


clustering based segmentation techniques. Finally, conclusions

are drawn in Section 5.

2. Motivation and related work

The social insects’ behavior such as finding the best food source,

building of optimal nest structure, brooding, protecting the larva,

guarding, etc., show intelligent behavior on the swarm level (Eng-

lebrecht, 2002). A swarm behavior is not determined just by the

behavior of individuals, but the interactions among individuals

play a vital role in shaping the swarm behavior (Englebrecht,

2002). Computational modeling of swarms’ behavior is found to

be useful in various application domains like function optimization

(Tsutsui et al., 2004; Tsutsui and Ghosh, 2004), finding optimal

routes (Dorigo and Gambardella, 1997), scheduling (Dorigo and

Stützle, 2005), image and data analysis (Wang et al., 2005). Differ-

ent applications originated from the study of different swarms.

Among them the popular ones are ant colonies and bird flocks

(Englebrecht, 2002). Ant colony optimization (ACO) (Dorigo et al.,

1996) and aggregation pheromone systems (APS) (Tsutsui et al.,

2004; Tsutsui and Ghosh, 2004) are computational algorithms

modeled on the behavior of the ant colonies. ACO (Dorigo et al.,

1996) algorithms are designed to emulate ants’ behavior of laying

pheromone on the ground while moving from one position to an-

other for solving optimization problems. Pheromone is a type of

chemical emitted by an organism to communicate between mem-

bers of the same species. Pheromone which is responsible for

clumping or clustering behavior in a species and brings individuals

into closer proximity is known as aggregation pheromone. Thus,

aggregation pheromone causes individuals to aggregate around

good positions which in turn produces more pheromone to attract

individuals of the same species. In APS (Tsutsui et al., 2004; Tsutsui

and Ghosh, 2004), a variant of ACO, this behavior of ants is used to

solve real parameter optimization problems (Tsutsui et al., 2004,

2005). A model for continuous parameter optimization problem

was also proposed in (Socha and Dorigo, 2008, de Franca et al.,

2008) as an extension of ant colony optimization (ACO).

Numerous abilities of ants have inspired researches for design-

ing various clustering techniques (Deneubourg et al., 1991; Lumer

and Faieta, 1994). Several species of ants cluster their corpses into

cemeteries in an effort to clean up their nests. Experimental works

illustrate that ants group corpses, which are initially randomly dis-

tributed in space, into clusters within a few hours. It seems that

some feedback mechanism (using local density or similarity of data

items) determines the probability that an ant will pick up or drop a

corpse. Such behavior is used as a model to design algorithms for

clustering data (Deneubourg et al., 1991; Lumer and Faieta,

1994; Monmarché et al., 1999; Handl et al., 2003; Liu et al.,

2004; Vizine et al., 2005).

Lumer and Faieta (1994) generalized this method and proposed

an algorithm known as Ant Colony Clustering, which was applied for

exploratory data analysis. In this work, data movements were

implemented through the ants’ movements requiring additional

storage and computational burden as the ants make idle move-

ment while carrying no data object. Moreover, in this model, ants

carrying isolated corpses (data items) make everlasting move since

they never find a proper location to drop them. This consumes a

large amount of computing time.

To speed up convergence and to reduce parameter settings,

Monmarché et al. (1999,) proposed an interesting hybridization

of this algorithm with k-means (MacQueen, 1967) and named

the hybrid technique AntClass. They compared it with the tradi-

tional k-means (MacQueen, 1967) and ISODATA (Ball and Hall,

1965) clustering algorithms on various data sets using classifica-

tion error as evaluation criterion. Although AntClass algorithm

gives satisfactory results, computational time is high. In AntClass

algorithm, objects (data points) are scattered randomly on the grid

board. As a result, the objects within a high density region may be

dispersed in different cells and it may need longer time for the ants

to collect similar objects into one cell.

To improve the performance, stability and convergence of the

Ant Colony Clustering algorithm of Lumer and Faieta (1994), Vizine

et al. (2005) proposed An Adaptive Ant Clustering Algorithm with (i)

a progressive vision field that allows ants to see over a wider area,

(ii) pheromone heuristics to promote reinforcement for dropping

of objects at more dense regions of the grid, and (iii) cooling sche-

dule of the parameters that controls the probability of ants picking

up objects from the grid. They evaluated their algorithm on a num-

ber of well known benchmark data sets as well as on a real world

bioinformatics data set. The modified model is found to have sig-

nificant improvement over the original algorithm.

In another attempt to speed up the process, Liu et al. (2004) pro-

posed DBAntCluster algorithm, by incorporating information from

the input data distribution. In this method first the high density

clusters are detected by DBSCAN (Ester et al., 1996) and the clusters

so formed are scattered on the grid board (treating the clusters as

special objects with the single objects). Afterwards, Ant Colony

Clustering algorithm is used to cluster the data objects on the grid

board.

To enable an unbiased interpretation of the solutions obtained

using ant based clustering algorithms, Handl et al. (2003) and

Handl et al. (2006) proposed a method to determine suitable

parameter settings across different test sets. They also suggested

a technique to convert the spatial embedding generated by the

ant algorithms, which implicitly contains clusters, to an explicit

partitioning of the data set. To evaluate the results obtained by

k-means (MacQueen, 1967), agglomerative average linkage clus-

tering (Vorhees, 1985) and one dimensional self organizing map

(Kohonen, 1997) on synthetic and real data sets, they used differ-

ent analytical measures and showed that the ant based algorithms

perform well.

Ramos and Merelo (2002) and, Ramos et al. (2002) developed

an ant clustering system called ACLUSTER, for textual document

clustering and retrieval of digital images. Unlike the Ant Colony

Clustering algorithm as developed by Lumer and Faieta (1994),

here ants do not move randomly, rather they move according to

some transition probabilities depending on the spatial distribu-

tion of the pheromone across the environment. This eliminates

the need of short term memory (required earlier in Lumer and

Faieta model (Lumer and Faieta (1994))) for storing past move-

ments of ants. They used the combination of following two inde-

pendent response threshold functions, associated with different

environmental conditions: (i) number of objects in an area and

(ii) their similarity.

A comprehensive review on ant and swarm based clustering is

done by Handl and Meyer (2007). They categorized ant based clus-

tering into the following two groups: (i) methods that directly mi-

mic the clustering behavior observed in real ant colonies; and (ii)

methods in which the clustering task is reformulated as an optimi-

zation task and general purpose ant based optimization heuristics

are utilized to find good or near optimal clustering.

In a recent work Ouadfel and Batouche have proposed AntC-

lust algorithm (Ouadfel and Batouche, 2007), that uses the self-

organizing and autonomous brood sorting behavior of real ants

for image segmentation. In this method the image pixels are

scattered within the cells of the array and can be moved from

one cell to another by the movement of the ant to form clusters.

By this process, ants dynamically cluster pixels into distinct

groups. Another object segmentation method using ant colony

optimization (ACO) and fuzzy entropy was proposed by Tao

et al. (2007). Lai et al. proposed an ant colony system (ACS)

940 S. Ghosh et al. / Pattern Recognition Letters 30 (2009) 939–949



based image texture segmentation (Chu et al., 2006). They used

ACS to find the trade-off between texture segments and frag-

ments. A hybrid ant colony system and Markov random field

(ACS-MRF) was proposed by Ouadfel and Batouche (2003) where

a colony of artificial ants searched for a globally optimum solu-

tion defined as a correct labeling of image pixels with respect to

the contextual constrains.

Most of the ant based clustering algorithms, developed till now,

are inspired by the ants’ property of piling up the corpses to clean

the nest. Besides nest cleaning, many functions of aggregation

behavior have been observed in ants and ant like agents (Bell,

1984; Ono et al., 1995; Sukama and Fukami, 1993). These include

foraging-site marking and mating, finding shelter and defense.

For example, after finding safe shelter, cockroaches produce a spe-

cific pheromone with their excrement, which attracts other mem-

bers of their species (Sukama and Fukami, 1993). Based on the

similar property i.e., ants need to find comfortable and secure envi-

ronment to sleep, Chen et al. proposed Ant Sleeping Model (Chen

et al., 2004) which makes ants to group with those that have sim-

ilar physiques. They defined a fitness function to measure the ants’

similarity with their neighbors. They stated that when an ant’s fit-

ness is low, it has a higher probability to wake up and stay in active

state. Thus an ant will leave its original position to search for a

more secure and comfortable position to sleep. Since each individ-

ual ant uses local information to decide whether to be in active

state or sleeping state, the whole ant group dynamically self orga-

nizes into distinctive, independent subgroups. Using similar con-

cept Tsutsui et al. (2004) and Tsutsui and Ghosh (2004) used

aggregation pheromone systems for continuous function optimiza-

tion where aggregation pheromone density is defined by a density

function in the search space.

As mentioned above, many functions of aggregation behavior

have been observed in ants and ant like agents. Inspired by this

behavior found in ants and other similar agents, in earlier works

preliminary attempts are made for solving classification (Halder

et al., 2008), clustering (Kothari et al., 2006; Ghosh et al.,

2008), image segmentation (Ghosh et al., 2006) and change

detection (Kothari et al., 2007) problems with encouraging

results.

3. Aggregation pheromone based image segmentation

Clustering is a popular technique for image segmentation

(Zhang, 2006). As mentioned in the introduction, aggregation

pheromone brings individuals into closer proximity. This group

formation nature of aggregation pheromone is being used as the

basic idea of the proposed algorithm. Here each ant represents

a pixel of the input image. The ants move virtually with an aim

to create homogenous groups of data. The amount of virtual

movement of an ant towards a point is governed by the intensity

of aggregation pheromone deposited by all other ants at that

point. This gradual movement of ants in due course of time will

result in formation of groups or clusters of homogeneous pixels

(segments). The proposed technique has two parts. In the first

part, from the pixels of the input image clusters of homogeneous

pixels (segments) are formed based on ants’ property of deposit-

ing aggregation pheromone. The number of segments (clusters)

thus formed might be more than the desired number. So, to ob-

tain the desired number of clusters, in the second part, agglomer-

ative average linkage clustering algorithm is applied on these

already formed clusters. Clusters so formed represent different

homogeneous segments of an image. Finally the clustering results

obtained are evaluated by different validity indices and the best

results corresponding to each validity index are chosen as the fi-

nal result.

3.1. Formation of clusters/segments

While performing image segmentation for a given image we

group similar pixels together to form a set of coherent image re-

gions. Similarity of pixels can be measured based on different fea-

tures like intensity, color, texture, local entropy, etc. Individual

features or combination of them can be used to represent an image

pixel. Thus for each image pixel we associate a feature vector x.

Clustering is then performed on this set of feature vectors so as

to group them. Finally, clustering result is mapped back to the ori-

ginal spatial domain to obtain segmented image.

3.2. Aggregation pheromone density based clustering/segmentation

Consider a data set of n patterns x1; x2; x3; . . . ; xn and a popula-

tion of n-ants a1; a2; a3; . . . ; an where an ant ai represents the data

pattern xi. In this article we assume each pixel of the input image

as a data point, and hence as an individual ant. Each individual ant

emits pheromone around its neighborhood. The intensity of pher-

omone emitted by an individual ant ai (located at xi) decreases

with its distance from xi. Thus the pheromone intensity at a point

closer to xi is more than those at other points that are farther from

it. To achieve this, the pheromone intensity emitted by ant ai is

modeled by a Gaussian distribution. The pheromone intensity

deposited at x by an ant ai (located at xi) is thus computed as

Ds ai; xð Þ ¼ exp
�
dðxi ;xÞ

2

2d2 ð1Þ

where d denotes the spread of Gaussian function and dðxi; xÞ is the

Euclidean distance between xi and x. The total aggregation phero-

mone density at x deposited by the entire population of n ants is

computed by the following equation

Ds xð Þ ¼
X

n

i¼1

exp
�

dðxi ;xÞ
2

2d2 ð2Þ

Now, an ant ai which was initially at location xi moves to the

new location x0
i (computed using Eq. (3)) if the total aggregation

pheromone density at x0
i is greater than that at xi. The movement

of an ant is governed by the amount of pheromone deposited at

different points in the search space; and is defined as

x0i ¼ xi þ g:
NextðaiÞ

n
; ð3Þ

where

Next aið Þ ¼
X

n

j¼1

xj � xi
� �

� exp
�

dðxj ;xiÞ
2

2d2 ð4Þ

with g (a proportionality constant) as the step size. This process of

finding a new location continues until an ant finds a location where

the total aggregation pheromone density is more than its neighbor-

ing points. Once the ant ai finds out such a point x0i, then that point is

assumed to be a new potential cluster center, say Zj (j ¼ 1;2; . . . ; C C

being number of clusters); and the data point with which the ant

was associated earlier (i.e., xi) is assigned to the cluster so formed

with center Zj. Also the data points that are within a distance of

d=2 from Zj are assigned to the newly formed cluster. On the other

hand, if the distance between x0
i and the existing cluster center Zj

is less than 2d and the ratio of their densities is greater than thresh-

old_density (a predefined parameter), then the data point xi is allo-

cated to the cluster having cluster center Zj. Higher value of

density ratio indicates that the two points are of nearly similar den-

sity and hence should belong to the same cluster. The proposed

aggregation pheromone based clustering (APC) algorithm is given

below.

S. Ghosh et al. / Pattern Recognition Letters 30 (2009) 939–949 941



Algorithm

Initialize d; threshold density;g
C ¼ 0

for i ¼ 1 : n do

if (the data pattern xi is not already assigned any cluster)

Compute DsðxiÞ using Eq. (2).

label 1:

Compute new location x0i using Eq. 3.

Compute Dsðx0
iÞ.

// End of label

if ðDsðx0
iÞ > DsðxiÞÞ

Update the location of ant ai (at xi) to x0
i

and goto label 1.

end of if

if ðC ¼¼ 0Þ //If no cluster exists

Consider x0i as cluster center Z1 and increase C by one.

Assign all the data points within a distance of d=2

from x0
i to the newly formed cluster with center Z1.

else

for j ¼ 1 : C

if ðminðDsðx0
iÞ;DsðZjÞÞ=maxðDsðx0

iÞ;DsðZjÞÞ >

threshold density and dðx0i;ZjÞ < 2dÞ

Assign x0
i to Zj. // Zj already exists.

else

Assign x0
i as a new cluster center say, ZCþ1 and

increase C by one.

Assign all the data points that are within a dis-

tance of d=2

from x0
i to the newly formed cluster with center

ZCþ1.

end of if

end of for

end of if

end of if (if the data pattern xi . . .)

end of for

3.3. Merging of clusters/segments

In the proposed method (described above), we have applied

the APC algorithm on the whole data set in only one pass (itera-

tion). The number of clusters produced (depending on the param-

eter values) may be more than the desired number of clusters. To

obtain the desired number of clusters, we applied the average

linkage agglomerative hierarchical clustering algorithm (average

linkage, in short) (Vorhees, 1985) for merging them. In this sense

both the steps are applied in combination (one after another in

only one iteration). In other words, the algorithm stops after

one iteration only, and we get the desired number of segments

of an image.

3.4. Objective evaluation of segmentation results

As discussed earlier, in the present article image segmentation

is viewed as a clustering problem and hence segmentation (clus-

tering) results are quantified using the following two popular clus-

ter validity measures.

� Davies Bouldin Index: This index is a function of the ratio

of the sum of within-cluster scatters to between-cluster separa-

tion (Theodoridis and Koutroumbas, 2003). The average scatter

of order q within the ith cluster (denoted by Si;q) and the dis-

tance between ith and jth clusters (denoted by dij;q) are com-

puted as

Si;q ¼
1

jCij

X

x�Ci

kx� Zik
q

 !1
q

; ð5Þ

dij;q ¼ Zi � Zj

�

�

�

�

q
; ð6Þ

where x is the data point belonging to cluster Ci; Zi is the centroid

of cluster Ci; q P 1 and dij;q is the Minkowski distance of order q.

Subsequently, we compute the index for the ith cluster (denoted

by Ri;q) as

Ri;q ¼ max
j;i–j

Si;q þ Sj;q
dij;q

� �

: ð7Þ

The Davies–Bouldin (DB) index for C clusters is defined as

DB ¼
1

C

X

C

i¼1

Ri;q: ð8Þ

In this article we have chosen the value of q ¼ 2. The smaller the DB

value, better is the clustering.

� S Dbw: S Dbw index with C number of clusters is based on the

cluster compactness in terms of intra-cluster variance and inter-

cluster density (Halkidi and Vazirgiannis, 2001). It is defined as

S DbwðCÞ ¼ ScatðCÞ þ DenðCÞ; ð9Þ

where ScatðCÞ represents the intra-cluster variance and is defined as

ScatðCÞ ¼
1

C

X

C

i¼1

rðZiÞk k=krðXÞk; ð10Þ

the term rðXÞ is the variance of the data set X ¼ fx1; x2; . . . ; xNg and

rðZiÞ is the variance of cluster Ci. Inter-cluster density, DenðCÞ, is

defined as

DenðCÞ ¼
1

CðC � 1Þ

X

C

i¼1

X

C

i¼1;i–j

denðuijÞ

maxfdenðZiÞ;denðZjÞg

 !

ð11Þ

where Zi and Zj are centers of clusters Ci and Cj, respectively, and uij

is the mid-point of the line segment joining Zi and Zj . The term

denðuÞ is defined as

denðuÞ ¼
X

x2Ci[Cj

f ðx;uÞ: ð12Þ

The function f ðx;uÞ is defined as

f ðx;uÞ ¼
0; if dðx;uÞ > stdev;

1; otherwise;

�

ð13Þ

where stdev is the average standard deviation of C clusters and is

defined as

stdev ¼
1

C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XC

i¼1
rðZiÞk k

r

ð14Þ

and dðx;uÞ is the Euclidean distance between x and u.

Lower the value of S Dbw, better is the clustering.

4. Experimental evaluation

The experimental studies presented here provide an evidence

of the effectiveness of the proposed APC algorithm for image seg-

mentation. In the subsequent sections we report on the details of

the description of the experimental setup and then analyze the

results.

4.1. Description of experiments

Experiments were carried out on 150 different kinds of

images. Validity measures for a few of them are summarized
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in Table 1. The corresponding images are displayed in Figs. 4–

14 for typical illustration. Number of segments for each image

is pre-assumed. For example, in case of Einstien image the

preassumed number of segments is 4 (indicated as C = 4). Also

the size of the Einstien image is represented by 375� 500,

which indicates that the images has 375 rows and 500

columns.

4.1.1. Feature generation

The investigation was done by considering the gray value of a

pixel as one feature and local entropy (Zhang, 2006) over an win-

dow of size 9� 9 around that pixel as another feature (to take

into account the neighborhood effects of the pixel under consid-

eration). Please note that in general we can take any number of

features.

Table 1

Performance ðDB; S DbwÞ measures and execution time of the proposed APC, k-means and mean shift methods.

Image Method DB value S Dbw value Time (s)

Tank (512� 512 C = 2) APC Selection criterion d

Best DB and S Dbw 0.17 0.258957 0.102615 1.062

k-means 0.467821 0.4012517 0.727

Mean shift (bandwidth = 0.3; stop_threshold = 3.5) 0.378253 0.301745 5.746

Stream-Bridge (512�512 C = 4) APC Selection criterion d

Best DB and S Dbw 0.09 0.484889 0.261569 1.156

k-means 0.59375 0.385273 0.859

Mean shift (bandwidth = 0.3; stop_threshold = 3.5) 0.79088 0.582161 5.702

House (256� 256 C ¼ 6Þ APC Selection criterion d

Best DB and S Dbw 0.13 0.44245 0.154929 0.282

k-means 0.74475 0.602215 0.227

Mean shift 0.47049 0.21527 1.162

(bandwidth = 0.2; stop_threshold = 2.5)

Einstien (375� 500 C = 4) APC Selection criterion d

Best DB and S Dbw 0.48 0.404219 0.163483 0.844

k-means 0.726847 0.371559 0.706

Mean shift 0.483725 0.152308 2.0475

(bandwidth = 0.3; stop_threshold = 2.0)

Arial (256� 256 C = 4) APC Selection criterion d

Best DB and S Dbw 0.14 0.441098 0.185137 0.281

k-means 0.717741 0.447064 0.016

Mean shift 0.475027 0.205142 1.703

(bandwidth = 0.25; stop_threshold = 2.5)

Marble (256�256 C = 4) APC Selection criterion d

Best DB 0.06 0.410238 0.225205 0.328

Best S Dbw 0.1 0.476579 0.196084 0.297

k-means 0.523499 0.285837 0.185

Mean shift 0.493574 0.190382 1.504

(bandwidth = 0.18; stop_threshold = 2.0)

Lena (512� 512 C = 3) APC Selection criterion d

Best DB and S Dbw 0.26 0.416895 0.339411 1.094

k-means 0.467821 0.4012517 0.727

Mean shift 0.378253 0.301745 5.746

(bandwidth = 0.3; stop_threshold = 2.5)

Tulips (256� 256 C = 3) APC Selection criterion d

Best DB 0.07 0.481992 0.275278 0.312

Best S Dbw 0.12 0.497296 0.260385 0.297

k-means 0.460269 0.210957 0.141

Mean shift 0.624495 0.531792 1.026

(bandwidth = 0.3; stop_threshold = 3.2)

Iga (256� 256 C ¼ 3Þ APC Selection criterion d

Best DB 0.22 0.475058 0.551056 0.281

Best S Dbw 0.2 0.508503 0.483094 0.297

k-means 0.446207 0.419203 0.224

Mean shift 0.683772 0.605733 1.104

(bandwidth = 0.25; stop_threshold = 2.0)

Pepper (256� 256 C = 4) APC Selection criterion d

Best DB 0.26 0.47659 0.408604 0.281

Best S Dbw 0.15 0.507058 0.321668 0.297

k-means 0.627044 0.440179 0.224

Mean shift 0.450253 0.388291 1.471

(bandwidth = 0.43; stop_threshold = 4.0)

Baboon (256� 256 C = 4) APC Selection criterion d

Best DB 0.09 0.454274 0.310389 0.282

Best S Dbw 0.3 0.473884 0.293841 0.266

k-means 0.32879 0.240582 0.146

Mean shift (bandwidth = 0.25; stop_threshold = 2.0) 0.41826 0.273841 1.502
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4.1.2. Parameters selection

It is evident from the algorithm described in Section 3.2 that the

proposed method has three parameters namely g, threshold_density
and d.

Here g is the step size. The smaller the step size, more will be

the time taken to explore the search space. The performance of

the algorithm in terms of validity measures is found to remain al-

most constant for a wide range [0.1–1.9] of g. We have reported re-

sults of the experiments with step size g ¼ 1, as the performance is

found to be constant over a wide range around it. For typical illus-

tration, the variations of the execution time and the DB & S Dbw

measures with respect to g (keeping d ¼ 0:09 and threshold_den-

sity = 0.9) is shown in Fig. 1 for Baboon image.

If the ratio of pheromone density of a data point and an already

formed cluster center (within distance 2d) is higher than the

threshold_density then the said point is assigned to this cluster. This

assumes that two closer points having nearly similar pheromone

density should belong to the same cluster. High threshold_density

value indicates that pheromone densities of two points (within

2d) should be very close to come into the same cluster. Less thresh-

old_density value indicates that the two closer points may reside in

the same cluster even if their pheromone densities are not very

similar. If the threshold_density value is high, it is likely to form

large number of clusters in the initial phase (before merging the

clusters); and if it is less, the number of clusters formed (in the ini-

tial phase) may be small. We have executed the algorithm taking

different values of threshold_density over the range [0.5–0.9] and

on an average 0.9 was found to be a suitable value. For typical illus-

tration, the variations DB and S Dbw measures with respect to

threshold_density (keeping g ¼ 1 and d ¼ 0:09) is shown in Fig. 2

for Baboon image.

The algorithm is executed for different d (spread of the Gauss-

ian) values in the range (0–0.5]; and used the experimentally

determined d to produce the best results in terms of the validity

measures ðS Dbw;DBÞ. For typical illustration the variations of

S Dbw and DB indices with respect to d (keeping g ¼ 1 and thresh-

old_density = 0.9) are shown in Fig. 3 for the Baboon image. From

the figure it is seen that minimum DB value occurred for d ¼ 0:09

and minimum S Dbw occurred for d ¼ 0:3. Hence these d values

are selected.

As the image segmentation problem is treated as a clustering

problem, results obtained are evaluated using two cluster validity

measures described in Section 3.4. Results obtained by the pro-

posed APC algorithm are compared with those of k-means (KM)

and mean shift (MS) algorithms (described in next section). Table

1 gives the comparative results. In the table, two results are re-

ported for the APC method. One result corresponds to the best

S Dbw value (in figures denoted as APC-best S Dbw) and the other

result for the best DB value (in figures denoted as APC-best DB). For

some images these two best values (APC-best DB and APC-best

S Dbw) occured for the same d value. In those cases one image (cor-

responding to that d value) is shown and indicated as APC-best DB

and APC-best S Dbw in segmented image by APC method. Evalua-

tion measures corresponding to that d value are also shown in

the table.

The CPU time, in seconds (for a Sun Fire V 890 with 2x ULTRA

Sparc IV @ 1.20 GHz Processors with 16 MB Cache and 8 GB

DDR1 main memory) for all the methods is also given in Table 1

for comparison.

4.2. Methods compared with

As in the present work image segmentation is viewed as a clus-

tering problem, we have compared the proposed method with two

Fig. 1. Variation of DB and S Dbw and execution time with respect to g for Baboon

image.

Fig. 2. Variation of DB and S Dbw with respect to threshold_density for Baboon

image.

Fig. 3. Variation of DB and S Dbw with respect to d for Baboon image.
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popular clustering based image segmentation techniques namely

k-means (KM) method and mean shift (MS) method.

k-means method: Starting with k randomly-chosen patterns or k

randomly defined points inside the hypervolume containing the

data set, the KM algorithm (Theodoridis and Koutroumbas, 2003)

repeatedly (i) (re)assign each pattern (data item) to the closest

cluster center and (ii) (re)computes the current cluster centers

(i.e., the average vector of each cluster in data-space). It terminates

when no more reassignments of the data points take place. In this

way, the intra-cluster variance, that is, the sum of squares of the

differences between data items and their associated cluster cen-

ters, is locally minimized. We have used the batch version of the

KM algorithm, that is, cluster centers are recomputed only after

reassignment of all data items. KM is run repeatedly (20 times)

using random initialization of the cluster centers and the average

result is listed in Table 1. Also one typical segmented image are

shown for every individual image.

Mean shift based method: This is a kernel based iterative mean

shift (MS) procedure introduced by Fukunaga and Hostetler

(1975). It provides an efficient way to locally estimate the density

gradient. Given a set of points fxigi¼1;2;::n 2 Rd, the multivariate

density estimate with kernel KðxiÞ and a window or hypersphere

of radius h (called bandwidth) is computed at the point xi (Silver-

man, 1986). The kernel is a scalar function which must satisfy

some properties defined in Fukunaga and Hostetler (1975). The

mean shift vector mhðxiÞ of a point xi is the difference between

the average of data points over a window of radius h (centered

around xi) and xi itself. The mean shift based clustering algorithm

is as follows:

Initialize: Set cluster_number = 0, all the data points as not_vis-

ited, bandwidth and stop threshold properly.

(i) Choose any point xi from the data set (which is not yet

visited).

(ii) Compute the mean shift vector mhðxiÞ.

(iii) Translate the window by mhðxiÞ if jmhðxiÞj is larger than a

threshold value (called stop_threshold); shift the previous

mean xi to mhðxiÞ þ xi and goto step (ii).

(iv) Store the point xi as converging point. Increase the cluster

number by one.

(v) Set the data points traversed so far as visited; and they will

form a cluster.

(vi) Repeat Steps (i)–(v) until all points are visited.

(vii) Clusters having centers within a distant of h=2 (i.e., band-

width/2) are merged.

For detailed description of the mean shift method refer to Cheng

(1995) and Meer and Comaniciu (1999)). In this article we have

used Epanechnikov kernel (Silverman, 1986).

Note that the procedure automatically detects the number of

segments depending upon the value of the bandwidth and

stop_threshold and it also depends on the starting point. Even with

the same bandwidth and stop_threshold, depending upon the stat-

ing point the automatically detected segments may vary. In this

Fig. 4. (a) Original image of Tank. Segmented image by: (b) APC-best S Dbw and APC-best DB, (c) k-means, and (d) mean shift.

Fig. 5. (a) Original image of Stream-Bridge. Segmented image by: (b) APC-best DB and APC-best S Dbw, (c) k-means, and (d) mean shift.

Fig. 6. (a) Original image of House. Segmented image by: (b) APC-best DB and APC-best S Dbw, (c) k-means, and (d) mean shift.
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article we have set the bandwidth and stop threshold for each image

such that the number of detected segments is the same as that of

other methods (i.e., user given value for a particular image). We

have reported the average (quantitative) results of 20 runs and

one typical image with the same parameter setting for every im-

age. The average execution time of the 20 runs are also shown in

Fig. 7. (a) Original image of Einstien. Segmented image by: (b) APC-best DB and APC-best S Dbw, (c) k-means, and (d) mean shift.

Fig. 8. (a) Original image of Arial. Segmented image by: (b) APC-best DB and APC-best S Dbw, (c) k-means, and (d) mean shift.

Fig. 9. (a) Original image of Marble. Segmented image by: (b) APC-best DB, (c) APC-best S Dbw, (d) k-means, and (e) mean shift.

Fig. 10. (a) Original image of Lena. Segmented image by: (b) APC-best S Dbw and APC-best DB, (c) k-means, and (d) mean shift.

Fig. 11. (a) Original image of Tulips. Segmented image by: (b)APC-best DB, (c) APC-best S Dbw, (d) k-means, and (e) mean shift.
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the table. The parameter values chosen are further added in the

table.

4.3. Analysis of results

Fig. 4 shows the segmentation results obtained on the Tank im-

age by all the three algorithms. As may be seen, MS algorithm fails

to detect the barrel of the tank (Fig. 4d), KM algorithm segmented

out the tank with lots of false classification (Fig. 4c); but the pro-

posed APC algorithm successfully segmented the tank with very

less false classification (Fig. 4b). From Table 1 the performance of

the proposed APC algorithm is also found to be better than that

of the other two algorithms.

Fig. 5 shows the original Stream-Bridge image and the seg-

mented results obtained by all the three algorithms. As seen from

the figures, the bridge is clearly segmented out using APC (Fig. 5b)

and KM algorithm (Fig. 5c); on the other hand MS (Fig. 5d) fails to

do so. But, the trees and fine bushes in the original figure are prop-

erly detected by APC, and not by other two methods. In terms of DB

and S Dbw measures also the APC method outperformed the other

two.

Next, we analyze the results for the House image (Fig. 6a). Seg-

mented versions are shown in Fig. 6b–d. It is seen from the seg-

mented images that KM failed to detect the roof, some portion of

the trees and roads. For APC method, there are some misclassifi-

cation in the right side of the sky, but the houses and the fine struc-

tures of the trees are moderately identified. Though there is no

misclassification in the sky & road, and also the house and trees

are segmented well, yet horizontal stirp-like structures in the road

side is missing in MS (Fig. 6d) as well as in KM algorithm; but it is

properly detected by the APC method. In terms of the DB and

S Dbw measures, the APC algorithm performed better than other

methods.

For Einstien image (Fig. 7) segmentation results are shown in

Fig. 7b–d. From the segmented results it is seen that by APC meth-

od the text are better visible than those by other methods. Also

there is less noise or misclassification in the blackboard portion.

In this case, KM failed to detect the blackboard as one segment.

Considering the evaluation measures, APC method outperformed

the others.

In the case of Arial image, from the segmentation results

(Fig. 8b–d) it is seen that curvy road is better identified by APC

method than MS and KM methods. Other regions of the image is

also better segmented by APC compared to other two methods.

Superiority of the APC method is also obvious from the evaluation

measures DB and S Dbw (Table 1).

Few other images and their segmented versions using different

algorithms are shown in Figs. 9–14 and corresponding evaluation

measures are shown in Table 1.

Note that among the reported results, for Lena, Tank, Stream

Bridge, House, Einstien and Arial images best DB and S Dbw values

were found for only one d value; and segmented images and valida-

tion indices corresponding to that d value are reported in Table 1.

So from the experimental outcome it is seen that for most of the

images the performance of the proposed APC method (in terms of

the segmented image quality by minute visual observation and

Fig. 12. (a) Original image of Iga. Segmented image by: (b) APC-best DB, (c) APC-best S Dbw, (d) k-means, and (e) mean shift.

Fig. 13. (a) Original image of Pepper. Segmented image by: (b) APC-best DB, (c) APC-best S Dbw, (d) k-means, (e) mean shift.

Fig. 14. (a) Original image of Baboon. Segmented image by: (b) APC-best DB, (c) APC-best S Dbw, (d) k-means, and (e) mean shift.
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also from the evaluation measures) is better (for a set of images) or

comparable (for another set of images) to other existing similar

methods.

The CPU time (in second) consumed by the algorithms is also

put in Table 1. It is evident from the table that computational time

required by the APC method is less compared to that of MS method

for all the cases and KM takes the least execution time.

In brief, experimental results justify the potentiality of the pro-

posed APC algorithm both in terms of segmentation (clustering)

quality as well as execution time.

5. Conclusions

In this paper we have proposed a new algorithm for image seg-

mentation based on the concept of aggregation pheromone den-

sity, which is inspired by the ants’ property to accumulate

around points with higher pheromone density. Experiments were

carried out with different kinds of images to evaluate the perfor-

mance of the proposed algorithm both qualitatively as well as

quantitatively. Segmentation is viewed as a clustering problem

and hence comparative study is made with two popular clustering

algorithms namely, k-means and mean shift. Experimental results

on a large number of different kinds of images show that the pro-

posed method performs fairly well both in terms of the segmenta-

tion quality and execution time. In the proposed algorithm we

need to specify the number of segments (clusters). Future scope

of research for improvement of the algorithm will include auto-

matic detection of the appropriate number of segments.
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