
entropy functions given in (8), instead of roughness measures.
When the proposed exponential class of entropy functions is
used, we get

0u(Tr) 38Tl 4 o, (T%) _;'i': a.(T3))

AEiT) = (27)

2

where g (D) =1 — p, (D) for any u,t D C . It should be
noted that the values g (T 1) and LJ_,.I[T L) in (25) are oblained
by considering “weighted cardinality™ measures instead of car-
dinality measures, which are used for caleulating roughness
values [see (3)]. The weights considered are the number of
occurrences of gray values given by the gray-level histogram
() of the image I.

The ambiguily measures obtained using (26) and (27) are
referred o as the gravaesy ambiguity measures, and they lie in
the range [0, 1], where a larger value means higher ambiguity.

B. Spatial Ambiguity Measwre: Ambiguities in an Image
Represented as a Universe of Pixels

Let us now take up the problem of quantifying the ambi-
guities in an image [ considering it as a universe of pixels
(associated with gray values). Let P be the universe of pixels
and T4 be a set in P, ie, Ty C P, whose elements which
are associated with gray values hold a particular property o
exlents given by the membership function gy [see (20)] defined
on (5. Now, the fuzzy boundaries and rough resemblance in
I caunsing the ambiguities are related o the incompleteness of
knowledge about P, which can be quantified using the proposed
classes of entropy measures in Section 11-C. In order to quantify
the ambiguities in the image [ using the proposed classes of
entropy measures, we consider the following sets:

TT — {{{pl' PE} BT {fl:_rn._pg:-)}

T% = {{{pl.pg} 21— pr (B, 03} } (28)
where {py.pa) € P oand [, . is the gray value at the pixel
{py,pa). Hereafter in this paper, we shall use pis = {p.pa).
The fuzey sets T and TE- previously considered capture the
fuzey boundary aspect of the ambiguities. Limited discernibil-
ity is considered among the elements in P that results in vague
definitions of the fuzzy sets T and T% in (28), and hence the
rough resemblance aspect of ambiguities is also captured.
Granules, with crisp or fuzey boundaries, are induced in
P as its elements are drawn wgether due o the presence of
an indiscemibility relation among them, and this process is
referred 1o as the spatial granulation. The indiscernibility re-
lation is assumed uniform in P, and hence, the granules formed
have a constant support cardinality (size) wy x we denoled as
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{rg, wah. Now, using (4)3-(6), we get general expressions for
the differentde lower and upper approximations of Ty and T%
given in (28) as follows:

T ={(})1g.ﬂfk{j)u:|)} T

={(P12-3'~f3»'."{??12:|)}
{(??1" “TEH’H:')} T {(Plz Mo fPu:')} (29)

where p1a € P. We have My, (pra). fﬁf-,j;_‘_.{]r;u:l, My (p12),
e L

1=

and ‘”T_.[j.{plﬂ’ respectively, as

ZMF =12 (Pya) ||Lf Iax (‘H?;—nzl:,_.lf: Vopr(la)
d w12l

=1

Zm; <12 (pya) sup min (wr; “12(4g12 )y el s ) )
=1 #126F

Z?-n.; =12 (Pya) ||Lf Iax (‘H?;—nzl:,_.lf: Voirila)
=1 ! ﬂu‘-

Zm; <12 (pya) sup min (wr; “12{4p12 ), fir(la) (30

=1 #126F
when equivalence indiscermibility relation 15 considered, with
mp=iz{ygia)=1—mp=12{y2) and jir(l..)=1—pr{l..)
and ‘we have '

My (p12) = ﬂllltf max (5., (P12, ¢12), prile,,))
)= sup min (S, (P12, ere) prils.))
P12 P
Mg (pr2) = inf max (S, (P12, 912), ir (L)
ﬂfT—E{plg] sup min (S, (Preere) drils,)) (31
T p1a P

when tolerance indiscemibility relation is considered, with
Sealpme, ) =1 — 8. (me,w2). In the aforementioned
CXPressions, we use iz = {4y, 0e) and wis = {wy,wad, 3
denotes the number of granules formed in the universe FZ
and 111y <12 (p12 ) gives the membership grade of gy in the dith
granule .' . These membership grades may be calculated
using any concave, symmetne, and normal 2-D membership
function (with support cardinality wy * wa). Note that the sum
of these membership grades over all the granules must be
unity for a particular value of pya. In (31), 5., P = P —
[0, 1], which can be any concave and symmetnc 2-D function,
gives the relation between any two pixels in P. The value of
S.a iz, 2] is zero when the spatial separations between
and 2y, and e and o are greater than wy and wea, respectively,
and 5., (p2.ere) equals unity when prs equals i The
discussion in the case of grayness ambiguily measure, on the
different forms that the lower and upper approximations of
the sets T and T% take, is also applicable here, when we con-
sider £, 5., and Pinstead of F 7, 5., and G, respectively.

We shall now quantfy the ambiguities in the image I by
measuring the incompleleness of knowledge about the universe

ol

of pixels P. This measurement is done by caleulating the
following roughness values:

B

where w = wya. Now, the ambiguity measure A of 1 is obtained
as a function of T' as follows:

= [5C02)) + 3¢ (18]

Pullr) =1—

AL Ty (33)
where (D) = p. (D) log4(p.(D)/3) for any set D C P.
Note that, in the aforementioned discussion, the ambiguity
measure is obtained by using the roughness values associated
with T and T$~ in order to caleulate the proposed logarithmic
class of entropy measures that quantifies the incompleteness of
knowledge about P. When the proposed exponential class of
enlropy measures is used, we get
AE(T)= = [pu(Xp)BE=T) 4 (T%) .-i{f*-{‘"!i-ﬂ] (34)
where g (D) =1 — p (D) forany set D T P.

The ambiguity measures obtained vsing (33) and (34) are
referred 1o as the spatial ambiguiry measures, and they lie in
the range [0, 1], where a larger value means higher ambiguity.

C. Average Image Ambiguity (ATA)

As mentioned earlier, the elements in the set considered for
quantifying ambiguities in a grayscale image hold a particular
property, which is given by a membership function. This mem-
bership function is charactenzed by cenain parameters, which,
in turn, charmetenze the set under consideration. The property
can be defined in different ways by changing some of these
parameters. Different ambiguity (A) measures are obtained for
different definitions of the property, and the average of all these
measures gives us a characteristic measure of the image under
consideration. Therefore, we oblain a class of characleristic
measures of an image based on rough set theory and its certain
generalizations as follows:

."-;L = 'Hl Zﬁkl:"i'

where & is a set of all possible combinations of values of the
parameters that are used to define the property indifferent ways.
We shall refer A as ALA, and its value lies in the range [0, 1],
where a smaller value means that various parts of the image are
better distinguishable from each other, in a holistic sense.

In our case, as mentioned earlier, we use the “darkness™ prop-
erty, and different definitions of this property can be oblained by
changing a parameter 7' € (7, where & is the universe of gray
levels. Therefore, we get

AL = |f“| 3 ALK

TeG

(33)

AE = By (36)
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where AL and AF are the AIA measures obtained using the
logarithmic and exponential classes of entropies, respectively.
MNole that w m (36) 15 a constant with respect W the “darkness™
property.

IV, APPLICATIONS AND EXPERIMENTAL RESULTS

A plethora of image processing technigues based on measur-
ing ambiguities in images using fuzey set theory are available
in literature, with some of them representing the state of the
ar. In this section, we shall demonstrate the utility of the
proposed entropies o measuring ambiguities in images by
considering a few elementary image processing applications,
such as enhancement evaluation, segmentation, and edge de-
tection, where ambiguity-measure-based wechnigues have been
previously used.

As mentioned in Section 1, ambiguities in images are due 1o
fuzzy boundaries and rough resemblance. In Sections 11 and 111,
we have shown that the proposed classes of entropy measures
based on rough set theory and its certain generalizations have
the following advantages over most fuzzy-set-theory-based un-
COTLAINLY Measures.

1y There are no terms in the expressions of the proposed
classes of entropy measure that *theoretically™ convey the
SHITIE.

2) Some of the proposed entropy measures can be wsed 1o
quantify ambiguities due 1o both fuzey boundaries and
rough resemblance.

In this secton, we shall also compare the vse of the proposed
entropies in measuring ambiguities with certain existing use
of fuzziness measures in order o observe whether the afore-
mentioned advantages translate into better perfformance. Thus,
the effectiveness of some of the proposed entropy measures in
quantfying ambiguities in images shall be demonstrated.

Throughout this section, we shall consider the proposed
ambiguity measure given in (26), which signifies measuring
the grayness ambiguity vsing the proposed loganithmic class
of entropy functions. The measures in (23) which are used in
(26) are calculated considering that the pairs of lower and upper
approximations of the sets T and T% represent a tolerance
furzy rough—fuzzy set. The aforesaid statement, according to
the terminology given in Section 1-C, signifies that logarithmic
tolerance fuzzy rough—lueey entropy 15 used i this section 1o
zel the grayness ambiguily measure. We consider the values of
the parameters A and w as eight and six gray levels, respec-
tively, and the base 7 as e, without loss of generality.

Note that the logarithmic tolerance fuzey rough—fuzzy en-
tropy 15 a representative of the proposed entropies which can be
used o capture ambiguities due o both fuzzy boundaries and
rough resemblance. The expression of this entropy measure,
like those of all the other proposed entropy measures, does
not have wenns that “theoretcally™ convey the same. Hence,
the wtility of all the proposed entropy measures and the effec-
tiveness of some of them can be demonstrated by considering
the proposed logarithmic wolerance fuzzy rough—fuzzy entropy
alone.

(a) (b}

Fig. 5. Visual guality of the original and enhanced images of a tire,
{a) Original image. (h) Enhanced by histogram equalization. {¢) Enhanced by
unsharp masking.

A. Enhancement Evaluation

Quantitative evaluation of image enhancement operations is
an imporant ask in image processing. Among quite a few
works of enhancement evaloaton reported in lilermture, the one
in [16] employs a fuzziness-based image quality measure. We
shall now consider this image quality measure for enhancement
evaluation and compare it Lo the use of the proposed logarithmic
tolerance fuzzy rough—fuzzy enwopy. I it is considered that
the quality of an mmage 15 a term that describes how well 1t
different parts are distinguishable, then the proposed ALA mea-
sures in (36) can readily be used as image quality measures for
quantitative evaluation of image enhancement with a smaller
value signifying better quality. Note that, on the contrary, a
larger value of the measure used in [16] means belter image
quality.

Consider the images in Fig. 5. The image in Fig. 5(a) is
the origimal image, and the images i Figo 5(b) and (¢) are
the enhanced ones vsing the histogram equalization [17] and
unsharp masking [ 17] techniques, respectively. The image qual-
ity measure used n [16] omders these images as (b), (a), and
(¢) with the measures 0.49309, {]_'.3{]'?3, and 027942, mespec-
tively, whereas the ALA measure .-"Lf, orders these images as (¢,
(a), and (b) with the ALA values 0.20005, 0.22729, and 0.25(46,
respectively. The ALA values suggest that Fig. 50c) has the best
quality; as in Fig. 5(c), several detils have cropped vp due 1o
the enhancement withoul compromising much on the overall
contrast of the image, unlike Fig. 5(b).

B. Segmentation

Segmentation is one of the core asks in image processing,
and a vast number of simple o complex techniques have
been reported in literature. In order to compare the use of
the proposed logarithmic wolerance fuzey rough—fuzzy entropy
in segmentation with a fuzey-set-theory-based method, we
shall consider the fuzzy-entropy-based segmentation technigue
proposed in [18]. The technigque i [18] wvses a membership
function like the one given in (20) and determines the fuzey
entropy measure of the underlying image for all values of T
The approprate number of minima in the fuzzy entropy (as
a function of T) curve 15 then chosen as the thresholds for
segmentation. In order to have a fair comparison, we use the
proposed ambiguity measure in (26) (based on the aforesaid en-
tropy) instead of the fuzey entropy in the same technigue given
i [18]. We apply the aforementioned segmentation algorithms
to the grayscale images comesponding o Ohta’s color features
11,12°, and I3 [19] of a color image and use a technique similar
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[a)

Fig. 6. Ohject extraction using algorithms employing the pmposed groyness
amhbiguity measune and furzy entropy, and the mean shift method. () An image
of islands. {b) Using proposed. {¢) Using fuzzy entropy. {d) By mean shift
method.

{a) (b

Fig. 7. Segmentation wsing algorithms employing the proposed groyness
ambiguity measure and furzy entmopy, and the mean shift method. {a) The
pepper image. (h) Using proposed. () Using furzy entropy. (d) By mean shift
method.

to the one used in [20] w obtun the segments i the color
mmage. Secondary W visual inspecton, we shall also use the
G-index [21], where a larger value signifies betler segmentation,
to compare the perfformance of the algorithms.

We shall also consider a state-of-the-ant  segmentation
technigque proposed in [22], which uses the mean shifl pro-
cedure, for comparison with the aforementioned segmentation
technigue based on the proposed ambiguity measure. The afore-
said companson would let us know whether the segmentation
results obtained by the proposed ambiguity-measure-based
technigue are comparable 1o that of the state-of-the-art tech-
nique, even when the technigue using the proposed ambi-
guily measure considered here 15 not a sophistcated one.
When color images are considered, the G-index cannot be
used for the aforesaid comparison, as the mean shift segmen-
tation method o [22] works on a color image as a whole,
unlike the technigue using the proposed ambiguity measure
which works on the grayscale images comesponding o the
underdying color features. 1t should be noted that the parame-
ters required in the mean shift method (see [22]) are man-
ually adjusted in accordance to the underlying segmentation
problem.

In Fg. 6, the aforementioned algorithms are applied o
separate the objects in the color image (intensity feature shown)
from the backgrounds. The F-index values forthe 11, 12°, and 13
features of the image in Fig. 6(a) corresponding to the results
in Fig. 6(b) and (c) are 7.162, 1.1985, and 1.9872 and 7.162,
26443, and 1.8787, respectively. 1t is visually evident that the
algorithm using the proposed ambiguity measure outperforms
the one using fuzzy entopy, and in this case, the larger 3-
index value for 12 corresponding 1o the result in Fig. 6(c)
proves insignificant compared to the larger F-index value for
13 comresponding to the result in Fig. 6(b). As can be seen
from Fig. 6(b) and (d), the object extraction resulls obtained
by the algorithm using the proposed ambiguity measure are
comparable to that of the mean shift method.

In Fig. 7, the aforementoned algonthms are apphed o
segment the color image (intensity feature shown) into specified

Fig. 8. Companson of performance of the algarithms employing the proposed
ambiguity measure and fuzzy entropy, and the mean shift method using the
A-index measure,

numbers of regions. The F-index values for the 11, 12°, and 13
features of the image in Fig. 7(a) comesponding 1o the results
in Fig. 7(b) and (c) are 8.1027, 9.8338, and 28.399 and 7.4253,
99947, and 28.726, respectively. From visual inspection (the
areas marked in circles) and the F-index values, we may say
that the algorithm using the proposed measure oulperfonmns the
one using fuzzy entropy. Considering the comparison between
the proposed ambiguity-measure-based algorithm and the mean
shift method in Fig. 7, we find that there are considerable dif-
ferences in the segmentation results obtained. These differences
are due to the fact that the mean shift method forms regions in
an image by considering g compromising combination of gray
valug/eolor similarity and spatial proximity, wheneas the other
two segmentation techniques mentioned in this section consider
only the gray valuefcolor similarity. 1t is visually evident in
Fig. 7 that the algorithm using the proposed ambiguity measure
zives better results than the mean shift method in terms of color
uniformity within regions. On the other hand, the mean shifi
method outperforms the proposed ambiguity-measure-based
algorithm when the compactness of a given region in terms of
spatial proximity is considered.

In order o camry out a rigorous analysis, we first consider
45 prayscale images from the Universidad de Granada im-
age database (htip://decsaingresiove/dbimagenes/index php),
where images 1-18 are that of galaxies, images 19-34 are
Brauin MRIs, and images 3545 are that of nematodes. We
then perform object/background separation in the images of
ealaxies and nematodes and segment the Brain MRIs into three
regions employing the algorthms using the proposed ambiguity
measure and fuzzy entropy, and the mean shift segmentation
method. The corresponding F-index values are put against the
image numbers in the bar chart shown in Fig. 8. It is evident
from the figure that the algorithm using the proposed measure,
in general, produces results which cormespond o the larger
A-index value signifying better segmentation perfformance than
the algorithm using fuzey entropy. Note that when a grayscale
image s under consideration, the F-index evaluates segmen-
tation pedormance in erms of gray value uniformity within
regions. Therefore, as evident from Fig. 8, we find that the
A-index suggests that the algorithm using the proposed ambigu-
ity measure gives better results than the mean shift method, as
the mean shift method compromises on the gray value similarty
during segmentation.

C. Edge Detection

An important process in most of the edge detection sys-
tems existing in literature 15 w0 determine the edges through a
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Fig. 9. Edge extmction using thresholds determined by algorithms employing
the proposed ambiguity measure and fuzzy entropy. {2) The intensity featunes
of the color images considered. (h) Extraction by algorithm using the proposed
amhiguity measure. (¢) Extraction by algorithm using fuzzy entropy.

decision making method after the edge strength at each pixel
in the image has been obined. A well-known example of
such a decision making method 1s the hysteresis thresholding
[23] which uses two predefined thresholds, where one of them
15 usually obtamed by multplying the other with a constant.
The process of determining thresholds in histograms of edge
strength, which are generally umimodal and positively (right)
skewed, 15 considered here in order o compare the use of the
proposed logarithmic wlerance fuzzy rough—fuzey entropy with
a fuzzy-set-theory-based method. We use the Canny operator
for color images [24] and the nonmaximum suppression [23]
to determinge the edge strength at each pixel ina color mmage
and then apply the previously mentioned algonthms, which vse
the proposed ambiguity measure and fuzzy entropy, in order
to determine a threshold corresponding o each algorithm from
the histogram of edge strength. Note that we have not used the
threshold determined in the hysteresis process bul instead used
only the single threshold to extract the edges because our prime
aim here is to compare the use of the proposed entropy with that
of fuzzy entropy.

In Fig. 9, we consider a few color images such that the
amount of edges present in them varies significantly. It is
visually evident from the figure that the algorithm using the
proposed measure satis factorily extracts the edges in the images
considered, whereas the algorithm using fuzzy entropy fails
miserably in some. This shows that the ambiguities in images of
edge strength are better represented by the proposed measure.

From the different image processing applications considered
in this secton, we see thal quantfying ambiguibies in images
using the logarithmic tolerance fueey mough—Tueey entropy,
in general, results in better performance than the use of cer-
tain fuzziness measures hike the fueey entropy. Note that, as
mentioned earlier, the aforesaid proposed entropy used in this
section is a representative of the proposed entropies which can
be vsed o capture ambiguities due to both fuzzy boundaries
and rough resemblance. Thus, the effectiveness of some of the
proposed entropies, which can be vsed o capture ambiguities
due 1o both fuzzy boundaries and rough resemblance in images,
15 demonstrated by the pedfomance improvement observed. We
have also carded out analyses considering the quantification of
spatial ambiguity, where similar performance improvement has
been observed.

Note that, as mentioned earlier, we have taken specific values
of the parameters A, w, and (3 in this section to calculate gray-
ness ambiguity measure. In order to caleulate spatial ambiguity
measure, apart from A and 3, we need w assign values of
the parameters wy and we instead of w. Assigning appropriate
values to the aforesawd pamameters 15 a matter of subjectuve
analysis. As analyzed in [25], in order to get a suitable value
of A, the global gray value distribution of the undedying image
can be considered. The width of base regions cormesponding 1o
all the peaks in the distribution may then be found, and as men-
toned in [25], certain base regions with widths below a certan
threshold may be marked as “unnecessary”™. The mimimuom of
hall of the width of the remaiming base regions can be chosen as
the value of AL The value of w can be based on Weber's law [26]
and the related concept of just noticeable difference. Following
Weber's law, the difference of any gray value from another that
makes them just distnguishable can be considered as the value
of w. Choosing appropnate valves of wy and we 15 analogous
to the problem of choosing a suitable window size, which 1s
encountered in many image processing tasks. In most of such
mmage processing tasks, the window size 15 chosen arbitmnly
as 3 = 3or 5 x5, and i similar manner, one can consider
that both wy and we equal three or five. A difference in the
choice of the base [# amounts only to a change in the unit of
measuring ambiguity. Therefore, any suitable value of 3 can be
considered, and the value 7 must not be changed through an
experiment.

V. CONCLUSION

Ambigumties in grayscalke images are doe to fuezy boundanes
between regions, and rough resemblance between nearby gray
levels and between values at nearby pixels. The use of rough
sel theory and its certain generalizations for quantifying ambi-
guilies inimages has been proposed in this paper. New classes
of entropy measures based on rough set theory and its certain
generalizations have been proposed, and nigorous theoretical
analysis of the proposed entropies has been carned out. The
proposed entropies have then been vsed o quantily ambiguities
i images, and it has been shown that some of the proposed
entropies can be used w guantify ambiguities due to both fuzey
boundanes and rough resemblance. The utility and effective-
ness of the proposed entropy measures have been demonstrated
by conswlering some clementary image processing applications
and comparisons with the use of certain fuzziness measures.
A new measure called average image ambiguity has also been
defined in this contexL

The proposed classes of entropy méeasures based on rough set
theory and its certain generalizations are not restncted o the
few applications discussed in this paper. They are, in general,
applicable to all tasks where ambiguity-measure-based tech-
nigues have been found suitable, provided that the rough resem-
blance aspect of ambiguities exists. 1t would be interesting Lo
carry out such mvestigations as the proposed measures possess
certain advantages over most fuzzy-set-theory-based uncer-
tainty measures, which have been the prime tool for measuring
ambiguilies.
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