GENERATING AN EVENT WITH PROBABILITY p^{α} , $\alpha > 0$

By P. K. BANERJEE
University of New Branswick
and

6114

B. K. SINHA

Indian Statistical Institute

SUMMARY. Given a coin whose probability p(0 of showing up a head is unknown, we have generated an event <math>A whose probability is $p^*, \alpha > 0$. This answers a question raised by D. Basu (1975).

1. INTRODUCTION

Consider a coin whose probability $p(0 of showing up a head is unknown. Repeated tosses of this coin will produce i.i.d. r.v.'s <math>X_1, X_2, \ldots$ with $P(X_t = 1) = p$, $P(X_t = 0) = 1 - p$, $i = 1, 2, \ldots$. Basu (1975) raised the question whether one could perform an experiment with the coin to generate an event A such that $P(A) = \sqrt{p}$. In fact, the general problem, as mentioned by him, would be to investigate the possibility of generating a r.v. U, on the basis of X_1, X_2, \ldots , such that

$$P[U=1] = f(p), P[U=0] = 1 - f(p) ... (1.1)$$

where 0 < f(p) < 1 is a known function of p or equivalently to characterize the class of all such functions f(p) satisfying (1.1). In this paper we deal with the case $f(p) = p^s$, $\alpha > 0$ and generate a r.v. U satisfying (1.1). (However see, in this connection Remark 1.) The case when $f(p) = a/(\alpha + b)$ with α and b positive integers was earlier studied by Dwass (1972) in a slightly different context. It may be mentioned that a related but somewhat different problem of unbiased estimation of various functions of p has been attempted by several authors including, among others, Singh (1964), Sinha and Sinha (1975).

2. THE PROCEDURE

We first consider the case $0 < \alpha \le 1$ and write $\alpha = 1 - \beta$, $0 \le \beta < 1$. Then p^{σ} can be expressed as

$$p^{a} = p \left\{ 1 + \frac{\beta^{(1)}}{1!} \ q + \frac{(\beta + 1)^{(4)}}{2!} \ q^{2} + \dots + \frac{(\beta + r - 1)^{(r)}}{r!} \ q^{r} + \dots \right\} \ \dots \ (2.1)$$

where

$$(\beta+j-1)^{(j)} = (\beta+j-1)(\beta+j-2)...\beta, \quad j=1,2,...$$

Motivated by (2.1), we define the event A as follows:

$$A = \{H\} \cup \left(\bigcup_{r=1}^{\infty} A_r E_r \right) \qquad \dots (2.2)$$

with

$$\begin{cases} A_{1} = \{TII\}, \\ A_{2} = (A_{1}\overline{E}_{1}T) \bigcup \{TTII\}, \\ A_{3} = (A_{2}\overline{E}_{2}T) \bigcup \{TTTII\}, \\ \dots \\ A_{r} = (A_{r-1}\overline{E}_{r-1}T) \bigcup \{T...TII\}, \end{cases}$$

$$(2.3)$$

where $\{T...TI\}$ denotes the event that the first j tosses of the coin show all tails and the (j+1)-st toss results in a head, $j=0,1,\ldots;E_1,E_2,\ldots$ are mutually independent events (also independent of the X_i 's) satisfying

Here \overline{E}_j is the event complementary to E_j , j=1,2,... and $\{\theta_i\}$ is a sequence of positive real numbers defined as

$$\begin{cases} \theta_0 = 1, \\ \theta_1 = 1 + P(\overline{E}_1), \\ \theta_2 = \theta_1 P(\overline{E}_2) + 1, \\ \dots \\ \theta_r = \theta_{r-1} P(\overline{E}_r) + 1, \\ \dots \\ \theta_{r-1} P(\overline{E}_r) + 1, \end{cases}$$
 ... (2.5)

It is easy to check using (2.4) and (2.5) that $0 < P(E_r) < 1$, r = 2, 3, Defining U as the indicator function of A and noting that the component events comprising A are all mutually exclusive, one gets the desired result.

Remark 1: Note that when the event A occurs we can find this out after observing a finite number of the X_i 's. However to decide that A has not occurred we must have knowledge of the whole sequence $\{X_i\}$! So the experiment, say E, whose outcomes are A or A^c may not be "performable" in the sense of Basu.

Remark 2: Any set of arbitrary mutually independent events $E_1, E_2, ...$ (also independent of the X_i 's) whose probabilities satisfy (2.4) and (2.5) can be taken for defining the event A.

Remark 3: By Dwass (1972), the given coin can be used to generate the E_i 's provided α is rational.

Remark 4: The following figure illustrates the idea behind defining A (2.2).

X 1 Stopping points;

. Continuation points;

S: Conditional stopping points.

Whenever the conditional stopping point (j, 1) corresponding to the event A_j is reached, we stop (i.e., A occurs) or continue to toss the coin according as

whether the event E_j occurs or fails to occur, j = 1, 2, ... It is clear that a sort of post randomization is involved at every such stage.

Remark 5: If $\alpha > 1$, then α can be written as $\alpha = n + (1 - \beta)$ where n is a positive integer and $0 \le \beta < 1$. Define A^{\bullet} as $A^{\bullet} = A \cap B$ where A is defined in (2.2) and B is the event (independent of A) defined by $\{II \dots II\}$.

REFERENCES

Bast, D. (1975): Statistical information and likelihood. Sankhya, A, 37, 1-71.

DWASS, M. (1972): Unbiased coin towing with discrete random variables. Ann. Math. Statist., 43, 800-864.

SINGE, RAJINDER (1964): Existence of unbiased estimates. Sankhyā, A, 26, 93-96.

SINHA, BIKAS KUMAR and SINHA, BIMAL KUMAR (1975): Some problems of unbiased sequential binomial estimation. Ann. Inst. Statist. Math., 27, 245-258.

Paper received: September, 1978.