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constrained learning algorithms by incorporating additional

functional constraints into neural networks to obtain better gen-

eralization performance and faster convergence.

Pao (1989) and Pao et al. (1992) have given a direction that

functional links neurons may be conveniently used for function

approximation with faster convergence rate and lesser compu-

tational load than MLP. However they have not been applied to

classification task. In Mishra and Dehuri (2007), we used FLANN

with gradient descent method for classification task of data min-

ing and achieved good results. Also in Mishra and Dehuri (2007)

we suggest a different set of orthonormal basis function for feature

expansion. Further, Dehuri and Cho (2010a,b) recently developed

two FLANN based classifier combined with genetic algorithms

(Goldberg, 1989) for enhancing the classification accuracy.

FLANN is basically a flat network with simple learning rule

and without requiring hidden layers. The functional expansion

effectively increases the dimensionality of the input vector and

hence the hyper-planes generated by the FLANN provide greater

discriminating capability of the input patterns. Although FLANN

with gradient descent gives promising results, sometimes may be

trapped in local optimal solutions. Moreover FLANN coupled with

genetic algorithms may suffer with problems like heavy compu-

tation burdens, and large number of parameter tuning. We thus

propose a swarm optimized functional link artificial neural net-

work for classification (ISO-FLANN). The proposed method is a

result of combination of best attributes of IPSO and FLANN. This

method not only has gained an insight in the nature of the problem

but also achieved good classification accuracy. The IPSO is improved

by introducing two self adaptive mutations such as Gaussian and

Cauchy to reduce the of getting stuck to local optima and an adap-

tive inertia weight. Although many types of neural network can be

used for classification purpose (Zhang, 2000), we chose the multi-

layer perceptron (MLPs) as a bench mark method for comparison.

Even though it has complex architecture and long training time, it is

the most widely studied and used neural network for classification.

Alongside, we chose support vector machine (SVM) (Hsu and Lin,

2002) with radial basis kernel and fuzzy swarm net (FSN) (Mishra

et al., 2008) for data classification as other benchmark methods for

comparison.

1.1. Related work

In the realm of the evolutionary neural network using particle

swarm optimization, a number of methods have been proposed. Let

us discuss a few of the potential proposals relevant to this work.

Yu et al. (2007) has proposed a new evolutionary ANN named

IPSOnet based on an improved PSO to simultaneously evolve

structure and weights. The improved PSO employs parameter

automation strategy, velocity resetting, and crossover and muta-

tion to significantly improve the performance of the IPSO in global

search and fine tuning of the solutions. Liu et al. (2004) has inves-

tigated a variable neighborhood model in particle swarm search

method for neural learning. Zhang et al. (2007) has used a hybrid

particle swarm optimization-back propagation algorithm for feed-

forward neural network training. Their method can overcome the

problem of slow searching process of PSO around the global opti-

mum. In Mazurowski et al. (2008) two methods of neural network

training using PSO and BP learning for medical decision-making

has been proposed by Mazurowski et al. their experimental results

confer the BP is generally preferable over PSO for imbalanced train-

ing data, especially with small data samples and large number of

features.

Ge et al. (2008) has proposed a modified particle swarm opti-

mization for learning a dynamic recurrent Elman neural network.

Their method can overcome some known shortcomings of ordinary

gradient descent methods, namely (i) sensitivity to the selection of

initial values and (ii) propensity to plague into local optimum.

Guerra and Coelho (2008) have proposed method for choosing

thee centers and spread of Gaussian function and training the RBF-

NN by using PSO and k-means clustering. Zhao and Yang (2009)

have proposed a cooperative random learning particle swarm opti-

mization (CRPSO) to train the single multiplicative neuron model

for time series prediction.

Form the above discussion it is clearly that PSOs were success-

ful in evolving ANNs. Thus far PSOs have been tried for evolving

ANNs. However, no single effort have been found in the literature to

evolve the higher order neural networks (HONs) particularly FLANN

using PSO. Therefore, we believe that this effort can make a stepping

stone for the researchers who are working on HONs. The organiza-

tional flow of the remaining part is as follows. In Section 2, we have

discussed the background materials. Section 3 provides our pro-

posed ISO-FLANN for classification. In Section 4 we have presented

the experimental studies and comparative performance with other

classifiers like MLP, SVM, FLANN with gradient descent and FSN

(Mishra et al., 2008). Section 5 concludes the article.

2. Preliminaries

2.1. Computational model of a FLANN

The most popular model used to solve complex classification

problems is multilayer neural network. There are many algorithms

to train neural network models. However, for models being com-

plex in nature, one single algorithm cannot be claimed to be the best

for training to suite different scenarios of complexities of real life

problems. Depending on the complexities of the problems, num-

ber of layers and number of neurons in the hidden layer need to

be changed. As the number of layers and the number of neurons

in the hidden layers increases, training the model becomes more

complex.

To overcome the complexities associated with multi-layer neu-

ral network, a single layer neural network can be considered as an

alternative approach. But the single layer neural network being lin-

ear in nature often fails to solve the complex non-linear problems.

The classification task in data mining is highly non-linear in nature.

Therefore, a single layer NN cannot solve this problem.

In order to bridge the gap between linearity in the single layer

neural network and the highly complex and computationally inten-

sive multi-layer neural network, the FLANN architecture with back

propagation learning for classification was proposed (Mishra and

Dehuri, 2007; Pao, 1989; Pao et al., 1992). FLANN architecture can

be viewed as a non-linear network. In contrast to the linear weight-

ing of the input pattern produced by the linear links of the artificial

neural network, the functional link acts on an element of a pattern

or on the entire pattern by generating a set of linearly indepen-

dent functions, then evaluating these functions with the pattern as

the argument. Thus class separability is more in the enhanced fea-

ture space. A simple FLANN model with a pattern of two features is

shown in Fig. 1.

Let us consider a two dimensional input sample x = [x1, x2]T .

This sample is mapped to a higher dimensional space by functional

expansion using trigonometric functions

� = [(x1, sin�x1, sin 2�x1, cos�x1, cos 2�x1),

(x2, sin�x2, sin 2�x2, cos�x2, cos 2�x2)]T .

The weighted sum is defined by

ŷ =
∑

i,j=1,2

wixj +
∑

i,j=1,2

wi sin i�xj +
∑

i,j=1,2

wi cos i�xj. (1)
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Fig. 1. FLANN for classification.

The FLANN obtains the solution for W iteratively using gradient

descent algorithm based on the training samples.

Learning of FLANN may be considered as approximating or

interpolating a continuous multivariate function�(X) by an approx-

imating function �w(X). In FLANN architecture, a set of basis

functions�, and a fixed number of weight parameters W are used

to represent�w(X). With a specific choice of set of basis functions�,

the problem is then to find the weight parameters W that provide

the best possible approximation of � on the set of input–output

samples. This can be achieved by iteratively updating W. The inter-

ested reader can refer to Dehuri and Cho (2010a,b) and Mishra and

Dehuri (2007) for a detailed theory of FLANN for classification.

Let k training patterns denoted by 〈 Xi : Yi 〉, 1≤i ≤ k be applied to

the FLANN and let the weight matrix be W. At the ith instant 1≤i ≤ k,

the Q-dimensional input pattern and the FLANN output are given

by Xi=〈xi1, xi2, . . ., xiQ〉, 1≤i ≤ k and Ŷi=[ŷi], 1≤i ≤ k. Hence X = [X1,

X2, . . ., Xk]T. The augmented matrix of Q-dimensional input pattern

and the FLANN output are given by:

〈X : Ŷ〉 =







x1,1 x1,2 . x1,Q : ŷ1

x2,1 x2,2 . x2,Q : ŷ2

. . . . : .
xk,1 xk,2 . xk,Q : ŷk







As the dimension of the input pattern is increased from Q to Q′

by a set of basis functions  , given by

 (Xi) = [ 1(xi1), 2(xi1), . . . , 1(xi2), 2(xi2), . . . , 1(xiQ ), 2(xiQ ), . . .

= [ 1(xi1), 2(xi2), . . . , Q (xiQ )].

The k × Q dimensional weight matrix is given by W = [W1, W2,

. . ., Wk]T, where Wi is the weight vector associated with the ith

output and is given by W1 = [wi1,wi2, . . . ,wiQ ]. The ith output of

the FLANN is given by ŷi(t) = ϕ(
∑Q ′

j=1
 j(xij).wij) = ϕ(Wi . T(Xi)), ∀i.

The error associated with the ith output is given by ei(t) = yi(t) −
ŷi(t). Using adaptive learning, weights of the FLANN can be updated

as:

wij(t + 1) = wij(t) +�.�(t),
�(t) = ı(t).[ (Xi)],

(2)

where ı(t) = [ı1(t), ı2(t), . . ., ık(t)], ıi(t) = (1 − ŷ2
i
(t)) · ei(t), � is

known as the learning parameter. The set of function considered

for function expansion may not always be suitable for mapping the

non-linearity of the complex task. In such cases a few more function

may be incorporated to the set of functions considered for expan-

sion of the input data. However, dimensionality of many problems

are very high and further increasing the dimensionality to a large

extent may not be an appropriate choice. So, it is advisable to chose

a small set of alternative functions, which can map the function to

the desired extent with significant improvement in output.

2.2. Basics of particle swarm algorithms

Particle swarm optimization (PSO) is a nature inspired algorithm

invented by Kennedy and Eberhart (1995). Like Leonardo Da Vin-

cis work modeling flying machines from watching bird flight, PSO

received its inspiration from bird flocking, fish schooling, and herds

of animals.

In PSO, a set of randomly generated solutions (initial swarm)

propagates in the design space towards the optimal solution over

a number of iterations (moves) based on large amount of informa-

tion about the design space that is assimilates and shared by all

members of the swarm. A complete chronicle of the development

of the PSO algorithm from merely a motion simulator to heuris-

tic optimization of the PSO algorithm is described in Kennedy and

Eberhart (2001, 1995).

The standard PSO algorithm broadly consist of three computa-

tional steps:

1. generation of particles’ positions and velocities;

2. updating the velocity of each particle;

3. updating the position of each particle.

Here, a particle refers to a potential solution to a problem. A

particle �xk in d-dimensional design space is represented as �xk = 〈 xk1,

xk2, xk3,. . ., xkd 〉, where k = 1, 2,. . ., N, N is the number of particles in a

swarm. Each particle has its own velocity and maintains a memory

of its previous best position, pk = 〈 pk1, pk2, pk3,. . ., pkd 〉. Let the

velocity �pg = 〈 pg1, pg2, pg3,. . ., pgd 〉 refer to the position found by

the kth member of the neighborhood that has the best performance

so far. The particle changes its position from iteration to iteration

based on the velocity updates. In each iteration �pg and �pk of the

current swarm are combined with some weighting coefficients to

adjust the velocities of the particles in the swarm. The position of

the velocity adjustment influenced by the particle’s previous best

position is considered as the cognition component, and the position

influenced by the best in the neighborhood is the social component.

Without loss of generality, let us consider a minimization task

and use symbol f(.) to denote the objective function that is being

minimized. The personal best of the kth particle and the global best

position can be computed as follows.

�pk(t + 1) =
{

�pk(t) if f (�xk(t + 1)) ≥ f (�pk(t))
�xk(t + 1) otherwise

,∀k, k = 1,2, . . . , N (3)

�pg (t + 1) =
{

�pg (t) if ∀k f (�xk(t + 1)) ≥ f (�pg (t))
�xk(t + 1) ifforanyj f (�xj(t + 1))< f (�pg (t))

, j = 1,2, . . . , N (4)

In standard PSO algorithm (Kennedy and Eberhart, 1995), at iter-

ation t, the velocity and the position can be updated using Eqs. (5)

and (6), respectively.

�vk(t + 1) = w ⊗ �vk(t) + �c1 ⊗ �r1(t) ⊗ (�pk(t) − �xk(t)) + �c2 ⊗ �r2(t)

⊗(�pg(t) − �xk(t)) (5)

�xk(t + 1) = �xk(t) + �vk(t + 1) (6)

The symbol ⊗ denotes point by point vector multiplication. The

inertia momentum factor w, (0< w ≤1), self-confidence factor c1

and swarm confidence factor c2 are non-negative real constants.

Randomness (useful for good state space exploitation) is intro-

duced via the vectors of random numbers �r1 and �r2. They are usually

selected as a uniform random numbers in the range [0, 1].
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The original PSO algorithm usesw=1, c1=2, and c2=2. Over years

researchers have fined-tuned these parameters and found out a

very standard optimized values (Jiang et al., 2007).

These three steps of velocity update, position update, and fitness

computations are repeated until a desired convergence criterion is

met. The stopping criterion is that the maximum change in the

best fitness should be smaller than the specified tolerance for a

specified number of iterations, I, as shown in Eq. (7). Alternatively,

the algorithm can be terminated when the velocity updates are

close to zero over a number of iterations.

|f (�pg(t)) − f (�pg(t − 1))| ≤ ε, t = 2,3, . . . , I (7)

While empirical evidence has accumulated that the standard

PSO algorithm works, e.g., it is a useful tool for global optimization,

there has thus far been little insight into how it works. In order to

address this, a generalized model has been proposed in Clerc and

Kennedy (2002). Consequently, the convergence and the stability

of the standard PSO has been proposed by many researches (Bergh

and Engelbrecht, 2006; Clerc and Kennedy, 2002; Jiang et al., 2007;

Trelea, 2003).

3. ISO-flann for classification

In this section we will discuss the proposed ISO-FLANN for clas-

sification. This section is divided into three subsections, namely the

proposed improved PSO (IPSO), a general description of its archi-

tecture, and a high-level algorithm to measure the computational

efficiency of the proposed architecture.

3.1. Improved PSO

The improved PSO algorithm is based on the standard global

version of the PSO. Like the previous variants of PSO, the draw-

backs of PSO with respect to inefficiency in fine tuning solutions,

and a very slow searching around the global optimum inspired our

modifications.

The IPSO can be described as follows:

�vk(t + 1) = 	⊗ �vk(t) + �c1 ⊗ �r1(t) ⊗ (�pk(t) − �xk(t))

+ �c2 ⊗ �r2(t) ⊗ (�pg(t) − �xk(t)) (8)

�xk(t + 1) = �xk(t) + �vk(t + 1) (9)

where 	 is the newly defined adaptive inertia weight. The algo-

rithm, by adjusting the parameter 	, can make 	 reduce gradually

as the generation increases. In the searching process of the IPSO

algorithm, the search space will reduce gradually as the genera-

tion increases. So the IPSO algorithm is more effective, because the

search space is reduced step by step. The search step length for

the parameter 	 also reduces correspondingly. Similar to genetic

algorithms (GAs) (Goldberg, 1989), after each generation, the best

particle in the last generation will replaces the worst particle of the

current generation, thus the better result can be achieved.

In the literature (Eberhart and Shi, 2000; Shi and Eberhart, 1999)

several selection strategies of inertia weight 	 have been given.

Generally, in the initial stages of the algorithm, the initial weight 	
should be reduced rapidly, while around the optimum, the initial

weight 	 should be reduced slowly. So in this paper, we adopted

the following procedure:

Algorithm

Input: Initial inertia weight =	0; End point of linear section =	1;

Number of generations during which inertial weight is

reduced linearly = Gen1;

Maximum generation = Gen2;

Reduced 	()

Begin

For i=1:Gen1

	1=	0−((	1/Gen1)× i);

End

For i=Gen1+1:Gen2

	1=(	0−	1)×exp(((Gen1+1)−i)/i);

End

End

In particular the value of Gen2 and Gen1 is selected according to

empirical knowledge.

Although PSO performs well for global search as it is capable

of finding and exploring promising regions in the search space,

quickly searching near global optimum is very slow. The self-

adaptive evolutionary strategy (ES) is suited for local optimization

due to its high probability of generating small Gaussian and Cauchy

perturbation (Rudolph, 1997; Schwefel, 1981). Thus it is capa-

ble of fine-tuning those solutions found by PSO. When the global

best position of PSO cannot be improved for some successive gen-

erations, the self-adaptive ES (Yang and Kao, 2001) is used an

enhancement operation of p̂i and p̂g . Thus the self adaptive ES

facilitates the convergence of PSO towards global optima. In this

study we adapted Schwefel’s (1981) proposal to use self-adaptive

ES (i.e., the self adaptive Gaussian and Cauchy mutations) for evolv-

ing weight parameters of FLANN.

Self-adaptive Gaussian mutation: Mutation is accomplished by

first mutating the velocity and then the position of the particle.

vki(t + 1) = vki × exp(
 ′ × Ngi(0,1)) + 
 × Nki(0,1)), (10)

xki(t + 1) = xki(t) + vki(t + 1), (11)

where Ngi(0, 1) is the standard Gaussian density function with

respect to the ith dimension of the global best position of the parti-

cle. Similarly Nki(0, 1) is the standard Gaussian density function of

the ith dimension of the best position found by the particle so far.

For this work we follow Bäck and Schwefel (1993) in setting the

values of 
 = 1/
√

2n and = 1/
√

2
√
n, respectively.

Self-adaptive Cauchy mutation: A random variable is said to

have the Cauchy distribution (C(t)), if it has the following density

function:

C(t) = t

�(t2 + x2)
, −∞< x < +∞. (12)

We will define self adaptive Cauchy mutation as follows:

vki(t + 1) = vki × exp(
 ′ × Cgi(0,1)) + 
 × Cki(0,1)), (13)

xki(t + 1) = xki(t) + vki(t + 1), (14)

where t = 1. In practice, Cauchy mutation is able to make a larger

perturbation than Gaussian mutation. This implies that the Cauchy

mutation has a higher probability of escaping from the local minima

than does Gaussian mutation.

3.2. ISO-FLANN method

ISO-FLANN is a typical three layer feed forward neural network

consists of an input layer, a hidden layer and an output layer. The

only difference from FLANN is that, the weight vector is evolved by

the proposed IPSO during the training of the network. Even though

many heuristic approaches exist (Goldberg, 1989) for optimizing

the weight vector, we use IPSO because of its characteristics like

rapid convergence to global solutions and less number of parame-

ters to be optimized. In other words, here we are trying to reduce

the local optimal solution of weight vector by IPSO.

The nodes between input and hidden layers are connected with-

out weight vector, but the nodes between hidden layer and output

layer are connected by weights. The signal of the output node is

based on a function of the sum of the inputs to the node.
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In ISO-FLANN architecture, there are d input nodes (i.e., equal to

the number of features of the dataset) and m nodes in the hidden

layer, where m is the number of functionally expanded node and

one output neuron in the output layer. The connection between

hidden layer and output layer is assigned with the weight vector.

In this work, we have used the orthonormal trigonometric func-

tion for mapping the input feature from one form to another form

of higher dimension. However, one can use a function that is very

close to the underlying distribution of the data, but it requires some

prior domain knowledge. In this work we are taking five functions

out of which four are trigonometric and one is linear (i.e., keeping

the original form of the feature value). Out of the four trigonometric

functions, two are sine and two are cosine functions. In the case of

trigonometric functions the domain is the given feature values and

range lies between [−1,1]. It can be written as

f : D→ R[−1,1]∪{x}, (15)

where D= {xi1, xi2,. . ., xid}, and d is the number of features.

In general let us take f1, f2,. . ., fk as the number of functions to

be used to expand each feature value of the pattern.

Therefore, each input pattern can now be expressed as

�xi = {xi1, xi2, . . . , xid} → {{f1(xi1), f2(xi1), . . . , fk(xi1)}, . . . ,
{f1(xid), f2(xid), . . . , fk(xid)},= {{y11, y21, . . . , yk1}, . . . ,
{y1d, y2d, . . . , ykd}}.

The weight vector between hidden layer and output layer is

multiplied with the resultant sets of non-linear outputs and are

fed to the output neuron as an input. Hence the weighted sum is

computed as follows:

s =
m

∑

j=1

yij ·wj, i = 1,2, . . . , Nandmbe the total number

of expanded features. (16)

The network has the ability to learn through training by IPSO.

The training requires a set of training data, i.e., a series of input

and associated output vectors. During the training, the network

is repeatedly presented with the training data and the weights

adjusted by IPSO from time to time till the desired input–output

mapping occurs.

The estimated output is then computed by the following metric:

ŷi(t) = f (si), i = 1,2, . . . , N.

The error ei(t) = yi(t)−ŷi(t), i = 1, 2,. . ., N is the error obtained

from the ith pattern of the training set.

Therefore the error criterion function can be written as,

E(t) =
N

∑

i=1

ei(t), (17)

and our objective is to minimize this function with an optimal set

of weights.

3.3. ISO-FLANN high-level algorithm

ISO-FLANN, a member of the family of higher order neural

networks, is a computational model capable of learning through

adjustment of internal weight parameters according to a training

algorithm in response to some training examples.

There are many literatures exist (Carvalho and Ludermir, 2007;

Chang et al., 2007; Da and Xiurun, 2005; Wu et al., 2006; John Paul

et al., 2006) on PSO-based neural network training, but to the best

of our knowledge IPSO-based FLANN training and its application to

classification problem is the first effort in this direction.

In ISO-FLANN the weights between hidden and output layer is

adaptively evolved by IPSO algorithm, starting from the parents’

weights instead of randomly initialized weights, so this can prefer-

ably solve the problem of noisy fitness evaluation that can mislead

the evolution.

The dataset is divided into two mutually exclusive sets: a train-

ing set and a test set (more details in Section 4). The training set

is used to evolve the optimal model with optimal sets of weights

using IPSO, and the fitness evaluation is based on the error crite-

rion function E, which is already described in Section 3.2. In order

to embed IPSO for weight evolution one could keep the follow-

ing points in mind: the particle representation, and the objective

function to measure the effectiveness of the particle.

3.3.1. Representation of a particle

For the evolutionary process, the length of each and every par-

ticle is m and it is fixed (i.e., the number of connection between

expanded features of the hidden layer and the output neuron of the

output layer), but one can go for variable length particle also. The

variable length particle representation is highly useful for simulta-

neous evolution of architectures and weights. In this work our focus

is on fixed length particle, the variable length particle is beyond the

scope of our study. A particle can be represented as a vector of m

weights, i.e., 〈 w1, w2, w3,. . ., wm 〉.
In ISO-FLANN the weight values lie between [−1, 1]. Hence the

velocity of the particle also lies between [−1, 1]. In case of extreme

values likewi = 0, one can believe that the connection between the

expanded features and output node corresponding to wi is not an

informative one and is virtually deleted from the network.

3.3.2. Objective function

During evolution each particle measures its effectiveness by the

error criterion function, using Eq. (17) mentioned in Section 3.2.

The major steps of EFLANN can be described as follows:

1. DIVISION OF DATASET

Divide the dataset into two parts: training and testing.

2. MAPPING OF INPUT PATTERNS

Map each pattern from lower dimension to higher dimension,

i.e., expand each feature value according to predefined set of

functions.

3. RANDOM INITIALIZATION

Initialize each particle randomly with small values from the

domain [−1, 1].

4. WHILE(Termination Criterion Not Met)

FOR entire swarm

FOR each particle in the swarm

FOR each sample of training sample

Calculate the weighted sum and feed as an input to

the node of the output layer.

Calculate the error and accumulate it.

END

Fitness of the particle is equal to the accumulated error.

If fitness value is better than the best fitness value in

history, set current value as the new personal best,

END

Choose the particle with best fitness value of all the par-

ticles as the global best.

FOR each particle

Call Reduced 	() and calculate particle velocity accord-

ing to Eq. (8).

Update Particle position according to Eq. (9).

END
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END

MUTATION

Apply Cauchy and Gaussian mutation if the position of the

global best solution is not improved for a successive number

of pre-specified generations alternatively by using Eqs. (11)

and (14).

5. WHILE END

This algorithm does not optimizing the weight vector only but

also implicitly optimizing the required number of connections

between hidden layer and output layer. Hence we can say this is a

type of architecture optimization. However, in this work we are not

considering this issue. Hence, instead of a multi-objective function

optimization we are only optimizing the uni-objective, i.e., known

as classification accuracy.

4. Experimental details

Even though the proposed algorithm is primarily intended for

classification of datasets with large number of records and a mod-

erate number of features (primarily for data mining), it can also be

used very well on more conventional datasets. To exhibit this fact

we evaluated our algorithm using a set of fifteen public domain

datasets from the University of California at Irvine (UCI) machine

learning repository (Blake and Merz, 2012).

We have compared the results of ISO-FLANN with other com-

peting classification methods such as multi-layer perception (MLP)

and the FLANN with gradient descent (and with the same set

of orthonormal basis functions like ISO-FLANN), support vector

machine (SVM) with radial basis kernel and FSN.

This section is divided into three subsections. Section 4.1

discusses the nature and characteristics of the datasets being clas-

sified. The environment, parameter setting of the proposed method

along with the methods considered for comparative study and the

performance of the model is demonstrated in Section 4.2 with a dis-

cussion. Finally a comparative performance is given in Section 4.3.

4.1. Description of the datasets

Let us briefly discuss the datasets, chosen for our experimental

setup.

IRIS Datasets: This is the most popular and simple classifica-

tion dataset based on multivariate characteristics of a plant species

(length and thickness of petal and sepal) divided into three distinct

classes(Iris Setosa, Iris Versicolor, and Iris Virginica) of 50 instances

each. One class is linearly separable from the other two; the latter

are not linearly separable from each other. In a nutshell, it has 150

instances and 5 attributes. Out of Five attributes, Four attributes

are predicting attributes and one is goal attribute. All the predicting

attributes are real values.

WINE Dataset: This dataset is resulted from a chemical analysis

of wines grown in the same region in Italy but derived from three

different cultivars. In classification context, this is a well-posed

problem with well-behaved class structures. The total number of

instances is 178 and it is distributed as 59 for class 1, 71 for class

2 and 48 for class 3. The number of attributes is 14 including class

attribute and all 13 are continuous in nature. There are no missing

attribute values in this dataset.

PIMA Indians Diabetes Data base: This database is a collection

of all female patients of at least 21 years of PIMA Indian heritage.

It contains 768 instances, 2 classes of positive and negative and 9

attributes including the class attribute. The attribute contains either

integer or real values. There are no missing attribute values in the

dataset.

BUPA Liver Disorders: This Dataset related to the diagnosis of liver

disorders and created by BUPA Medical Research, Ltd. It consists of

345 records, 7 attributes including the class attributes. The class

attribute is repeated with only two class values for entire database.

The first 5 attributes are all blood tests, which are thought to be

sensitive to liver disorders that might arise from excessive alcohol

consumption. Each record corresponds to a single male individual.

Clevend Heart disease: This dataset is related to diagnoses of

people with heart problems. It consists of 304 data instances, 5

attributes including the class and 2 classes.

Wisconsin Diagnostic Breast Cancer (WBC (D)): This dataset is

related to diagnosis of people with breast cancer. Features of the

dataset are computed from a digitized image of a fine needle aspi-

rate (FNA) of a breast mass. They describe characteristics of the

cell nuclei present in the image. The dataset has 569 instances, 32

attributes and 2 classes namely, benign and malignant.

Wisconsin prognostic Breast Cancer (WBC (D)): This dataset is

related to diagnosis of people with breast cancer. Each record rep-

resents follow-up data for one breast cancer case. The dataset has

198 instances, 30 attributes and 2 classes namely, recurrent and

non-recurrent. Out of the 198 instances 4 instances have missing

values.

Page Block: This dataset is used for classifying all the blocks of the

page layout of a document that has been detected by a segmenta-

tion process. This is an essential step in document analysis in order

to separate text from graphic areas. Indeed, the five classes are:

text (1), horizontal line (2), picture (3), vertical line (4) and graphic

(5). The dataset consist of 5473 instances and 10 attributes. The

attributes are combination of integer and float values. The dataset

have no missing values.

Thyroid: This dataset is used to predict whether a patient’s thy-

roid to the class euthyroidism (normal), hypothyroidism (Hypo) or

hyperthyroidism (hyper). The diagnosis (the class label) was based

on a complete medical record, including anamnesis, scan etc. The

dataset had 215 instances with no missing values and 5 attributes.

All the attributes are of continuous nature.

Metabolic Syndrome: The metabolic syndrome dataset (Park

and Cho, 2006) is obtained from Yonchon County of Korea. The

metabolic syndrome is a collection of metabolic disorder which

includes hypertension, dyslipidemia, elevated blood glucose and

obesity. The dataset have 1135 samples with 2 class labels. The

dataset has 18 attributes and the class attribute determine the

absence or presence of the disease. The attributes of the dataset

have a combination of categorical and continuous values. The

dataset doesn’t have any missing values. 11 important attribute

which are necessary for the prediction.

Dermatology: This dataset is obtained from the diagnosis of the

patients of erythemato-squamous diseases. The diseases in this

group are psoriasis, seboreic dermatitis, lichen planus, pityriasis

rosea, cronic dermatitis, and pityriasis rubra pilaris. This dataset

is obtained by evaluating clinically with 12 features. Afterwards,

skin samples were taken for the evaluation of 22 histopathological

features.

Hepatitis: This dataset is used for classification of hepatitis

patients into two classes labeled as ‘Die’ and ‘Live’ based on

the pathological analysis. The dataset has 20 attributes and 157

instances.

Parkinson: This dataset is composed of a range of biomedical

voice measurements from 31 people, 23 with Parkinson’s disease

(PD). Each column in the table is a particular voice measure, and

each row corresponds one of 195 voice recording from different

individuals. The main aim of the data is to discriminate healthy

people from those with PD, according to “status” column which is

set to 0 for healthy and 1 for PD.

Vertebral column: This dataset is obtained from Group of Applied

Research in Orthopaedics (GARO), Lyon, France. This dataset is
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Table 1

Summarized view of characteristics of the dataset.

Dataset Number of

patterns

Number of

features

Number of

classes

Number of

patterns in

class 1

Number of

patterns in

class 2

Number of

patterns in

class 3

Number of

patterns in

class 4

Number of

patterns in

class 5

Number

patterns in

class 6

Page Block 5473 10 5 4913 329 28 88 115

IRIS 150 5 3 50 50 50

WINE 178 14 3 71 59 48

Thyroid 215 5 3 150 35 30

PIMA 768 9 2 500 268

BUPA 345 7 2 145 200

Clevend Heart 304 6 2 45 259

WBC (D) 569 30 2 357 212

WBC (P) 194 32 2 148 46

Metabolic Syndrome 1135 18 2 612 523

Dermatology 366 33 6 112 61 72 49 52 20

Hepatitis 155 19 2 32 123

Parkinson 196 23 2 48 148

Ionosphere 351 34 2 225 126

Vertebral column 310 6 2 100 210

used for classification task. It classifies patients into two categories

labeled as ‘normal’ and ‘abnormal’ based on the analysis report of

their vertebral column.

Ionosphere: This radar dataset is used for classifying the presence

of electrons structure in the ionosphere. “Good” radar returns are

those showing evidence of some type of structure in the ionosphere.

“Bad” returns are those that do not; their signals pass through

the ionosphere. The dataset consist of 34 of attributes which are

continuous in nature.

Table 1 presents a summary of the main characteristics of the

databases that have been used in this study. The first column of this

table gives the name of the database, while other columns indicate,

respectively, the number of instances, the number of attributes,

number of classes, number of patterns in class 1, number of patterns

in class 2 and number of patterns in class 3.

4.2. Environments, parameters and classification performance

4.2.1. Environments

The proposed method was implemented on a personal com-

puter with an Intel Pentium IV, 2.40 GHz CPU, 1.00 GB RAM (the

primary method), the Microsoft Windows XP Professional version

2002 operating system with Matlab 7.0.1 development environ-

ment. For evaluating all these algorithms, the following protocols

related to dataset division were set.

The datasets are divided into 10 folds, and out of this 9-folds

are used for training and 1 fold is used for testing the performance

of the classifiers. However, 9-fold cross validation is carried out in

the case of HEART disease database obtained from STATLOG project

for comparing the cost estimation result of ISO-FLANN with other

state-of-the-art algorithms presented in King et al. (1995) where

9-fold cross validation was reported.

4.2.2. Parameters

The quality of each particle is measured by the error criterion

function E. It is also very important for the user to set a priori the val-

ues of the parameters of the proposed algorithm. These parameters

are presented in Table 2.

In the literature different values of N have been used for swarm

size. In this work we set N = 10×d to avoid under-fit and over-fit

during the training of the algorithm. The larger is the number of

particles, more is the computation time. Length of the particle is

fixed to m, where m depends on the functionally expanded features

of the hidden layer.

Although the parameters are quite restricted and there are no

such standard rule to assign systematic parameter values to c1, c2

and 	 but in this experimental study the value of 	 is restricted

within the interval [1.8, 0.2]. The values of c1 and c2 are chosen

as 2.8 ×	 and 1.3 ×	, respectively. These set of parameters are

assigned after an extensive set of trial and error process.

The initial position and the velocity range of the particles in IPSO

lies in the interval [−1, +1] and if the global best position pg is not

improved for successive generations (100) we run the self adap-

tive Gaussian and Cauchy mutation alternatively to escape from

the false global solution (i.e., the equivalent of a local optimum in

global optimization).

The next important question in the proposed IPSO is when to

stop a run. Many researchers have used either the maximum num-

ber of generations (Gen2) or maximum number of function calls as

stopping conditions in their experimental study (Blake and Merz,

2012). Liu et al. (2005) used |fmin − fopt| ≤ ε, where fmin is the best

solution found so far. The stopping condition |fmin − fopt| ≤ ε only

applies if the optimal value of the problem under consideration is

known. However, in many practical applications, the optimal value

is not known. On other hand, the maximum number of iterations(or

function calls) cannot be judged for an arbitrary decision boundary

of a classification problem. This may lead to unnecessary function

calls when the minimum is reached long before the maximum num-

ber of iterations (or function calls)—thus increasing computational

costs. In this paper we use a combined approach as follows:

In each iteration we check the condition |fmin − fopt| ≤ ε, where

fw=f(pi) is the functional value of current worst personal best pi in

P and fb=f(pg) is the functional value of the current global best pg

in P (since each particle in P is always updated with an improve-

ment at each iteration, the set P will gradually contract) and Gen1

and Gen2. If this condition is reached earlier than Gen2, then stop.

Otherwise continue till the value of Gen2 is reached. However, the

Gaussian and Cauchy mutation is applied as usual and the inertia

value is decreased accordingly. In this work we stop a run either

the points in P are identical to an accuracy of three decimal places,

i.e., |fmin − fopt| ≤ ε = 10−3, or the maximum number of generations

Gen2 = 3000.

Table 2

Parameters used in proposed algorithm.

Symbol Name and purpose of the parameter

N Size of the swarm (P)

	 Inertia weight

	0 Inertial value of inertia weight

	1 Inertia weight value of the end point of linear section

Gen1 Generations that reduces linearly (i.e., Gen1 = Gen2 × 40%)

Gen2 Maximum generation of the algorithm

c1 Cognitive parameter

c2 Social parameter
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Table 3

Results obtained by the ISO-FLANN model for the classification of the Heart Disease Database.

Dataset Error in training set Error in test set Cost in training set Cost in test set

Class 1 Class 2 Class 1 Class 2

heart1.dat 13/133 14/107 1/17 1/13 0.34583 0.2

heart2.dat 14/133 12/107 2/17 1/13 0.30833 0.23333

heart3.dat 13/134 15/106 4/16 2/14 0.36667 0.46667

heart4.dat 13/133 10/107 1/17 4/13 0.2625 0.7

heart5.dat 13/133 16/107 3/17 2/13 0.3875 0.43333

heart6.dat 13/134 14/106 6/16 0/14 0.3458 0.2

heart7.dat 15/133 13/107 0/17 3/13 0.3333 0.5

heart8.dat 18/133 17/107 1/17 0/13 0.42917 0.033333

heart9.dat 20/134 9/106 2/16 1/14 0.27083 0.23333

Average 0.33888 0.333333

However in the case of MLP, we have considered two hidden

layers for all datasets. Each hidden layer contains [Q × n] number

of neurons, where Q is the number of input neurons and n is the

number of output neurons, Further, for all datasets we fixed 1000

epochs. For SVM, the number to support vectors is determined

based on the minimum distance from the separating planes. The

k-means algorithm finds a set of clusters. Each center is then asso-

ciated with the kernel. An appropriated width can be computed by

using nearest neighbor heuristics.

In case of FSN, initially we take a set of fuzzy nets, each net is

treated as a particle and the set of fuzzy nets are treated swarm.

Each net shares the same memory in the distributed environment.

At any instance of time all the nets are supplied with one input

record and the respective target. All the nets in the distributed

environment are initialized to random weights in the range [0, 1].

After each iteration, we calculate the error for all the nets in

the distributed environment. The net giving the minimum error

is treated as the leader among all the nets. The nets also pre-

serve the best value achieved by the respective nets during all

the iterations in their local memory, which is treated as its per-

sonal best. Each net uses both personal best and global best values

to update its weights for successive iterations. The stopping cri-

terion may be allowing the nets to iterate till they converge to a

single decision. However, in this case the net gets over training

and lead to poor performance. Therefore, for different datasets a

suitable range of iterations is fixed, as one range may not be suit-

able for all datasets. For case of IRIS dataset the range is [50–150],

whereas all other datasets the range for iteration varies from 100

to 200.

4.2.3. Classification performance

As the improved PSO is a stochastic algorithm, 10 independent

run for each algorithm were performed for every single fold.

The average values of 10 fold cross validation of each data set

are used for comparisons with other classification methods (see

Tables 4 and 5).

Now, we will explicitly examine the performance of the ISO-

FLANN model by considering the heart dataset with the use of the

9-fold cross validation methodology. The reason for using 9-fold

cross validation is that to compare the performance with the perfor-

mance of the algorithms considered in StatLog Project (King et al.,

1995). In 9-fold cross validation we partition the data set into nine

subsets (heart1.dat, heart2.dat,. . ., heart9.dat), where eight subsets

are used for training and the remaining one is used for training. The

process is repeated nine times in such a way that each time a differ-

ent subset of data is used for testing. Thus the dataset was randomly

segmented into nine subsets with 30 elements each. Each subsets

contains about 56% of samples from class 1 (without heart disease)

and 44% of samples from class 2 (with heart disease).

The procedure makes use of a cost matrix, which is described as

follows:

Cost Matrix =
(

0 w2

w1 0

)

.

The purpose of each matrix is to penalize wrongly classified

samples based on the weight of the penalty of the class. In gen-

eral, the weight of the penalty for class 2 samples that are classified

as class 1 samples is w1, while the weight of the penalty for class

1 records that are classified as class 2 samples isw2. Therefore, the

metric used for measuring the cost of the wrongly classifying pat-

terns in the training and test dataset is given by Eqs. (18) and (19).

Ctrain = (S1 ×w1 + S2 ×w2)

Strain
, (18)

Ctest = (S1 ×w1 + S2 ×w2)

Stest
, (19)

where Ctrain is the cost of the training set; Ctest is the cost of the

test set; S1 and S2 denote the pattern that are wrongly classified

which belong to class 1 and 2 respectively; Strain and Stest are the

total number of training and test patterns respectively.

Table 3 presents the errors and the costs of the training and the

sets for the ISO-FLANN model with a weight value of w1 = 5 and

w2 = 1 subject to an average value of 10 independent runs. Upon

closer inspection of Table 3, it may be observed that the configu-

ration of the heart8.dat dataset as a test subset obtain lower errors

and consequently a lower cost for the ISO-FLANN model. Note that

these parameters totally depends on the designer keeping in mind

that the classification accuracy should not be degraded.

4.3. Comparison with other models

The results obtain from the IRIS, WINE, PIMA Indians Diabetes

Database, and BUPA Liver Disorders data sets were compared with

the results obtain from the previous model FLANN with gradient

decent, MLP, SVM with the radial basis kernel and FSN. Note that

the result of the proposed algorithm and FSN are averaged over

10 independent runs. Since FLANN with gradient decent, MLP and

SVM with radial basis kernal are not stochastic, only one run is

performed for the classification,

Table 4 represents a summary of the comparative results of ISO-

FLANN with MLP and FLANN, and Table 5 with SVM and FSN on both

the training test and test set, respectively.

It clearly indicates that the classification accuracy of the same

dataset (except PIMA dataset) could vary widely depending upon

what kind of classification algorithm is applied on it.

The classification results found for the Heart disease data set

were compared with the results found in the STATLOG project

(King et al., 1995). Accordingly to the STATLOG project method-

ology, comparison consist of calculating the average cost produced

by nine data subsets used for validation. Table 6 presents the
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Table 4

Comparison of the average performance of ISO-FLANN and FLANN.

Dataset ISO-FLANN FLANN MLP

HPT HPS HPT HPS HPT HPS

IRIS 98.67 99.03 98.07 97.333 98.15 94.00

WINE 98.751 96.56 92.72 92.19 96.14 92.29

PIMA 80.62 79.63 79.20 78.82 76.61 77.19

BUPA 78.11 76.80 73.80 72.29 67.52 67.39

WBC (D) 97.68 97.36 97.96 91.54 91.62 92.65

WBC (P) 85.64 84.36 82.06 79.11 76.32 76.29

Thyroid 97.34 94.47 95.78 93.25 79.78 79.77

Clevend Heart 86.53 85.57 86.41 79.27 82.63 80.42

Page block 93.98 93.09 93.62 92.91 86.55 84.74

Metabolic Syndrome 80.61 72.32 71.27 68.72 71.35 62.92

Dermatology 97.018 94.43 96.36 92.45 86.78 80.63

Parkinson 89.67 85.94 84.67 80.97 77.04 73.75

Ionosphere 92.40 90.38 79.67 80.94 74.61 73.28

Hepatitis 80.39 75.72 73.57 70.60 60.42 60.83

Vertebral column 99.75 99.17 98.26 96.67 88.32 85.83

HPT: hit percentage in training set, HPS: hit percentage in test set.

Table 5

Comparison of the average performance of ISO-FLANN and SVM.

Dataset ISO-FLANN SVM FSN

HPT HPS HPT HPS HPT HPS

IRIS 98.67 99.03 91.69 91.70 97.182 96.00

WINE 98.75 96.56 79.06 73.66 97.87 93.69

PIMA 80.62 79.63 79.68 75.37 75.27 76.39

BUPA 78.11 76.80 74.57 68.53 65.19 65.00

WBC (D) 97.68 97.36 96.55 95.71 96.77 95.27

WBC (P) 85.64 84.38 80.07 76.32 82.46 79.42

Thyroid 97.34 95.47 90.70 90.76 96.74 94.39

Clevend Heart 86.53 85.57 85.20 84.19 85.19 84.86

Page block 93.98 93.09 92.70 91.39 92.83 92.09

Metabolic 80.61 72.32 79.49 71.12 78.48 71.47

Dermatology 97.018 94.43 95.49 87.65 96.28 90.65

Parkinson 89.67 85.94 88.32 82.50 88.43 83.69

Ionosphere 92.40 90.38 83.74 83.74 90.54 87.5

Hepatitis 80.39 75.72 76.27 63.18 76.57 72.52

Vertebral column 99.75 99.17 95.75 93.33 98.78 97.31

HPT: hit percentage in training set, HPS: hit percentage in test set.

Table 6

Comparison of the cost estimation of ISO-FLANN with other standard classification algorithms.

Classifier ISO-FLANN Naive Bayesian Backpropagation Kohonen C4.5 RBF CART

Cost in training 0.3388 0.351 0.381 0.429 0.439 0.303 0.463

Cost in testing 0.3333 0.374 0.574 0.693 0.781 0.781 0.452

average cost for the nine training and test subsets. The results of

the ISO FLANN model is compared with six classification algorithms

such as: statistical methods (Naive Bayes), neural network meth-

ods (backpropagation, Kohonen, and radial basis function (RBF)),

and machine learning, methods (C4.5 and CART). This selection

is due to their relative popularity and availability of performance

data provided in the empirical study. The values of ISO FLANN are

highlighted to show the significance of ISO-FLANN over other clas-

sification algorithms.

It is clearly indicates that in the proposed method classification

error rate is very low compared to other neural network models

like back-propagation, Kohonen, and radial basis function (RBF). In

addition, the error rates for this particular dataset could vary widely

among the classifiers.

4.4. Statistical performance evaluation

To evaluate the performance of the classifiers a non-parametric

test is carried out with 10 different datasets. We consider the null

hypothesis as

Ho :Alltheclassifiersareequivalent.

To test the null hypothesis, we start with a Friedman test

(Demšar, 2006; García et al., 2010). In this test, we assign ranks

rj
i

to the jth of k classifiers on the ith of N datasets based on their

predictive accuracy. Then we obtain the Friedman statistics given

by equation

FF = (N − 1)�2
F

N (K − 1) − �2
F

(20)

where

�2
F = 12N

k (k + 1)





∑

j

R2
j − k(k + 1)2

4



 (21)

The Friedman statistic is distributed according to the F-

distribution with k − 1 and (k − 1)(N − 1) degree of freedom.

In this case, Table 7 shows the ranks (shown in brackets) of each

classifier on different datasets. Using Eq. (21), we find the �2
F as

42.3708 and in turn the FF as 33.6482. With the 5 classifiers and

15 datasets, FF is distributed to the F distribution with 5 − 1 = 4 and

(5 − 1) × (15 − 1) = 56 degree of freedom. The critical value of F(4,
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Table 7

Ranks of each classifiers on different dataset based on the average hits percentage on test set.

Dataset ISO-FLANN FLANN FSN MLP SVM

IRIS 99.03 (1) 97.33 (2) 96.00 (3) 94.00 (4) 91.70 (5)

WINE 96.56 (1) 92.19(4) 93.69 (2) 92.29 (3) 73.66 (5)

PIMA 79.63 (1) 78.82 (2) 75.37 (5) 77.19 (3) 76.39 (4)

BUPA 76.80 (1) 72.29 (2) 68.53 (3) 67.39 (4) 65.00 (5)

WBC (D) 97.36 (1) 91.54 (5) 95.26 (3) 92.65 (4) 95.71 (2)

WBC (P) 84.38 (1) 79.11 (3) 79.421 (2) 76.29 (5) 76.32 (4)

Page block 93.09(1) 92.91 (2) 92.09 (3) 84.74 (5) 91.39 (4)

Thyroid 95.47 (1) 93.25 (3) 94.39 (2) 79.77 (5) 90.76 (4)

Clevend heart 85.57 (1) 79.27 (5) 84.86 (2) 80.42 (4) 84.19 (3)

Metabolic syndrome 72.32 (1) 68.72 (4) 71.47 (2) 62.92 (5) 71.12 (3)

Dermatology 94.28 (1) 92.45 (2) 90.65 (3) 80.63 (5) 87.65 (4)

Hepatitis 75.72 (1) 70.60 (3) 72.52 (2) 60.83 (5) 63.18 (4)

Parkinson 85.94 (1) 80.97 (4) 83.69 (2) 73.75 (5) 82.50 (3)

Ionosphere 90.38(1) 80.94(4) 87.5 (2) 63.28 (5) 83.74 (3)

Vertebral Column 99.17 (1) 96.67 (3) 97.31 (2) 85.83 (5) 93.33 (4)

Average 1 3.2 2.53 4.47 3.8

56) for ˛= 0.01 as 3.674 which is less than the obtain FF statistic.

Thus, we can reject the null hypothesis Ho.

As the null hypothesis is rejected, we proceed with the post

hoc test. We perform the Holm procedure (Demšar, 2006; García

et al., 2010; Luengo et al., 2009) to evaluate performance of pro-

posed model with other classifier. For carrying this test, we need to

compute the z value using Eq. (22)

z =
Ri − Rj
SE

(22)

where

SE =
√

k(k + 1)

6N
(23)

This z value is used for calculating the probability p from the

table of normal distribution, which then compared with an appro-

priate ˛. For this test, we consider the null hypothesis as

Ho :The pair of classifiers compared are equivalent.

We order the p values in increasing order of significance and then

for Holm test, we compare the pi value with ˛/(k − i). The value of

pi is less than the ˛/(k − i), thus, we reject the null hypothesis and

proceed for comparison with other classifiers. The result of this test

with ISO-FLANN and other classifiers is shown in Table 8. From this,

it is clear that all the null-hypothesis are rejected. Thus ISO-FLANN

has significantly better performance than all other classifiers.

4.5. Effect of parameters on classification accuracy

The parameters used in ISO-FLANN effects the classification

accuracy of different datasets. So, a fine tuning of the parameters

are important for attaining the optimal classification accuracy. The

first parameter considered is the inertia weight which is adjusted

using Reduced	 method. In the Reduced	 method, the initial inertia

weight reduces rapidly for Gen1 and then inertia weight is reduces

slowly for Gen2. The Gen1 is equal to xofGen2 where the x is deter-

mined empirically. Fig. 2 shows the effect of change in the x values.

From the figure, it can be seen that on increasing the x, the training

accuracy of clevend heart and metabolic dataset increases. But the

testing accuracy increases for [0.4-0.5], but further increasing the

value of x, i.e., if the inertia weight is reduced rapidly, the testing

accuracy decreases. Almost for all the ten dataset, we have seen

that if Gen1 = [0.4 − 0.5] × Gen2, then maximum accuracy can be

achieved.

We have seen similar effect of the cognitive learning factor (C1)

on classification accuracy. If the C1 is considered in the range of

[1.7–1.8], then a maximum classification accuracy can be achieved.

Fig. 3 shows the impact of C1 on classification accuracy. Here the

training accuracy increases linearly for both the clevend heart and

Wisconsin prognostic breast cancer dataset, however, the same

cannot be seen in testing accuracy of the Wisconsin prognostic

breast cancer dataset. So, we need to fine tune the C1 parameter

carefully.

The impact of Social learning factorC2 is same for almost all

dataset. The classification accuracy increases till C2 = 2.5, but on fur-

ther increasing it the accuracy decreases. The same effect is seen in

all the dataset. The representative sample of the effect is shown in

Fig. 4.

4.6. Justification of trigonometric basis and asymptotic bound of

ISO-FLANN

The proposed structure with functional expansion using

trigonometric functions has the following advantages:

Fig. 2. Impact of percentage change in Gen1 on classification accuracy. (a) Classifi-

cation accuracy of Clevend heart dataset and (b) classification accuracy of Metabolic

Syndrome dataset.
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Table 8

Holm and Hochberg procedure.

i Classifiers z-values p-values ˛/(k − i)

1 ISOFLANN-MLP 6.010 0.0000000008855 0.0125

2 ISOFLANN-SVM 4.850 0.0000005791 0.017

3 ISOFLANN-FLANN 3.845 0.00005710 0.025

4 ISOFLANN-FSN 2.650 0.003939 0.05

• The trigonometric basis function was chosen here because this

basis forms a more compact representation than other possible

functions like Gaussian and orthogonal polynomials (e.g., Legen-

dre, Chebyshev, etc.). In addition the sin and cos functions can be

computed quickly.
• It has been noted that if appropriated trigonometric polynomial is

used for function expansion, the weight solution obtained by IPSO

will approximate the terms in multi-dimension. In case of the

Fig. 3. Impact of cognitive learning C1 on classification accuracy. (a) Classification

accuracy of Clevend heart dataset and (b) classification accuracy of WBC (P) dataset.

Fig. 4. Impact of social learning C2 on classification accuracy.

proposed method the link acts on an element of a sample or on the

entire sample itself by generating a set of independent functions.

Then these functions are evaluated with the sample as the argu-

ments. The functions are chosen as a subset of a complete set of

orthonormal basis functions spanning an m-dimensional repre-

sentation space, such as sin�x, cos�x, sin 2�x, cos 2�x and so on.

The net effect is to map the input sample from low to high dimen-

sional spaces. However, when the outer product terms were used

in combination with the functional expansion, good results were

obtained on case of learning the network.

Mathematical arguments: As we have already discussed above

the learning procedure of the proposed method can be considered

as approximating or interpolating a continuous, multivariate func-

tion �(x) by an approximating function �w(x). Here an information

mathematical argument is given to support how good the chosen

basis function  and a fixed number of weight parameters W and

used to represent the best approximator of�w(x) on the set of input

output samples.

Let A be a compact and simply connected subset of nR and

lm(A) be the subset of Lebesgue measurable functions� : A ⊂ nR→
mR such that the sup norm of �, denoted by ‖� ‖ A is bounded,

i.e., ‖� ‖ A=sup
x�A

|�(x)| ≺ ∞. The space of all continuous functions

� : A→ mR which is a subset of lm(A), and is denoted by Cm(A).

It is often desirable to parameterize � in terms of discriminant
∑

i,j
wij. j(Xi) to identify a non-linear function � : A→ mR, for the

selected trigonometric basis functions i�l(A). By StoneWeierstrass

theorem, there exists many sets of such functions that can uni-

formly approximate  by a discriminant, if  (x) is a continuous

function over a compact set.

Asymptotic bound: Here we present the asymptotic upper

bound analysis of ISO-FLANN. As step 1 and step 2 are the prepro-

cessing steps, these requires constant amount of time. The upper

bound of step 3 requires O(N · m) time, where N is the size of the

swarm and m is the length of the particle. However, without loss

of generality, we ignore the length of the particle for subsequent

steps.

Next we consider the heart of the algorithms such as while loop.

Let us first consider a single iteration of this loop and later by the

entire while loop. Let us first consider a single iteration of this loop

and later by the entire while loop. For each particle it requires a

single scan of the training set, so the time complexity is O(Tr), Tr

is the size of the training set. However, other steps are dominated

asymptotically. Considering the entire swarm the time complex-

ity will be O(N . Tr). Finally for the entire for loop the asymptotic

upper bound of the algorithm is O(Gen2 . N . Tr). Hence the asymp-

totic upper bound of the algorithm is O(Gen2 . N . Tr) +O(N . m) =

O(Gen2 . N . Tr), as O(N . m) is dominated by O(Gen2 . N . Tr).

5. Conclusions and future path

In this paper, an improved PSO based Evolutionary Functional

Link Artificial Neural Network(ISO-FLANN) model is proposed for

the task of classification. Using the weight value obtained by IPSO

and the set of optimized trigonometric basis functions chosen

for the expansion of the feature vector, the method overcomes
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the non-linearity of the classification problem. Further the self-

adaptivity Gaussian and Cauchy mutation can further fine-tune the

solutions found by the proposed algorithm. Experimental study

demonstrated that the performance of ISO-FLANN for classifica-

tion task is promising. In most cases, the result obtained with the

EFLSNN model proved to be as good as or better than the best

results found by the MLP, SVM, FLANN with gradient decent and

FSN. The architectural complexity of the ISO-FLANN model is quite

less compare to MLP, whereas it is the same or less as FLANN with

gradient descent and FSN. This property of ISO-FLANN can attract

the researches working in data mining for classification task.

Future research include simultaneous evolution of architecture

and weights with a Pareto set of solutions. Mapping the input

patterns form lower to higher dimension by other functions will

constitute another part of study. A rigorous study on the conver-

gence and stability analysis of the proposed method will also be

made.
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Demšar, J., 2006. Statistical comparisons of classifiers over multiple data sets. Journal
of Maching Learning Research 7, 1–30.

Eberhart, R.C., Shi, Y., 2000. Comparing inertia weights and constriction factors in
particle swarm optimization. In: Proceedings of the 2000 Congress on Evolu-
tionary Computation 2000. volume 1, pp. 84–88.

García, S., Fernández, A., Luengo, J., Herrera, F., 2010. Advanced nonparametric tests
for multiple comparisons in the design of experiments in computational intel-
ligence and data mining: Experimental analysis of power. Information Sciences
180, 2044–2064.

Ge, H.W., Qian, F., Liang, Y.C., Du, W.L., Wang, L., 2008. Identification and control of
nonlinear systems by a dissimilation particle swarm optimization-based elman
neural network. Nonlinear Analysis: Real World Applications 9 (4), 1345–1360.

Goldberg, David E., 1989. Genetic Algorithms in Search, Optimization and Machine
Learning, 1st edition. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

Guerra, F.A., Coelho, L.D.S., 2008. Multi-step ahead nonlinear identification of
lorenz’s chaotic system using radial basis neural network with learning by
clustering and particle swarm optimization. Chaos. Solitons & Fractals 35 (5),
967–979.

Hamamoto, Y., Uchimura, S., Tomita, S., 1997. A bootstrap technique for nearest
neighbor classifier design. IEEE Transactions onPattern Analysis and Machine
Intelligence 19 (1), 73–79.

Han, F., Ling, Q.H., Huang, D.S., 2008. Modified constrained learning algorithms incor-
porating additional functional constraints into neural networks. Information
Sciences 178, 907–919.

Hsu, C.W., Lin, C.J., 2002. A comparison of methods for multi-class support vector
machines. IEEE Transactions on Neural Networks 13 (2), 415–425.

Jiang, M., Luo, Y.P., Yang, S.Y., 2007. Stochastic convergence analysis and parameter
selection of the standard particle swarm optimization algorithm. Information
Processing Letters 102 (1), 8–16.

John Paul, T., Yusiong, Prospero, C., Naval Jr, 2006. Training neural networks using
multiobjective particle swarm optimization. In: ICNC (1), pp. 879–888.

Kang, M., Brown, D.P., 2008. A modern learning adaptive functional neural network
applied to handwritten digit recognition. Information Sciences 178, 3802–3812.

Kennedy, J., Eberhart, R., 2001. Swarm Intelligence Morgan Kaufmann, 3rd edition.
Academic Press, New Delhi, India.

Kennedy, J., Eberhart, R.C., 1995. Particle swarm optimization. In: Proceedings of
the IEEE International Conference on Neural Networks, Perth, Australia, pp.
1942–1948.

King, R.D., Feng, C., Sutherland, A., 1995. Statlog: Comparison of classification
algorithms on large real-world problems. Applied Artificial Intelligence 9 (3),
289–333.

Liu, H.B., Tang, Y.Y., Meng, J., Ji, Y., 2004. Neural networks learning using vbest model
particle swarm optimisation. In: Proceedings of 2004 International Conference
on Machine Learning and Cybernetics 2004, volume 5, pp. 3157–3159.

Liu, B., Wang, L., Jin, Y.-H., Tang, F., Huang, D.-X., 2005. Improved particle swarm
optimization combined with chaos. Chaos, Solitons & Fractals 25 (5), 1261–1271.

Luengo, J., García, S., Herrera, F., 2009. A study on the use of statistical
tests for experimentation with neural networks: Analysis of parametric test
conditions and non-parametric tests. Expert System with Applications 36,
7798–7808.

Marinakis, Y., Marinaki, M., Dounias, G., Jantzen, J., Bjerregaard, B., 2009. Intelli-
gent and nature inspired optimization methods in medicine: the pap smear cell
classification problem. Expert Systems 26 (5), 433–457.

Mazurowski, M.A., Habas, P.A., Zurada, J.M., Lo, J.Y., Baker, J.A., Tourassi, G.D., 2008.
Training neural network classifiers for medical decision making: the effects of
imbalanced datasets on classification performance. Neural Networks 21 (2–3),
427–436.

Mishra, B.B., Dehuri, S., 2007. Functional link artificial neural network for classifica-
tion task in data mining. Journal of Computer Science 3, 948–955.

Mishra, B.B., Dehuri, S., Panda, G., Dash, P.K., 2008. Fuzzy swarm net (FSN) for clas-
sification in data mining. The CSI Journal of Computer Science and Engineering
5 (2&4(b)), 1–8.

Pao, Y.H., 1989. Adaptive Pattern Recognition and Neural Networks. Addison Wesley.
Pao, Y.H., Phillips, S.M., Sobajic, D.J., 1992. neural-net computing and intelligent

control systems. International Journal of Control Systems 56 (2), 263–289.
Park, H.S., Cho, S.B., 2006. An efficient attribute ordering optimization in Bayesian

networks for prognostic modeling of the metabolic syndrome. In: ICIC (3)’06,
pp. 381–391.

Pereira, M., Costa, V.S., Camacho, R., Fonseca, N.A., Sim oes, C., Brito, R.M., 2009.
Comparative study of classification algorithms using molecular descriptors in
toxicological databases. In: Proceedings of the 4th Brazilian Symposium on
Bioinformatics: Advances in Bioinformatics and Computational Biology, BSB ’09,
Berlin, Heidelberg, Springer-Verlag, pp. 121–132.

Quinlan, J.R., 1993. C4. 5: programs for machine learning. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA.

Rudolph, G., 1997. Local convergence rates of simple evolutionary algorithms
with cauchy mutations. IEEE Transactions on Evolutionary Computation 1 (4),
249–258.

Schwefel, H.P., 1981. Numerical Optimization of Computer Models. John Wiley &
Sons, Inc., New York, NY, USA.

Shi, Y., Eberhart, R.C., 1999. Empirical study of particle swarm optimization. In:
Proceedings of the 1999 Congress on Evolutionary Computation, 1999. CEC 99,
volume 3, pp. 6–9.

Trelea, I.C., 2003. The particle swarm optimization algorithm: convergence analysis
and parameter selection. Information Processing Letters 85 (6), 317–325.

Wu, J., Jin, L., Liu, M., 2006. Modeling meteorological prediction using particle swarm
optimization and neural network ensemble. In: Wang, J., Yi, Z., Zurada, J., Lu, B.L.,
Yin, H. (Eds.), Advances in Neural Networks - ISNN 2006, volume 3973 of Lecture
Notes in Computer Science. Springer, Berlin/Heidelberg, pp. 1202–1209.

Yager, R.R., 2006. An extension of the naive Bayesian classifier. Information Sciences
176 (5), 577–588.

Yang, J.M., Kao, C.Y., 2001. A robust evolutionary algorithm for training neural net-
works. Neural Computing & Applications 10, 214–230.

Yu, J., Xi, L., Wang, S., 2007. An improved particle swarm optimization for evolving
feedforward artificial neural networks. Neural Processing Letters 26, 217–231.

Yung, Y., Shaw, M.J., 1995. Introduction to fuzzy decision tree. Fuzzy Set and Systems
69 (1), 125–139.

Zhang, G.P., 2000. Neural networks for classification: a survey. IEEE Transactions
on Systems Man and Cybernetics. Part C: Applications and Reviews 30 (4),
451–462.

Zhang, J., Lok, T., Lyu, M., 2007. A hybrid particle swarm optimization-back-
propagation algorithm for feedforward neural network training. Applied
Mathematics and Computation 185 (2), 1026–1037.

Zhao, L., Yang, Y., 2009. Pso-based single multiplicative neuron model for time series
prediction. Expert System Application 36, 2805–2812.



S. Dehuri et al. / The Journal of Systems and Software 85 (2012) 1333–1345 1345

Further reading

Schutte, J.F., Groenwold, A.A., 2005. A study of global optimization using particle
swarms. Journal of Global Optimization 31, 93–108.

Satchidananda Dehuri is a Reader and Head in P.G. Department of Information and
Communication Technology, Fakir Mohan University, Vyasa Vihar, Balasore, Orissa.
He received his M.Sc. degree in Mathematics from Sambalpur University, Orissa in
1998, and the M.Tech. and Ph.D. degrees in Computer Science from Utkal University,
Vani Vihar, Orissa in 2001 and 2006, respectively. He completed his Post Doctoral
Research in Soft Computing Laboratory, Yonsei University, Seoul, Korea under the
BOYSCAST Fellowship Program of DST, Govt. of India. In 2010 he received Young Sci-
entist Award in Engineering and Technology for the year 2008 from Odisha Vigyan
Academy, Department of Science and Technology, Govt. of Odisha. He was at the
Center for Theoretical Studies, Indian Institute of Technology Kharagpur as a Visit-
ing Scholar in 2002. During May–June 2006 he was a Visiting Scientist at the Center
for Soft Computing Research, Indian Statistical Institute, Kolkata. His research inter-
ests include Evolutionary Computation, Neural Networks, Pattern Recognition, Data
Warehousing and Mining, Object Oriented Programming and its Applications and
Bioinformatics. He has already published about 100 research papers in reputed jour-
nals and referred conferences, has published three text books for undergraduate and
Post graduate students and edited five books, and is acting as an editorial member
of various journals. He chaired the sessions of various International Conferences.

Rahul Roy is a research fellow in Machine Intelligence unit of Indian Statistical Insti-
tute, Kolkata. He did his M.Tech. student in School of Computer Engineering, KIIT
University, Bhubaneswar, Orissa, India. He completed his Integrated M.Sc. degree in
Computer science from Assam University, Silchar, India, in 2009. His research inter-
est includes Evolutionary Computation; Bio inspired computing and Rule mining.

Sung-Bae Cho received the Ph.D. degrees in computer science from KAIST (Korea
Advanced Institute of Science and Technology), Taejeon, Korea, in 1993. He was
an Invited Researcher of Human Information Processing Research Laboratories at
ATR (Advanced Telecommunications Research) Institute, Kyoto, Japan from 1993 to
1995, and a Visiting Scholar at University of New South Wales, Canberra, Australia
in 1998. He was also a Visiting Professor at University of British Columbia, Van-
couver, Canada from 2005 to 2006. Since 1995, he has been a Professor in the
Department of Computer Science, Yonsei University. His research interests include
neural networks, pattern recognition, intelligent man-machine interfaces, evolu-
tionary computation, and artificial life. He is a Senior Member of IEEE and a Member

of the Korea Information Science Society, the IEEE Computer Society, the IEEE Sys-
tems, Man, and Cybernetics Society, and the Computational Intelligence Society.

Ashish Ghosh is a Professor of the Indian Statistical Institute, Kolkata, India. He
received the B.E. degree in Electronics and Telecommunication from the Jadavpur
University, Kolkata, in 1987, and the M.Tech. and Ph.D. degrees in Computer Sci-
ence from the Indian Statistical Institute, Kolkata, in 1989 and 1993, respectively.
He received the prestigious and most coveted Young Scientists award in Engineer-
ing Sciences from the Indian National Science Academy in 1995; and in Computer
Science from the Indian Science Congress Association in 1992. He has been selected
as an Associate of the Indian Academy of Sciences, Bangalore, in 1997. He visited the
Osaka Prefecture University, Japan, with a Post-doctoral fellowship during October
1995 to March 1997, and Hannan University, Japan as a Visiting Faculty during
September to October, 1997 and September to October, 2004. He has also visited
Hannan University, Japan, as Visiting Professor with a fellowship from Japan Soci-
ety for Promotion of Sciences (JSPS) during February to April, 2005. During May
1999 he was at the Institute of Automation, Chinese Academy of Sciences, Beijing,
with CIMPA (France) fellowship. He was at the German National Research Center
for Information Technology, Germany, with a German Government (DFG) Fellow-
ship during January to April, 2000, and at Aachen University, Germany in September
2010 with an European Commission Fellowship. During October to December, 2003
he was a Visiting Professor at the University of California, Los Angeles, and during
December 2006 to January 2007 he was at the Computer Science Department of
Yonsei University, South Korea. His visits to University of Trento and University of
Palermo (Italy) during May to June 2004, March to April 2006, May to June 2007,
2008, 2009 and 2010 were in connection with collaborative international projects.
He also visited various Universities/Academic Institutes and delivered lectures in
different countries including Poland and the Netherlands.

His research interests include Pattern Recognition and Machine Learning, Data
Mining, Image Analysis, Remotely Sensed Image Analysis, Video Image Analysis, Soft
Computing, Fuzzy Sets and Uncertainty Analysis, Neural Networks, Evolutionary
Computation and Bioinformatics. He has already published more than 120 research
papers in internationally reputed journals and referred conferences, has edited 8
books and is acting as a member of the editorial board of various international
journals.

He is a member of the founding team that established a National Center for Soft
Computing Research at the Indian Statistical Institute, Kolkata, in 2004, with funding
from the Department of Science and Technology (DST), Government of India, and at
present is the In-Charge of the Center.


	1.pdf
	iso_flann_rahul.pdf

