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Based Quantitative Evaluation
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Abstraci—Histogram equalization, which aims at information
maximization, is widely used in different ways to perform con-
trast enhancement in images. In this paper, an automatic exact
histogram specification technique is proposed and used for global
and local contrast enhancement of images. The desired histogram
is obtained by first subjecting the image histogram to a modifica-
tion process and then by maximizing a measure that represents in-
crease in information and decrease in ambiguity. A new method of
measuring image contrast hased upon local band-limited approach
and center-surround retinal receptive field model is also devised in
this paper. This method works at multiple scales (frequency bands)
and combines the contrast measures obtained at different scales
using L' -norm. In comparison to a few existing methods, the ef-
fectiveness of the proposed automatic exact histogram specifica-
tion technigue in enhancing contrasts of images is demonstrated
through gualitative analysis and the proposed image contrast mea-
sure hased quantitative analysis.

Index Terms— Ambiguity measures, beam theory, center-sur-
round retinal receptive field, contrast enhancement, exact
histogram specification, fuzzy sets, local band-limited contrast.

I. INTRODUCTION

ONTRAST enbancement 15 an imporanl image pro-
C cessmg lechnigque that makes vanous contents of images
easily disunguishable through smitable merease in contrast.
Histogram specification is a method where contrast enhance-
ment 15 obtained by suitably changing the image histogram
into a desired one. Exact histogram specification [ 1] guarantees
that the listogram of the mmage obtamed after enhancement 1s
almaost exactly the desired one. However, there does not exist
any obvious choice for the desired histogram [ 1]. Mostly, the
desired histogram has been considered as uniform (histogram
equalization). A few times the desired image histogram has
been considered as the one which makes the histogram of
perceived brightness uniform (histogram hyperbolization [2]).
In certam cases, the desired histogram has been considered as
unimodal/bimodal Gawssian or exponential depending upon the
underdying application.
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The exact histogram specification scheme of [ 1] is based upon
strict ordering among image pixels via calculation of local mean
values for contrast enhancement. Exact histogram equalization,
as in [ 1], guarantees that the histogram of the image obtamed
after enhancement is uniform (ignorng the possibility of an
insignificant error). Therefore, the process of exact histogram
equalization 15 a process of mlfomation entropy maximization,
and 1t increases the contrast of an image by maximizing infor-
mation retrievable from the image.

In this paper, we propose an automatic exact histogram spec-
ification technigque. The desired histogram is obtained by first
subjecting the image histogram to a modification process that
mncreases the overall disenminablity among samples in the his-
togram, and then maximizing ameasure thal represents merease
in information entropy [3] and decrease n average image am-
biguity [4]. The aforesaid approach is based upon the finding
that increase in information entropy and decrease in average
image ambiguity, which are indicators of contrast enhancement,
are contradictory. The proposed exact histogram specification
technigue 15 used for global and local contrst enhancement of
grayscale mages.

Global and local contmst enhancement performed using the
proposed automatic exact histogram specification lechnique is
compared to the usage of exact histogram equalization [ 1] and
to a few melated state of the ant existing wechnigues. Qualita-
tive and quantitative evaluation of contrast enhancement perfor-
mance is considered, and the effectiveness of the proposed exact
histogram specification technigue 15 demonstrated.

In order o perform guantitative analysis, a4 new method
of measunng mmage contrast based vpon local band-limited
approach [5] and center-swround retinal receptive field model
[6] 15 devised in this paper. The concept of quantifying local
contrast in complex images given in [5] and antagonistic
center-surround models such as the difference of Gaussian
(Do) [7] are brought together in our approach of image
contrast measurement. Evidences from physiological studies
corresponding 1o contrast sensitivity in achromatic and color
vision [8]-[10], and sub- and supra-threshold contrast per-
ception [11], [12] are considered i the proposed approach.
Considerng the existence of muliple frequency channels in
the visual system [13], the proposed method works at multuple
scales (frequency bands) and combines the contrast measures
obtained at different scales using L¥-norm. Suitable functions
mvolving image contrast measured using the proposed ap-
proach are employed for evaluation of contrast enhancement.



II. PROPOSED AUTOMATIC EXACT HISTOGRAM
SPECIFICATION METHOD

As mentioned in Section L, the process of exact histogram
equalization is a process of information entropy maximization.
In this section, we propose an aulomatic exact histogrm speci-
fication technigque that:

—increases the overall discnminablity among samples n
the histogram that correspond o pixels n the underdying
Tmage;

— maximizes a measure thal represents increase in informa-
ton entropy and decrease in average image ambiguity.

Authors in [14] have proposed segmentation via a density
modification technique, which increases the overall discrim-
inablity among samples in a feature space that correspond to
pixels in the underlying image, using a fuzzy set theory based
system devised with cue from beam theory of solid mechanics.
In the process of determining the desired histogrm (histogram
to be specified) from the orginal histogram (histogram of the
underlying image before enhancement), we consider the con-
cepl of increasing the overall disenminablity among samples
given in [ 14].

In [4], it 15 pointed out that average ambiguily inan image
reduces with increase in the disinguishablity of various parts
of the image and 1t 15 shown that the average image ambiguity
measure i [4] can be considercd as an indicator of conlrast
enhancement. Hence, in addition o increase in information
entropy, which is considered in the classical technigue of
histogram equalization, we also consider decrease in average
image ambiguity o the proposed histogram  specification
technigque. Increase in information entropy and decrease in
average image ambiguity are found o be contradictory and,
hence, we devise a optimal tradeoft approach o achieve both
sabisfactorily.

A, Determination of the Desired Histogram From the Oviginal
Histogram

1) Increasing the Overall Discriminability Among Samples
in the Histogram: In the proposed approach of determining the
desired histogram from the onginal histogram, the first siep is
a histogram modification process. We increase the overall dis-
criminablity among samples in the histogram that correspond
to pixels in the underlying image through the modification
process. The histogram modification process, which is based
upon an altered version of the density modification approach
given in [ 14], 15 described here. Without loss of genemality, we
shall describe the process assuming a gray-level histogram of a
grayscale image.

Let €3 be the gray-level histogram of the grayscale image
under consideration. We first normalize £ as follows:

& £
i) = tEG 1

L ST M =
where 7 is the universal set of gray levels. The quantity €207
gives the probability of occurrence of gray value @ in the image
under consideration.
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Fig. 1. Setup for the proposed histogram modification.

We shall now consider some concepts from beam theory of
solid mechanmes. Consider a solid whose shape 1s given by 4,
Let the solid be placed over a beam of uniform (along the length)
height and width. Let us assume that the entire uniform beam
and the entire solid are made oot of the same material. Con-
sider that the beam s rested upon two pivols at the two ends.
Let the two ends refer to the minimum {gesw = ming oz
and maximum § g, .
sider that a uniform (along the length) force (e, say doe to
gravity, 15 always acting upon the umiform beam. Fig. 1 gives
the pictorial representation of the aforesaid setup. The total foree
acting on the beam is 00} = (48 |~ and we consider 0 as
¥ e 002207 which represents one unit (force) with respect
(VRN

Onee ¢2(i) is obtained from €2{4) using (1), we caleulate the
bending moment 5(i! due w0 the foree Pl at a gray value
i €3 (Fig. 1) using Euler-Bernoulli beam theory as follows:

X ey +) gray values. Let us con-

By (RxD—iCPx(-0GCH 1 i—gae @)

In the previous equation, {F{i ] stands for the total (cumula-

tive ) force between the gray values .., and 4, and it s given as
i

>0z + vl (3)

A=

.-
GPiEy Y iz

L= Wren

The symbol €64} stands for the center of gravity between the
gray values gy, and 7, and 1t 1s given as

f’,f}l::.,l m E [f-__l_'s'mmlpl.’-',l' i4)

L= Wnwen

In (2}, £ is the reactive force at the pivol at g, and it is calcu-
lated as

. Lo 0 e
B= M gues) % [f—q]

where L = e — Heolas [5}

Now, consider the following function oblained by normalizing
the bending moment I3

B ~. b AT (6
tas = Bz - )

Jl.l.{'.i] =
It 15 shown i [14] that o can be considered as a membership
function corresponding 1o a fuzey set defined in (7 and the value
of the membership function ju at a gray value { represents a prop-
erty “famess of the gray value from the nearest among e, and
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Hras - vote that, the aforesand terms “farness™ and “nearest”™ ane
inherently defined in po. The gray value where p takes a valoe
of unity, is the gray value that is equally far from both g7, and
e - A gray value smaller (larger) than that gray value 1s nearer
O Sfenie § e ) cOmpared O gy, (guin )

As the groups of samples in the histogram associated with
fhin and g, are the most discriminable ones from each other,
the aforesmd property g ata gray valoe gives the famess of the
samples in the histogram associated with that gray value from
the nearest among the mutually most discriminable groups of
samples in the histogram. Therefore, the property @ can be used
to modify the histogram ¢Fsuch that the overall discriminability
among samples n the histogram 1s mereased.

It is evident from (2) and (6) that ;¢ is dependent upon the his-
togram {7, However, one might like 10 have the property *‘farness
of a gray value from the nearest among g, and g ;. " such that
it depends only upon the gray value (7 £ €7} and not on the his-
togram { £}, Note that, if the value of ~p is considered such that
“pe SeoMaa,, o (2], the membership function approximately
becomes independent of 3 and depends only upon the under-
lying gray value.

Nowy, we know that the bending moment /5 refers o a mem-
bership function g, which represents a useful property “far-
ness of a gray value from the nearest among g,,,;-." We shall
now modify the histogram € using concepts from beam theory,
where the bending moment 5 will be approprately considered.

The curvature due to the bending moment f74] ata gray value
i = O is as follows:

Hid)

i I" ) _:I

pli] (7)
where (4] is the moment of inertia (opposing the bending) at ¥,
which 1s calculated as

[EITRE o

Wit = Z fl— el ()

[

where ¥ | denotes the centroid of the solid and the beam taken
together at the gray value @ and it is given by (K5 = 00— 0
We consider that the height of the beam v, (see Fig. 1) equals
i% e CHz)) L, which represents one unit with respect to €.

However, itis observed that some (3 may correspond Lo solids
which when considered would result in curvatunes [,rﬂ."'éx_!w.l that
are very large at a few gray values, making the curvatures at
other gray values insignificant. We find that such situations are
unfavorable for increasing the overall discriminability among
samples in the histogram, as many gray values would beignored
during the modification process. Therefore, we consider the fol-
lowing measure instead of p at a gray value [ < {7

300 ©)
ali] = :
A A+ a0 2]
and then normalize ;i as follows:
=i .’If'i.- >
HO e —_—" e (10)
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Onee the value of @) forall § C ¢ has been oblained, we
perform the following operton:

Bl = 'rn;]x[['rn;];c,:_}l:z‘. — GO 1) max bl (1)
e ! el e

where 7 is a real value in the interval [ 1, 0} We then nor-

malize § as follows:

ie (12}

We consider the quantity #(4) as the probability of occurrence
of gray value 7 in the image having the modified histogram. The
modified histogram, say (-7 is then determined from ! such that
the number of samples in the modified histogram equals that in
the original histogram, as follows:

o= 80 x> 0z

el

N el (13)

The discrepancy e = 3. _-{Mz) — 3 .5 (¥(2% is then
omitled by adding one sample to each of the « largest bins
(number of occumences) in O

Itis ascertained [ 14] that considermg the aforesaid quantity
2™ as the modified histogram is appropriate as the overall dis-
criminablity among samples is increased by the explaned his-
togram modification process.

2) Determination of the Parameter D—Tradeoff Between In-
creaye in Information Entropy and Decrease in Average Image
Ambiguity: Consider the expressionof #(i] from (11). As men-
tioned earlier, I is a real value in the interval [—1. x:). From
Section 11-A. 1, itcan be easily deduced that (i1 = 0 only when
¥ Heniy OT 4 = - Therefore, it is evident from (11) that
B e ) = Flner ) and when £2 s close enough 1o 1,4(%) is
nomzero only at+ = gy, and € = g Insuch a case, all the
samples in the modified histogram ¢ would be at .., and
Smae- NOW A5 £ - oy it s evident from (11) that the values
of i1 %i tends 1o be almost the same. In such a case, all the
samples in the modified histogram O tend to be more or less
equally distributed (uniform) at all gray values. From the pre-
vious discussion, il is evident that the parameter IV is o very
significant one. We devise an approach here to determine the
parameter I in an optimal sense. The modified histogram (3
that uses the optimal value of £7 is the desired histogram in our
novel exact histogram specification technigue.

As mentioned earlier, when D) — o0, €9 tends to be uni-
form. It s well understood and also empirically observed that
information entropy [3] caleulated from (7 increases as (377
tends to be uniform [8]. Therefore, information entropy due to
€™ increases as f) — . From the theory of histogram equal-
reation [8] we know that information enbopy maximization 1s
a potent way of contrast enhancement. However, it1s also well
known that imformabon entropy maximizalion may cause arli-
facts such as washed-out effect and clutter intensification in the
underlying image [15].

On the other hand, when I' — —1, the number of samples
in £ tends to be nonzero only al gp, and sy,... Therefore,
as also evident from the earlier discussion, information entropy
due to ™ decreases as the value of [ decreases. However, we
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find that the average image ambiguily measure [4] based upon
grayness ambiguity [4] calculated from ¢}* also decreases as
£3 — —1. It is known that minimization of average image am-
biguity or other measures of image ambiguity is a potent way of
contrast enhancement [4]. The effect of the aloresad minimiza-
ton process in the underlying histogram 1s such that the sam-
ples in it get concentrated near two highly distinet gray values.
Therefore, although the overall contrast of the underlying image
would be intensified, the process may lead 1o loss of details.

From the previous explanation, we see that increase in infor-
mation entropy and decrease in average image ambiguity cal-
culated from (3% are contradictory in the context of change
in the parameter I). However, both increase in information en-
tropy and decrease in average image ambiguity are desirable
traits in contrast enhancement of images. Therefore, the require-
ment is o perform a tradeofl between increase in information
entropy and decrease inaverage image ambiguity in order o de-
termine the parameter I, Such a tradeoft would constrain both
increase of information entropy and decrease of average image
ambiguity, which would diminish the aforesaid disadvantages
of both. We consider the maximization of the following mea-
sure o determine £2:

ro(1—AFA) x IT. (14)

In the previous equation, I7 represents the Shannon’s informa-
tion entropy H [3] normalized such that # £ [0 1] and H is
calculated from (2%, Avermge image ambiguity is represented
by AL A where A4 A © [0, 1] The computation of 114 is based
upon grayness ambiguity calculated from (2%, which has been
elaborately explained in [4].

As mentioned earlier, we intend to obtain the optimal value
of 7 as

LHE . (13}

.DU]-'| = HarE AL T
We consider that (2% [see (13)] as the desired histogram in our
exact histogram specification technique, which is obtained con-
sidering £} = $2,, in (11). We have carned oul the process of
determination of desired histogram considering several orginal
histograms and we have made the following observations:

—both ATA and J7 increase with increase in F};

—rate of increase of both AS A and H decrease with increase
in {J;

— with respect W increase in D), initially, the rate of increase
of H is more than that of A{ A; Later, the rate of increase
of fT becomes less than that of A7 A;

— Al A and H as functions of the parameter £2 fit the expres-
stons O { — eapl — e 0+ 0 ) and €4 — exp{—r L4000,
respectively, where + = woand &), €%, Ty and 7 are ar-
bitrary constants.

From the expression of fin (14) and the first three aforesaid
observations, il can be easily inferred that ¢ as a function of
1= nL—I._:'x‘“] would have a unique maximum. The same in-
ference can be mathematically deduced considering the fourth
observation. The value of £ at the solitary maximum is {3,
and, hence, searching for Fr, ), in the entire interval [—1, o) is
nol required.

[EEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. 5, MAY X011

1l

Fig. 2. Graphical representation of the determination of the desired his-
togram from the original histogram. (1) Original Histogram. (h) Mem-
bemhip function . (¢ A DY (d) G when D = Db .. (e) £2Ys with
LE— = — 1T 0, 000 left o right).

The nature of dependency of € on the value of I and the

behavior of ¢ as a function of £, which are explained in
Sectuon H-A2, are shown graphically in Fig. 2. Note the unigue
maximum of ;y as a function of £ in Fig. 2(c), and the near
extreme cases of €Y when {2 is very near to — | and when
I akes a very large value in Fig. 2(e). Observe in Fig. 2 that
as explained in Section 1I-ALL, the overall discriminability
among samples in ¢ has increased compared to the onginal
histogram as more samples in & are nearer to any of the two
mutually most discriminable groups of samples, which are at
the minimum and maximum gray values. Notce [see Fig. 2(a)
and (d)] the signature of the orginal histogram ¢+ in the
form of valleys and peaks. The property represented by the
membership function g stated in Section [1-A.1 is evident from
Fig. 2{b).

B. Implementation of Exact Histogram Specification

Omnee the desired histogram 1s determined vsing the proposed
approach, we implement exact histogram specification as de-
scribed in [ 1] Note that the proposed approach of desired his-
togram determination is a fully automatic one and, hence, we
have presented a novel automatic exact histogram specification
technigue, which can be vsed on global, local and partial (sub)
histograms o perdonm global, mean brightness preserving, dy-
namic and local contrast enhancement of images.

III. RETINAL VISUAL SYSTEM BASED IMAGE CONTRAST
MEASUREMENT AND QQUANTITATIVE EVALUATION OF
CONTRAST ENHANCEMENT

Cuantitative evaluatnon of contrast enhancement 15 not
trivial, as there do not exist any universally accepted measure
of contrast or ideally enhanced images as references. Measures
of dispersion (local and global) such as variance, standard
deviation and entropy have been used o evaluate contrast
enhancement. Contrasts caleulated according o Weber's and
Michelson's definition [5], [8] have also been employed for
the same. Contrast enhancement has been evaluated vsing
measures based upon local gradient magnitude such as the
Tenengrad value [15], and also using average distance between
pixels on the gray scale [15]. These aforesaid measures hardly
represent the actual image contrast viewed by the eye.

Ouantitative evaluation of contrast enhancement should be
based upon appropriate measurement of contrast at all image
pixels. Any reasonable measure of contrast should be at least
crudely tuned accordmg to the reunal visual system and such a
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measure would then probably be more credible and universally
acceplable. In this section, we present a novel approach of gquan-
ttatve evaluation of contrast enhancement using a new method
of image contrast measurement based upon several available
studies on the retinal visual system.

A, Image Contrast Measurement

1) Contrast Due to Acfomatic Signal: 'We base our method
of contrast measurement on Peli’s [3] local band-limited ap-
proach. As considered in [5], we assume thal contrast at a
grayscale image pixel should be expressed as the dimensionless
ratiy of the local change and the local average. Analysis on the
applicability of Weber's and Michelson’s contrast definition
to complex images has been camied out in [5] and the related
drawbacks were addressed leading 1o a definition of local
band-limited contrast for complex images. The local band-lim-
ited contrast 1s defined in [5] as

Al
BT e ki ) 16
S Ala) (16)
where
o) o) = byl (17)
Aoy = flaogis ey (18)

In (18), [ is the grayscale image under consideration, © is a
bandpass filter, § is a low-pass filter such that it passes all en-
ergy below the passband of b and « represents the convolution
operator.

Let us now bnelly consider the phenomenon of perception
in the retina of an eye. Phowreceptor cells, which are capable
of phototransduction, are present in the retina and two main
types of photoreceptors are referred 1o as cones and rods [6].
The signals generated by phototransduction in the retina pass
through such pathways that both excitatory and inhibitory fields
are generated [6] It is widely accepted that the excitatory and
the inhibitory fields organize in the retina such that center-sur-
round retinal (ganglion) receptive fields are formed, where the
center and the surround fields are antagonistic [see Fig. 3ia)].
The center-surround organczation 1s called on-center when the
cenler 1 excitatory | —; and the surround 15 imhibitory -:f—,' and
it 18 called offcenter in the other case. Now, it s shown in [7]
that the difference of Gaussian (Do3) can be used to model
center-suround retinal receptive field approprately in the case
of achromatic signal. The application of DoG based center-sur-
round model on a grayscale image, which represents an achro-
matic signal, 15 represented as

Chiw. iy = o,y — S,y (19)
where

Cloayl fleoy) =g y) (200}

Slronl = Ml gl & gz, g, i21)

In (19)—(21), {7 is the output of the DoG based center-sumround
operator, £ and S represent the signals from the center and the
surround, respectively, and gy and gy represent the two Gaossian

functions of the form cxp{{— 13712210 + 411 that make up
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Fig. 3. Pictorial representation of some vision related phenomena of the neting
during perception of an achromatic signal. (1) Center-surmound retinal recep-
tive field. {h) Multi ple bandpass chamnels. {¢) Sub- and supra-threshold contrast
{taken from [LL]1].

the Dol operator 7, — go. Note that the standard deviation {0
of iy 18 smaller than that of gq.

We shall now bring together the concept of band-limited local
contrast in complex images [3] and the concept of DoG based
center-surround retinal receptive field model [7]. Observe that
the DoG operator g — jj» is a bandpass filler and both the
Gaussian functions g and g+ are low-pass filters. Another in-
teresting observation is that g is a low-pass filter that passes all
energy below the passband of the DoG opertor i) — g2 Themne-
fore, we can readily use the output i} of the bandpass filter
(DoG operator) ;. — yo and the output {5 of the low-pass filter
a0 the local band-limited contrast definition given in (16) as
follows:

Bla gy Oir,yl
ALyl Syl

el gy = (22

The quantity «oiw, w? gives a local band-limited contrast mea-
sure at the image pixel (. #1. In the caleulation of el i, we
consider that the standard deviations of ¢ and g are related as
0, = M %o, where M is an arbitrary real value greater than
unity.

Now, evidence of presence of multiple spatial frequency se-
lective channels in the retina has been found [ 13]. The measure
[z, 0 is obtained from a single spatial frequency channel/
band. We consider the value of A = 3 and in order 1o mimic the
presence of multiple frequency channels in the retina, we con-
sider multiple values of @, . Multiple standard deviation values
of g7 give multiple spatial bandpass filters 47 ge having dif-
ferent passbands and, hence, we get multiple |ola, )| values
which we represent as |<‘¢-“| (. i3], We consider 24 values of
iy, a5 follows:

2 6
&0 AT

Fiths O 3
T

2o [,—_vj
T T I Y

(23)
where o+ £ 1), 7| is the frequency at which the passband of the
underlying bandpass filter peaks (center/peak frequency). Note
that, = {27 = [ 1 /23] comesponds to the maximum possible spa-
tial frequency (1/2) eyeles per pixel width and the unit of 'y, is
pixel width. The passbands (frequency channels) of 1-D equiv-
alents of the 24 bandpass filters (normalized such that the value
al peak frequency is unity) comesponding to the 24 values of
iy, are shownin Fig. 3(b). Note that the application of the DoG
Operator ¢ —ge ona grayscale image considering muluple stan-
dard deviation values of ) in order 1o measure conlrast essen-
tially means that the contrast 15 measured at muluple scales. In
order to get a single contrast value at a pixel Lroy), we need to
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combine the contrast measures {|e,, (2, 4]} obtained at mul-
tple scales.

In order 1o perfonn the aforesaid combination, we consider
findings from the study of sub- and supra-threshold contrast per-
ception reported in [11]. While subthreshold contrast percep-
tion comresponds Lo contrast sensiivity at contrast levels near
to the minimum contrast required for detection of a pattem,
supra-threshold contrast perception corresponds Lo contrast sen-
sitivity at much higher contrast levels. In subthreshold contrst
perception, it has been found that contrast sensitivity 15 lower
when the underlying pattern has low and high spatial frequen-
cies compared to when the pattern has spatial frequencies in be-
tween low and high. Whereas, in supra-threshold contrmst per-
ceplion, contrast sensiivily charmetenstcs show very hittle van-
ation across spatial frequencies [11]. The illustration in Fig. 3(¢)
reproduced from [11] demonstrates the aforesaid phenomena.
We find that |."-norm can be used to perform the combination of
all the | (. 71 s in such a way that the aforesaid phenomena
about sub- and supra-threshold contrast perception are mim-
icked. We combine the measures |, [, yi]. ¥, asfollows:

14y
Bptae | S e (24)
where ¢ = 1 and
lexr | -1 lver {51
P = eap BLaE ) slamr] 4o (25)

1 - Af? L — s

In (25}, the nomalization by I’ ensures that the undedying
passband’s magnitude value at peak frequency s unily [see
Fig. 3ib)]. The measure epix, yi gives the contrast measure
of the grayscale image [, which represents an achromatic
signal, at a pixel (. g When p = 1 (L." norm) is considered
in (24}, the subthreshold contrast perception 15 best mimicked
and when p = o (maximum norm) 15 considered in (24), the
supra-threshold contrast perception 15 best mimicked. Fig. 4(a)
shows an image having sinusordal pattern with varying magni-
tude (across rows) and spatial frequency (across columns), and
the contrast measure cp obtained at all pixels using different
values of p, and Fig. 4ib) shows their corresponding 1-D pro-
files across columns. Observe the casesof p | oand ¢
Fig. 4(b), where contrast sensitivity 15 higher when the spatial
frequency is in between low and high, and the cases of p = |5
and p = oo, where contrast sensitivity hardly vanes across
spatial frequencies. Hence, it is evident in Fig. 4 that with
increase in the value of p, the contrast sensitivity charactenstics
gradually changes from that of subthreshold contrast perception
Lo supra-threshold contrast perception. Contrast levels inoan
image may vary from the minimum contrast level required for
detection of a pattem to much higher contrast levels. Therefore,
the choice of p in (24) is not an obvious one and any analysis

21

based upon op i, #) should at least involve the extreme cases
p=land p =~

2) Contrast Due to Chromatic Signals: As mentioned n
Sectuon I-AC1, signals generated by phototmnsduction in the
retima create excitatory and inhubitory fields, which organiee
such that center-surround retinal receptive fields are formed
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Fig. 4. Comtrast measures obtained in an image, which has sinusoidal pattem
with spatial frequency decreasing from left to right, considen ng di tferent values
of pop— oo 1,200, 13 [top-middle to bottom-n ght]. (a) Image with sinusoidal
pattern and its different contrmst measures {nommalized to the range [{, 1]) at all
pixels. (h) 1-0 gray value and contrast pmfiles across columns,

with antagonmistic center and surmround. In the case of chro-
matic signals, the center-surround retinal receptive fields are
formed in color-opponent organization [6]. The color-oppo-
nent organization of center-surround retinal receptive field is
characterized by the red, green, blue and yellow components
of color. A center-surround retinal receptive field in color-op-
ponent organization would be any one of the following fowr; a
red component center with an antagonistic green component
surround, a green component center with an antagonistic red
component surround, a blue component center with an an-
tagonistic yellow component swround, a yellow component
center with an antagonistic blue component sumround. Dunng
perception of chromatic signals, all the aforesaid four Lypes of
center-surround retinal receptive fields are formed in the retina.

We now need an operator that mimies the center-surmound
retinal receptive field in color-opponent organization for ap-
plication on color components of color images o calculate
contrast. We consider CIE T'w*b" color components (CLE
standard  illuminant D65), where L* represents lightness
(achromantc component), 27 represents the red-green opponent
color component (red-positive, green-negative) and 17 repre-
sents yellow-blue opponent color component (yellow-positive,
blue-negative) [8]. The operator mimicking the cenler-surround
retingl receptive lield i color-opponent organization would be
applied on the »® and b* components of color images.

The DoG operator model of center-surround receptive field
would not be appropriate in this case. From the findings reported
in [9] and [10], we infer that the operator o be applied on 4"
and L* components of color images should represent a low-pass
filter and not a bandpass filter like the DoG operator. Therefore,
wi suggest that instead of the Dol operator i) — =, the operator
s | e be considered. Hence, we have

iyl = Clral + Syl = Feigm—g21  (20)
where (3 is now the output of the operator i) + go, which is
applied on the 2* and b* color components of the underlying
color image and £ 15 a opponent color component. Note that as
mentioned in Section [I-A. 1, both the Gaussian functions )
and gy are low-pass filters and, hence, the operator g + 3o 18
also a low-pass filter. We shall now see how the operator y) +
s mimics the center-surround retinal receptive field in color-
opponent organization. Consider the operation 7 + 5 (notation
fr.y) dropped for simplicity) in red-green (a* ) opponent color
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Fig. 5. Pictorial mpresentation of some u*.mn related phenomena of the retina
dur 5 p::n.cpmm of chromatic signals " and B*. (a) Center-sumound retinal
receptive fields in color opponent organization. {b) Multiple low-pass chanmels,

component, where we have €& = Ry — Ferand § = R — (75

and, hence, we get

where My {7, Hg, and (7 represent red component cenler,
green component center, red component surround and green
component surround, respectively. From (28), 10 15 evident that
we gel a red component center with an anlagonisic green com-
ponent surround and a green component center with an antag-
onistic red component surround. Similady, considenng the op-
eration ' + 5
where we have €1 = Y.
we gel

in yellow-blue [b" 1 opponent color component,
Heoand 5 = Ve Haoand, hence,

'+ 5=i¥>-DBsi+(—Be +¥5) (28)

where Yoo, By, Yy, and By represent yellow component cenler,
blue component center, yellow component surround and blue
component surround, respectively. From (28), 1t 15 evident that
we gel a yellow component center with an antagonistuc blue
component surround, a blue component center with an antag-
onistic yellow component surround. The four center-sumround
retinal receptive field mimicked by applying g7 4+ g2 ({7 + 5} on
the w* and 1" opponent color components is given in Fig. 5(a).

We calculate the local band-limited contrast in the opponent
color components of a color image as

oyl — Sl
S,y

el = (29)
where [z, 1) represents local average caleulated considering
a B & owindow, where & % oo, The quantity (e, i)
Fir.y) approximately represents output from a bandpass filter
with passband almost same as that of the low-pass filter i) +
i excepl at zero frequency, where the passband magnitude is
zero, The quantity |+, 13| gives the contrast measure at a pixel
[ wh

Similar to Section 1AL,
values of @y, given in (23) in order o mimic the presence of
multiple frequency channels in the reting,. We consider the same
values of @, as used in Section 1A L1, because it is reported
in [10] that the retinal responses 10 chromatic and achromatic
signals are of the same order. Multiple standard deviation
values of g give multiple spatial low-pass filters g_ + g2 having
different passbands and, hence, we get multiple |, 1| values
which we represent as |r, . (x40 The passbands {frequency
channels) of F1}-[:" u.]uivullu.;lls of thul 24 Ith'}:lpush Illlurh?;jmnul{
teed such that the maximum passband magnitude value s unity)
corresponding to the 24 values of =, are shown in Fig. 5(b).

we consider here the multiple
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Fig. 6. Contrast measumes obtained in an image representing an opponent color
companent, which has sinusoidal pattern wi th spatial frequency decreasing from
left to right, considering different valvesof po o = =0, 12,5, 15 [top-middle to
bottom-right]. (a) Image with sinusoidal pattem and its different contrast mea-
sures {nomalized o the range [0, 1]) at all pixels. (b) 1-[} color component
value and contrast profiles across columns.

Similar to Section HI-A1, we need to combine the contrast
measures o, [royl| in order to get a single contrast value
at a pixel (=, ) and we perform the combination considering
findings from the study of sub- and supra-threshold contrast
perception in the case of chromatic signals reported i [12].

In the case of chromatic signals, ithas been found that during
subthreshold contrast perception, contrast sensitivity 15 lower
when the underlying pattern has high spatial frequencies com-
pared o when the pattern has low spatial frequencies and con-
trast sensibivity charctenistics show very little variation across
spatial frequencies during supra-threshold contrast perception
[12]. Itis very interesting Lo find that similar to the case of achro-
matic signal, 1."-normcan be used in the case of chromatic sig-
nals in order to perform the combination of all the |r,, [1,901]s
in such a way that the aforesaid phenomena about sub- and
supra-threshold contrast perception are mimcked. We combine
the measures ., (w,u) . Yo, as follows:

]

eelw gl = E IR

roaii® (300

where p = 1 and ¢ represents one of the two opponent color
components a° ( — (71 and b* (Y — /11, In the previous equa-
tion, the scaling by (L5 ¢nsures that the maximum magnitude
value of the passband of the undedying low-pass filter is unity
[see Fig. 5(b)]. The measure o (o, y) gives the contrast mea-
sure in the opponent color component | of the underlying color
image at a pixel (. y). When p = | (1." norm) is considered
in (24}, the subthreshold contrast perception 15 best mimicked
and when p = oo (maximum norm) s considered in (24, the
supra-threshold contrast perception 15 best mumicked. Fig. 6(a)
shows animage, which represents an opponent color component
of acolor mage, having sinusondal pattern with varying magni-
tude (acrmss rows) and spatial frequency (across columns), and
the contrast measure o, obtamed at all pixels using different
values of p, and Fig. 6(b) shows their comesponding 1-D pro-
files across columns.

Notiee the same wavy envelope in all the one dimensional
profiles of the contrast measure «; obtained using different
values of p. The wavy envelope is due to the usage of the gquan-
tity fiee.y! in (29) in order to make the underlying passband’s
magnitude zero at zero frequency and, hence, we can ignore the
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wavy envelope while analyzing Fig. 6(b). Observe the cases of
oo landy  2in Fg. 6(b), where contrast sensitivily 15 lower
when the spatial frequency is high, and the cases of 3 = 13 and
F = o, where contrast sensitivity hardly vanes across spatial
frequencies. Henee, 1t is evident in Fig. 6 that with increase in
the value of p, the contrast sensitivily characteristics gradually
changes from that of subthreshold color contrast perception Lo
supra-threshold color contrast perception. Color contrast levels
in a color image may vary from the minimum contrast level
required for detection of a pattern to much higher levels and,
hence, the choice of p is not obvious like in Section [11-A 1.

Ongee the contrasts in 1" (achromatic signal), »." and h* (chro-
matic signals) components corresponding Lo an image are cal-
culated, the contrast measure o, of the image at a pixel (= y) is
obtained as follows:

apfu,y] = epleowd + vpeeale w) + op e (31)

where ¢y, 15 the contrast in 1. (lighiness) component, «g_
and ey gy are the contrasts in the opponent color components
a* and 1+, Note that we consider the same value of p while using
L." nomm in the caleulation of contrasts doe w the achromatic and
chromatic signals corresponding o an mage. It s worthwhile
to mention here that a few crude attempts of contrast measure-
ment i grayscale and color images based only upon the DoG
modeling of the retinal receptive field have been made in [16]
and [17].

B. Quantitative Evaluation of Contrast Enhancement
As mentioned in Secton L, contrast enhancement makes var-

ious contents of images easily distinguishable through suitable

mcrease in contrast. In this paper, we shall measure increase of

contrast at an image pixel due to the application of a contrast

enhancement technique as follows:

er 4 ep, Loyl

— (32)
(S W o P T

X =
where T represents the undedying image, 77 represents the con-
trast enhanced image and & represents the average contrast in
foThe wrm @y s considered i (32) o ensure that pathological
cases such as 4 (i, ) = Uand 3w, w) = o0 do not oceur, as-
surming that ¢ 15 always nonzer.

Although increase in image contrast makes ibs contents more
distinguishable, the pleasingness of the image might suffer in
the process [18], [19]. Hence, suitability of contrast enhance-
ment through increase in contrast lies in not decreasing the
pleasingness of the image. In fact, nonreference image quality
measures such as the most eye-pleasing sharpness [19] have
been used o check the suitability of image enhancement. From
[ 19] we infer that if the contrast in both the homogeneous and
the heterogeneous areas of the image under conswderation 15
increased by similar amounts (in terms of y) then the pleasing-
ness of the image does not decrease. On the other hand, if the
contrast in ¢ither the homogeneous or the heterogeneous areas
15 increased much more than the other then the pleasingness of
the image will detenorate. Although it is not mentoned i [ 19],
it 15 obvious that the contrast in the homogencous areas could
be increased only by amounts (in terms of ) such that clutters
do not appear.
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We calculate the mncrease of contrast in heterogeneous and
homogeneous areas respectively as

L8 N ER YL R Ty (33)
}:]m':':!-':f,':' — I;r.t1 — r.II:b-'T:'!;':'J bt }.':;’5:1'!'.\-' (34)
where
; FN R
i,y = exp (_. 'l H.l"-t / ) (353)
and ab = 1 | wapl ({ 1)73/(2X%%0 In (35), &iixy) =

Ve D ) ity gy e L ) and, hence, (e gy 2 001
The quantity s, i gives the belongingness (membership) of
the pixel {x. 90 to heterogeneous areas and o' alr, y) gives
the belongingness o homogeneous areas. Note that, we take
» = (kABL, as in such a case, a pixel, where &5 is exactly at
the muddle (0.5) of the two extremes 0 and 1, belongs almost
equally to heterogeneous and homogeneous areas.

In this paper, we shall perform quantitative evaluation of con-
trast enhancement considering that higher value of v signifies
better contrast enhancement provided that *(_h“" F _‘{_h"" and 1t 1s
visually confirmed that clutter has not appeared.

IV, EXPERIMENTAL RESULTS

In this section, we provide expenmental results o order o
demonstrate the effectiveness of the proposed automatic exact
histogram specification technique in comparison Lo a few ex-
1sting methods both qualitatively and gquantitatively. Qualitative
analysis is performed by visual comparison and as presented
in Section 111-B, quantitative analysis 1s camied out using the
proposed method of measuring image contrast. We consider
the use of the proposed exact histogram specification technigue
for global and local contrast enhancement of grayscale images.
These enhancement technigues could be easily extended 1o
color mmages by using the approach in [20].

We shall now consider global and local contrast enhance-
ment of images separately and compare the vse of the proposed
exact histogram specification technigque with the different ex-
1sting methods considered under each category.

A, Global Contrast Enfiancement

Global contrast enhancement s aimed al mereasing the
overall contrast of an image. Here, we apply the proposed
exact histogram specification (proposed EHS) wechngue on
elobal histograms of images in order o perform global contrast
enhancement. The performance of the proposed technmigue is
compared to that of exact histogram equalization (EHE) [1]
and gray-level grouping (GLG) [15], which are also applied on
global histograms.

Consuder the grayscale image given in Fig. 7ia). The global
histogram considered here is the gray-level histogram of the
tmage. The images in Fig. 7(bi—(d) are obtained by pedorming
global contrast enhancement using the proposed EHS, EHE and
GLG technigues, respectively. As can be seen the overall con-
trast 15 higher in the image in Fig. 7(b), whereas, the brightness
seems o be higher in the image in Fig. 70d). Fig. Tle)—(g), -
spectively show the average %, 3" and v™ (average taken over
all the pixels in the image) obtamed when the three technigues
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15 gl
Fig. 7. Global contrast enhancement of grayscale images using the proposed
EHS, EHE md GLG technigues. {a) Image. (h) Poposed EHS. () EHE.
{d) GLG. (&) v values. (F) ' * values. {(g) 3" values,

are applied on the image in Fig. 7(a) and the different values of
grare considered. 1t is evident that the average » 15 higher when
the proposed EHS is used and we have average 3% = average

3" in all the three cases.

B, Local Contrast Enhancement

Local contrast enhancement 1s aimed al increasing contrast in
local neighborhoods in images in order o reveal minute details.
We consider the contrast himited adaptive (local) enhancement
approach proneered in [21], in order w0 camry out local contrast
enhancement using the EHE and the proposed EHS technigues,
which are applied o histograms caleulated within local neigh-
borhoods in images. The contrast limited approach 15 consid-
ered as it helps in avoiding over enhancement, which 1s usual in
local histogram based enhancement techniques. The control of
enhancement is achieved by limiting the slope of the mapping
function corresponding to histogram equalization/specification
operation [21]. Note that, unlike histogram equalization/speci-
fication, an underlying mapping function is not used in the case
of EHE and the proposed EHS [1]. However, once the EHE or
the proposed EHS has been performed the underdying mapping
function can be calculated. We first do so, where we linearly
spread the underying points (values of the argument of the func-
tion) wherever required toensure that the slope caleulated 15 not
o al any point. We then limit the slope of the mapping function
(as described in [21]) with the maximum allowed slope being
sy 4 [l — sl ol 0 al 0 where aly, and sl are the average
and maximum slope over all the points. The modified mapping
function is then used 1o redo the EHE and the proposed EHS o
get the contrast limited adaptive EHE (CLAEHE) and the pro-
posed contrast limited adaptive EHS (proposed CLAEHS), re-
spectively. The performance of the proposed CLAEHS is com-
pared to that of CLAEHE, local standard deviation distribu-
ton modeling based unsharp masking (MUM) proposed in [22]
and human visual properties based algorithm RACE given in
[23], as all of them are adaptive (local) contrast enhancement
Lechnigues.

Consider the grayscale image given in Fig. 8(a). The images
in Fig. B(b)—(e) are obtained by performing local contrast en-
hancement using the proposed CLAEHS, CLAEHE, MUM , and
EACE technigues, respectively. As can be seen, details such as
that in the top-right of the image has been revealed betler in
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the image in Fig. 8(b). As the aim of local contrast enhance-
ment is 1o increase contrast in local neighborhoods, we do not
consider average 3, x"", and ¥ values for analysis as they
only represent overall contrast inerease. Instead, we consider the
contour maps in Fig. 8(g)—() showing %1 avms. (VoLarEs —
werakie b O Lasns — vaum) and Dyoparis — xiacp), e
spectively, where the subscrnpt represents the associated tech-
nique and ¢ = 1. We see that y is higher at most of the pixels
when the proposed CLAEHS is used. The image in Fig. 8(f)
shows the membership o (b L] — |black, white ) that gives
the belongingness of pieels o heterogeneous areas. Considenng
this image, we find that in local neighborhoods, v is slightly
higher at pixels o either heterogeneous or homogeneous area
compared o pixels m the other when the proposed CLAEHS,
CLAEHE, and RACE are used, which is not significantly evi-
dent when MUM 15 used. Hence, the image in Fig. 8(d) appears
more pleasing.

V. CONCLUSION

An aulomatic exact histogram specification technique has
been proposed in this paper and it has been used for global and
local contrast enhancement of images. The desired histogram
has been obtained by first subjecting the image histogram Lo a
modification process that increases the overall discriminablity
among samples in the histogram and then by maximizing a
measure that represents increase in information and decrease
in ambiguity, which are contradictory indicators of contrast
enhancement. Based upon gqualitative and quantitative analyses,
the proposed automatic exact histogram specification technigue
has been found effective in enhancing contrasts of images in
comparison o a few existing methods.

In order to pedonm the quantitative analysis, a new method
of measuring image contrast based on local band-limited ap-
proach and antagonistic center-surround retinal receptive field
maodel has been devised in this paper. Various evidences from
physiological studies comesponding 1o contrast perception
along with the existence of multiple frequency channels in the
visual system have been considered. In accomdance o them,
the proposed method has been allowed o work al muluple
scales (frequency bands) and combination of the contrast
measures obtained at the different scales has been performed
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using 1.P-porm. Suitable functions involving image contrast
measured using the proposed approach have been employed for
the evaluation of contrast enhancement. Although the proposed
approach of contrast measurement has been used for evaluation
of contrast enhancement, the approach is general, and hence, it
can be used for other image processing tasks.
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