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ABSTEACT

A new rough-fuzzy model for pattern classification based on granular computing is described in the
present article. In this model, we propose the formulation of class-dependent granules in fuzzy
environment. Fuzzy membership functions are used to represent the feature-wise belonging o
different dasses, thereby producing fuzzy granulation of the feature space. The fuzzy granules thus
generated possess better class discriminatory information that is useful in pattern classification with
overlapping classes. Meighborhood rough sets are used in the selection of a subset of granulated
features that explove the local/contextual information from neighbor granules, The model thus explores
mutually the advantages of class-dependent fuzey granulation and neighborhood rough set. The
superiovity of the proposed model to other similar methods (s established with seven completely
labeled data sets, including a synthetic remote sensing image, amnd two partially labeled real remote
sensing images collected from satellites. Various performance measures, including a new method of
dispersion estimation, are used for comparative analysis. The new measure called “dispersion sore”
quantifies the nature of diswibution of the classified patterns among different classes so that lower is
the dispersion, better is the classifier. The proposed model learns well even with a lower percentage
of training set that makes the system fast. The model is seen to have lowest dispersion measure (Le.,
misclassified patterns are confined to minimum number of classes) compared to others, thereby
reflecting well the overlapping characteristics of a class with others, and providing a strong clue for the
class-wise performance improvement with available higher-level information The statistical signifi-
cance of the proposed model is also supported by the 3 test.

@ 2012 Elsevier Lud. All rights reserved.
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1. Introduction granulation [4=6] on which GrC is oriented. Specifically, granula-

tion is governed by the principles according to which the models

Granular computing (GrC) refers to that where computation and
operations are performed on information granules (clumps of similar
objects or points). GrC has been changed rapidly from a label to
conceptual and computational paradigm of study that deals with
information and knowledge processing Many researchers [1,2] have
used GrC models to build efficient computational algorithms that can
handle huge amounts of data, information and knowledge. These
models mainly deal with the efficiency, effectiveness and mbustness
of using granules, such as classes, clusters, subsets, groups and
intervals in problem solving [3].

GrC can be studied based on its notions of representation and
process. However, the main task to be focussed is to construct
and describe information granules, a process called information
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should exploit the tolerance for imprecision and employ the
coarsest level of granulation, which are consistent with the
allowable level of imprecision. Modes of information granulation
in which the granules are crisp, play important roles in a wide
variety of approaches and technigues. Although crisp information
granulation has wide range of applications, it has a major blind
spot [7]. More particularly it fails to reflect most of the processes
of human reasoning and concept formation, where the granules
are more appropriately fuzzy rather than crisp [8,9]. The fuzziness
in granules and their values is the characteristic of the ways in
which human concepts are formed, organized and manipulated.
In fact fuzzy information granulation does not refer to single
fuzzy granule rather it is about a collection of fuzzy granules
which result from granulating a crisp or fuzzy object. Depending
on the problems and whether the granules are fuzzy or crisp,
one may have operations like granular fuzzy computing or fuzzy
granular computing [10].
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In the recent past many research works have been carried out in
the construction of fuzzy granules The process of fuzzy granulation
involves the basic idea of generating a family of fuzzy granules from
numerical features and transform them into fuzzy linguistic vari-
ables. These variables thus keep the semantics of the data and are
easy to understand. Fuzzy information granulation has come up
with an important concept in fuzzy set theories, rough set theories
and the combination of both in recent years [5,7,10,11]. In a hybrid
approach, Banerjee et al. [12] described the granulation of informa-
tion with the combination of rough, fuzzy and neural networks,
Here the authors proposed a new scheme of knowledge encoding in
a fuzzy multilayer perceptron using rough set-theoretic concepts,
and applied successfully in the classification of speech and synthetic
data. Further, Pal and Mitra in [13] discussed the mough-fuzzy
hybridization method of information granulation scheme for case
generation. In this study, fuzzy set theory is used for linguistic
representation of patterns, thereby producing a fuzzy granulation of
the feature space and rough set theory is used to obtain dependency
rules which model informative regions in the granulated feature
space. Superiority of this algorithm in terms of classification
accuracy and case generation and retrieval times is demonstrated
on some real-life data sets. In general, the process of fuzzy granula-
tion can be broadly categorized as class-dependent (CD) and class-
independent (CI). Fuzzy sets are used in both cases for linguistic
representation of patterns and generation of fuzzy granulation of the
feature space. With Cl granulation each feature of the pattern is
described with the membership values comesponding to the over-
lapping partitions of the linguistic properties low, medium and high
[14]. These overlapping functions along each axis generate the fuzzy
granulated feature space in n-dimension and the granulated space
contains 3" granules. The degree of belongingness of a pattern to a
granule is determined by the corresponding membership function.
However, this process of granulation does not take care of the class
belonging information of features to different classes. This may lead
to a degradation of performance in pattern classification, particularly
for data sets with highly overlapping classes. On the other hand, in
CD granulation, each feature explores its class belonging information
to different classes In this process, features are described by the
furzy sets equal to the number of classes, and individual class
information is restored by the generated fuzzy granules.

Rough set theory, as proposed by Pawlak [5] (henceforth it will
he abbreviated as FaR5), has been proven to be an effective tool for
feature selection, knowledge discovery and rule extraction from
categorical data [15]. The theory enables the discovery of data
dependencies and performs the reductionfselection of features
contained in a data set using the data alone, requiring no additional
information. FaRS can be used as an effective tool to deal with both
vagueness and uncertainty in data sets and to perform granular
computation. PaRS based feature selection not only retains the
representational power of the data, but also maintains its minimum
redundancy [15]. However for the numerical data, PaRS theory can
be used with the dizscretisation of data that results in the loss of
information and introduction of noise. To deal with this, neighbor-
hood rough set (NRS) [16,17] is found to be suitable that can deal
with both numerical and categorical data sets without discretisation.
The advantage of MRS is that it facilitates to gather the possible local
information through neighbor granules that is useful for a better
discrimination of patterns, particularly in class overlapping environ-
ment. Many attempts have been made in the use of MRS for
information granulation and feature reduction [18,19].

I.1. Motivation and the proposed solution
As discussed earlier, fuzzy granulation of information has the

inherent advantages of improved human-like reasoning than
crisp granulation, and CD fuzzy granulation further enhances its

analysis capability compared to Cl fuzzy granulation. This moti-
vated us to explore the CD form of fuzzy granulation model for
pattern classification. Further, the suitability of MRS based feature
selection in dealing with numerical data, compared to Pawlak's
rough set has encouraged to explore MRS based method for pattern
classification. Although, individually the granulation and feature
selection methods have their own advantages, the hybridization of
both the methods with a cost of insignificant computational
complexities has leaded to a domain that aims to cumulate the
individual advantages. In recent past, many research attempts have
described the benefits of hybridizing technigques and successful by
demonstrated their superiorty over individual methods for pattern
classification.

This encouraged us to build a hybridizing rough-fuzzy gran-
ular space using fuzzy CD granulation and MRS based feature
selection. The model provides a synergistic integration of the
merits of both fuzzy CD granulation and the theory of NES, and
the resulting output can be used as an input to any classifier, To
demonstrate the effectiveness of the proposed rough-fuzzy gran-
ular space based model compared to other similar methods, we
have used here different classifiers, such as k-nearest neighbor

(k=MM) (k=1, 2 and 3) classifier, maximum likelihood (ML)
classifier [20] and multi-layered perceptron { MLP) [21]. However,
other classifiers may also be used. We have demonstrated the
potential of the proposed model with seven completely labeled
data sets, including a synthetic multispectral remote sensing
image, and two partially labeled real multispectral remote sen-
sing images. For multispectral images we have used the spectral
(band) values as features. Various performance measures such as
percentage of overall classification accuracy, Precision, Recall
[22], kappa coefficient [23] and computation time are considered
for completely labeled data sets. In this context, a new index
called 'dispersion score’ reflecting a different interpretation of the
confusion matrix, is defined to measure the class-wise classifier
performance. The dispersion measure guantifies the nature of
distribution of the classified patterns among different classes. In
addition to these measures, we have performed the statistical
significance test using y* for supporting the superiority of the
proposed model. For partially labeled data sets, on the other hand,
J1index [24] and Davies-Bouldin { DB) index [25] are computed to
validate the superiority of the proposed model to others.

The novelty of the present work lies with the following. First,
hased on the class dependency knowledge, fuzzy granulated features
are generated. Second, the neighborhood rough sets are applied on
these fuzzy granular feature sets for computing the approximate
reducts that select a subset of features. Finally, a different inter-
pretation of confusion matrix is described by defining a new measure
of dispersion which not only provides an index of class-wise
performance, but also enables one to correct some of the misclassi-
fied patterns with available higher-level analysis. The experimental
results show that the proposed model provides improved classifica-
tion accuracy in terms of the aforesaid quantitative measures, even
with a smaller training set.

2. Proposed model for pattern classification

The proposed granular space based model for pattem classi-
fication is illustrated in Fig. 1. The model has three steps of
operation. A brief description and analysis of the advantages of
each of the steps is made in the following.

The first step generates the class-dependent (CD) fuzzy granu-
lated feature space of input pattern vector. For fuzzy granulation,
L number of fuzzy sets are used to characterize the feature values
of each pattern vector, where L is the total number of classes,
We have considered m-type membership function (MF) for the
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fuzzification purpose. Each feature is thus represented by L [0,1]-
valued MFs representing L fuzzy sets or characterizing L fuzzy
granules along the axis. The n-type MF explores the degree of
belonging of a pattern into different classes based on individual
features and the granules thus provide an improved class-wise
representation of input patterns. The granules preserve the
interrelated class information to build an informative granular
space which is potentially vseful for improved classification for
the data sets with overlapping classes. The detail description and
advantages of the method are given in Section 2.1,

In the granulation process, each feature value is represented
with more than one membership values and thus the feature
dimension increases. The increased dimension brings great diffi-
culty in solving many tasks of pattern recognition, machine
learning and data mining. This motivates for selecting a subset
of relevant and non-redundant features. In this regard, we have
used the neighborhood rough set [16,17] (NRS) based feature
selection method in the second step of the proposed model ( Fig.
1) The advantage in the use of MRS is that it can deal with both
numerical and categorical data. MRS does not require any dis-
cretisation of numerical data and is suitable for the proposed
fuzzy granulation of features. Further, the neighboring concept
facilitates to gather the possible local information through neigh-
bor granules that provide a better class discrimination informa-
tion. Thus the combination of these two steps of operations can
be a better framewaork for the classification of pattems in over-
lapping class environment. The proposed model thus takes the
advantage of both class-dependent fuzzy granulation and MES
feature selection methods. Section 22.2 describes the detail
procedure of MRS based feature selection. After the features are
selected, we use a classifier as in the third step of Fig. 1 to classify
the input pattern based on the selected features.

Along with the proposed model for pattern classification, we
have described a new classifier performance measure based on
the dispersion of classified patterns among classes. The dis persion
measure is estimated from the confusion matrix that is obtained
in the classification process. According to our definition, a smaller
value of dispersion measure leads to a better classifier. The value
decreases as the number of classes containing the misclassified
patterns decreases. Thus, the dispersion measure of a class not
only reflects its overlapping character with other classes, but also
enables one to concentrate on the minimum number of classes, in
order to get the misclassified patterns corrected with available
higher-level information. This measure thus provides a better clue
in the improvement of classifier's performance for individual
classes. The detail description and significance of the measure is
given in Section 3.1,

2.1. Cass-dependent fuzzy granule generation

The class-dependent (CD) fuzzy granulated feature space is
generated using fuzzy linguistic representation of pattern. Only
the case of numeric features is mentioned here (features in
descriptive and set forms can also be handled in this frameworlk).

Let a pattemn {object) F be represented by n numeric features
and can be expressed as: F=[F.Fa, ..., Fy). Thus Fis visualized as
a point in n-dimensional vector s pace. Each feature is described in
terms of its fuzzy membership values corresponding to L { = total
number of classes) linguistic fuzzy sets. Thus, an n-dimensional
pattern vector is expressed as (n x L)-dimensional vector and is
given by

F=[phFi b Fr), o (F ), i o
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Fig. 1. Schematic flow diagram of the proposed model for pattern classification.
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where pF L uMFad ..., FE )i Fy ) signify the membership
values of F, to L number of fuzzy sets along the nth feature axis
and piF,)e [0,1] It implies that each feature F, is expressed
separately by L number of MFs expressing L fuzzy sets. In other
words, each feature F,, characterizes L number of fuzzy granules
along each axis and thus comprising L" fuzzy granules in an
n-dimensional feature space. Zadeh's m-type MF [26,27] is used to
characterize the fuzzy granules. The membership value pFa)
thus generated expresses the degree of belonging of nth feature to
cth class of the pattern F. The m-type MF is given by

pFarbi=0, F,=a
=2% [ F—myjir—a¥, a<F,=p
=1-2""[r=Fu)jir—a)f’, p<Fa=r
=1-2VF, —nib-n¥, r=F,=q
=2 [(b—F ) /ib—rif¥, g=F,<h
=0, Fazbh, 1

where N is the fuzzifier of the MF, as shown in Fig. 2. The MF can
be estimated with center at r and r= (p+q)/2, where p and g are
the two crossover points. The membership values at the crossover
points are 0.5 and at the center r, its value is maximum (ie., 1)
Assignment of membership value is made in such a way that
training data gets a value closer to 1, when it is nearer to the
center of MF and a value closer to 0.5 when it is away from the
center. For the determination of the MF, we have considered
the position of the center at mean point. The mean point is
estimated as r= mean(n) (i.e. average value of the data set for
feature n) as the center, then the two crossover points p and g are
estimated as p= mean(n)—[maxn)—min(m]/2, and g = meanin)+
[maxin)—min{n});/2, where min and max are the minimum and
maximum value of the data set for feature n. Thus the feature-
wise class membership of input pattern can be automatically
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determined from the training data. In the 7-type MF we have
used the two boundary points (min and max values) as the
crossover points of class membership function because these
are the most ambiguous points in fuzzy set theory [26] in terms
of belongingness to a class, or possessing some imprecise prop-
erty represented by the set. Therefore the MF will have sensitivity
if the training set has an outlier.

The above fuzzification process of input features generates the
CD fuzzy granulated feature space in n-dimension. All together

L ]

L

— R

Fig. 3. Generation of crisp granules from class-wise (class-dependent) fuzzy
(linguistic) representation of the features F; and Fi. The figure represents the
granules for four overlapping classes. The shaded regions (16 nos) indicate the
granules. For example the region (granule no. 6) indicates a crisp ganule obtained
by at-cuts (%= 0.5 in present case] on the pg, and _nfl. The granules shapesize are
variable in nature and depend on the overlapping nature of classes and class-wise
feature distribution.
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the granulated feature space contains L™ granules in n-dimension
with fuzzy boundaries among them. For a better visualization of
the granules generated by the proposed model, we have con-
verted fuzzy membership values to the patterns to binary ones,
Le, fuzzy MFs to binary functions using a-cut. This is demon-
strated in Fig. 3. Here 0.5-cut is used to obtain 4° =16 crisp
granules for four classes, as an example, in two-dimensional
feature space. This is explained further visually in Fig. 4 which
generates both CD and O fuzzy granules in two-dimensional
feature space for a four-class data set. As described earlier, one
fuzzy set corresponding to each class along a feature is used for
CD granulation, whereas each feature { irres pective of the number
of classes) is described by three fuzzy sets bearing linguistic
properties low, medium and high, in case of Cl granulation. As a
result, eight and six granules are generated here for a pattem
Xif, fo) of four-class data set using CD and Cl granulation process,
respectively.

22 Feature selection

This section presents some preliminaries relevant to feature
selection methods using rough sets (proposed by Pawlak) and
neighborhood rough sets (MRS). The details of these theories may
be referred to [5.16,17].

221, Rough sets | PaRs)

Pawlak's rough set { PaRS) theory [5] deals with vague concepts
and creates approximate descriptions of objects for data analysis.
It works with a pair of precise concepts, called lower and upper
approximations. PaRS have been employed to remove redundant
conditional features, while retaining their information content.,
The basic operation involved in FaRS is that it partitions the object
space based on a feature set using some equivalence relation. The
partition spaces thus generated are also known as granules, which
become the elemental building blocks for data analysis.

A brief description of rough set (RS) theory used for feature
selection is given here. Let an information system 15 =(U,A) be
defined in terms of notions: U, the non-empty set of finite objects; A,
the non-empty set of finite features, and A = {C U D} where C and [
are the set of conditional and decision feature, respectively. For any

3 \ , T S SRS = \i
L 1 ! %
! ' H

~ -, H A

™ \ ! | s

. —_— ——— ——Fk
CD granulation
4 Yot e
o - .// e
. €l granulation
¥4 L s

Fig. & Physical interpretation of fuzzy granule generation.



2694 SK. Pal er al. / Pattern Recognition 45 (2012) 2600-2707

f____,T_.‘pper Approximation GX

SetX

X Pl

____‘Luwer approximation X

\,‘ J." [x]q (Granules)

.

L

Fig. 5. Rough representation of a set with upper and lower ap prosdmations.

Q =Aand X = U, the set X can be approximated with the informa-
tion available in @ by using lower (3 X) and upper (X)) approxima-
tion of X, where QX = |x|[x]; =X, 0X= (x| N X = p), and [x];
denotes the equivalence class of the object xe U relative to Iy (the
equivalence relation). The objects in QX can be certainly classified as
members of X, while objects in QX can only be classified as possible
members of X on the basis of knowledge in (. These are illustrated
in Fig. 5 where the sets of dark-gray granules represent lower
approximation, while those of both dark-gray and light-gray gran-
ules together denote upper approximation. The rough set thus
defined with crisp set with rough representation. Let P and ) be
two equivalence relations over U. A (-positive region of P is the set
of all objects from U which can be classified with certainty employ-
ing attributes from @, and is defined as

rosyim= | ox 2)
XaUSP

With the definition of positive region, degree of dependency of a set
of features P on a set of features  can be calculated as

|POS,(P)|

k="' =
J‘:'{ (L]

(3

where |«| stands for the cardinality of the set.

The selection of features can be achieved through the compar-
ison of equivalence relations generated by subsets of features.
Features are removed such that the reduced set provides identical
predictive capability of the decision feature{s) as that of original
or unreduced set of features. With this concept, a measure of
significance can be determined by evaluating the change in
dependency when a feature is removed from the set. The higher
the change in dependency, the more significant the feature is.
Based on this significance a minimum element feature subset
(reduct) is searched and located. Many attempts have been made
for finding a reduct of an information system. The simplest
solution for locating reducts is to generate all possible subsets
and retrieve those with a maximum rmugh set dependency
degree. However, this approach of finding solution is highly
expensive for large data sets. For such cases, often one reduct
instead of many is required to use for feature reduction. In this
regard, the QUICKREDUCT algorithm described by Chouchoulas
and Shen [28lis popularly vsed. The algorithm attempts to
calculate a reduct without exhaustively generating all possible
feature subsets. It starts with an empty set and adds one feature
at a time that results in the increase of rough set dependency. The
process goes on until it produces the maximum possible depen-
dency wvalue for a data set. The QUICKREDUCT algorithm is
summarised with pseudocode, as shown in Algorithm 1.

Algorithm 1. QUICKREDUCT,

Input: C, the set conditional features; D, the set of decision
feature

Output: R, the reduct, R=C

1: Initial the feature reduct K = ¢ and a temporary variable

T=ih
2: do
3 {
4:  T=R
= For every ae {C—R)
6
7 if 75, (D)= 77000, Then T=R U {a)
- HE
9: R=T
10: }
11: until y50=7-0)
12: return R

In the present study, we have used QUICKREDUCT algorithm
for selecting features generated from the CD fuzzy granulation.
The selected features are then used in a classifier for classifying
the input pattern, as in the third step of Fig. 1.

222 Neighborhood rough sets | NRS)

As mentioned above the information system is denoted by
I =(U,A), where U (the universal set) is a non-empty and finite set
of samples {x.x%, ..., X1 A= ICU D), where A is the finite set of
features {my.aa, ..., ), C is the set of conditional features and D is
the set of decision features. Given an arbitrary x;e U and B=C,

the neighborhood dvyg(x;) of & with given @, for the feature set B, is
defined as [17]

Dyix;) = 12| % & UA%x2) = @), i4)

where A is a distance function.

Pyix;) in Eg. (4) is the neighborhood information granule
centered with sample x;. In the present study, we have used three
p-norm distances in Euclidean space. These are Manhattan dis-
tance (p=1), Euclidean distance {p=2) and Chebychev distance
(p= ). The neighborhood granule generation is affected by two
lkey factors such as the used distance function A and parameter v,
The first one determines the shape and second controls the size of
neighborhood granule. For example, with Euclidean distance the
parameter 4 acts as the radius of the circle region developed by A
function. Both these factors play important roles in neighborhood
rough sets (MRS5) and can be considered as to control the
granularity of data analysis. The significance of features vary with
the granularity levels. Accordingly, the MRS based algorithm
selects different feature subsets with the change of A function
and < value. In the present study, we have analyzed the effects of
three p-norm distances for a varation of & values, and selected
the best one based on the performance with the present data sets.
However, optimal parameter values can be obtained through an
optimization technique, e.g., genetic algorithm.

Thus each sample generates granules with a neighborbood
relation. For a metric space < U, 4%, the set of neighborhood granules
() x; e U) forms an elemental granule system, that covers the
universal space rather than partitions it as in case of FaRS. A pictorial
view of the process of granule generation (as an example) using both
PaRS and MRS is shown in Fig. 6.

Let X = (a,b,c.d.ef) be the universal set of five elements ( Fig. 6.
Partitioning and covering of set X for generating granules are made
as X1={{a.b}, {cd}. {e.f)} and X2={{ab}, {acd)}. {a.bef}}. espec-
tively. A partition of the set X is a division of X into non-overlapping
and non-empty “parts” or “blocks” or “cells” that accommodate
all the elements of X. Equivalently, a set X1 of non-empty sets is
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Universal set X={ahcdef}

Pamtition by PaRS
[{ab}. {cd}.{ef}}

Covering by NRS
{{ab}. {acd}. {alef}}

Fig. 6. Example of granule generation using PaRSs and NRS.

a partitions of X, if the intersection of any two distinct elements of
X1 is empty. On the other hand, a covering of a set X results into
overlapping and non-empty “parts” that accommodate all the
elements of X, That means a set X2 of non-empty sets is a covering
of X, if the intersection of any two distinct elements of X2 is not
necessarily empty. It is noted that the partition of space generated
by PaRS can be obtained from MRS with covering principle, while
the other way round is not possible. Moreover, a neighborbood
granule degrades to an equivalent class for @ = 0. In this case, the
samples in the same neighborhood granule are equivalent to each
other and the neighborhood mough set model degenerates to
Pawlak's rough set. Thus NRS can be treated as a generalized case
of PaRs,

A neighborbood information system can de denoted by NIS=
(U.AN) when a feature in the system generates a neighborhood
relation on the universal set Uf, The set of features A= (Cu D),
where C and I are the set of conditional and decision features,
respectively. Let X, X5, ..., Xy be the object subsets with decisions
1 to N and dgix;) be the neighborhood information granule
generated by feature set B = C. The lower and upper approxima-
tion of decision D with respect to features B are defined as

N N
NpD = U;jg_x,-. NyD= U]'Trn'xj. (5]

i=1 i=1
where
NoX = {o; | dpia) s Xox; e U), NpX = (x| dolx) N X # 0o e U

The decision boundary region of D with respect to features B is
defined as

BN(D) =Ny DNy D.

The lower approximation of the decision is defined as the union
of the lower approximation of each decision class. The lower
approximation of the decision is called the positive region of the
decision, denoted by POSg. POSgD is the subset of objects
whose neighborhood granules consistently belong to one of the
decision classes. A sample in the decision system belongs to either
the positive region or the boundary region of decision. Therefore,
the neighborhood model divides the samples into two subsets:
positive region and boundary region. Positive region is the set of
samples which can be classified into one of the decision classes
without uncertainty, while boundary region is the set of samples
which cannot be determinately classified.

The dependency degree of decision feature D on condition
feature set B in a neighborhood information system < U,.C U DN
with distance function 4 and neighborhood size @ is defined as

(D)= [POSHD)|

} = m (6]

where |«| denotes the cardinality of a set. y5(2) is the approxima-
tion ability of B to D. For POSHD) = U, we have 0 < 7 = 1 and D
depends completely on B, and the decision system is consistent in
terms of A and @. For j3(01 =1, D depends on B in the degree of 7.
The dependency function measures the approximation power of
a condition feature set. Hence it can be used to determine the
significance of a subset of features (normally called reduct).

Significance (51G) of a subset of features is calculated with the
change of dependency. Two types of features selection such as
baclkward search and forward search can be made and accord-
ingly the SIC factors are measured. The backward search starts
with the reduct containing the whole conditional features and in
each step a feature is removed from it. On the other hand, forward
search begins with an empty reduct and in each step a feature
from conditional features set is added to it

Algorithm 2. Forward greedy search.

Input: C, the set conditional features; D, the set of decision
feature

Output R, the reduct, R= C

1: R<|)

2: For every a; e (C—R)

L Compute yg (D)= M;"U‘"ﬂ

4: Compute significance SIG(a,R.D) = 7p ., (D1—75(D)
5. end

G: Select the feature a, satisfying

SiG ay BN = max SIG(a, KD
7. if 5iG(ay R.D) = ¢, where ¢ is the stopping parameter
8 R—Ruag
9: g0 to step 2’
10: else
11: return R
12: end if

With these searching processes, many sets of reducts can be
obtained based on the significance factor and any of them will
work for the feature reduction task. In this regard Hu et al. [17]
described a forward greedy search (FCS) algorithm for feature
selection using MRS, Algorthm 2 summarises the pseudocode
of FG5 algorithm. Algorthm 2 starts with an empty set R of
attribute. One feature is added to the set B which makes the
increment of dependency (SIG value) maximal in each step. The
algorithm stops if SIC falls below a small value ¢ by adding any
new feature into the attribute subset R [17]. In the present study,
we have used the forward greedy search algorithm for the
selection of features in the proposed rough-fuzzy granulation
based model for classification. The reason for choosing the
forward search method is that it requires less computational
effort than the bacloward search method. This is because, to obtain
the minimal feature subsets (reduct), the forward method starts
with an empty set of features whereas baclward method starts
with the whole zet of features. The selected features are then fed
to a classifier for classifying the input pattern, as in the third step
of Fig. 1.

3. Performance measure ment indexes
3 1. Proposed dispersion measure

The performance of a classifier is analyzed here with respect
to its confusion matrix (ChM). The nature of distribution of the
classified patterns among different classes reflects the overlap-
ping characteristics of various regions. With this notion, the class-
wise dispersion measure of a classifier can be defined that
quantifies the nature of dispersion of the misclassified pattems
into different classes.

Let Table 1 represent the CM of a classifier for adata set having
three classes (L;, I, and L) with 10 samples in each class. The
mows of ChM comespond to the truefreference, and columns as
assigned festimated class labels. Elements in each row thus repre-
sent the distribution of the classified patterns for a particular class
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of interest. For example, Ey; =2 indicates that two samples out of
10 from class 1 are assigned to class 2.
The dispersion score (D5) for ith class may be defined as

max

D5y = [1— (—;.1 F"'II‘— + 4z ;—‘1)] i,=1,2,... L {number of classes),

(7]

where V; is the varance of the elements in ith row of CM, e.g.,
Vii-y of CM (Fig. 1)=variance[E ., Ey2, Eia], fmx is the maximum
variance corresponding to ith row, which is obtained when all the
patterns are correctly classified to the ithclass, Z; is the number of
element(s) in ith row of CM with zero value, Z; = (L—1), e.8., &5 4
of CM (Fig. 1)=1, 4.4 are the weight factors, and 4, +4, = 1.
The first part of Eq. (7) is the normalized variance for the class
of interest and guantifies the nature of distribution of the
classified patterns among the classes. The second part of Eg. (7)
is the nomalized count for the number of classes where no
patterns are classified. We have combined both the aspects to
reflect the overlapping characteristic of one class with others.
Hence Eq. (7) provides a measure gquantifying the class-wise
distribution of the classified patterns for a classifier. The measure
can be viewed as an index in evaluating the class-wise perfor-
mance of a classifier. In Eq. (7), the weight factors 4, and 4; can be
assigned according to the requirement in hand. That means, more
is the importance to an aspect, higher is the weight value
According to the dispersion measure, less is the DS value
better is the agreement. DS=0 indicates perfect agreement
bhetween the two observers ( true and estimated), i.e., all the test
patterns of that class are comectly classified. If the patterns are
misclassified to (i.e, confused into) minimum number of classes,
D5 value would be less. Therefore with a given number of
overlapping classes for a particular class of interest in the feature
space, lower D5 value is desirable. Lower value would also
facilitate one to focus on less number of confused classes in order
to get some of the misclassified patterns corrected with available

Table 1
A3« 3 confusion matrix, where E; denotes the number of pattemns actually from
ith class, classified to jth class.

higher level information. The characterstics and significance of
the measure can be further illustrated with examples in the
following section.

3.1.1. Characteristics and significance of dispersion measure

Let one of the six classes of a synthetic remote sensing image
data (Section 4.1.7) consists of 5000 number of pattems. The
dispersions of these patterns by 10 different classifiers based on
the aspects 1, 2 and both (Eq. (7)) are represented by 10 rows as
shown in Fig. 7. According to the first aspect (defined in the first
part of Eg. (7)), classifier 1 is mnked as the best and classifier 9 as
the worst in performance scale. This is because all the patterns
are classified to one class (class 1, the comrect class) with classifier
1, whereas more number of misclassified patterns are distributed
among the classes with classifier 9. In a comparison between
classifiers 4 and 6, classifier 6 is ranked higher in spite of 4505
patterns being classified to one class (class 1) whereasitis 4516 with
the classifier 4. This is because 4947 pattens are classified in bwo
classes (classes 1 and 2) with classifier 6, whereas it is 4750 with
classifier 4. Similar comparison can be made with classifiers 3 and 9,
where the earlier classifier is superior to latter.

With a comparison of classifiers’ performance based on aspect 2,
classifier 1 is superior because here five classes have zero classified
patterns, which is the highest number of possible empty classes
for this example. Classifiers 8, 9 and 10 are seen to be the worst
performer because none of the classes for them is empty. In another
comparison, classifier 3 is superor to classifier 4 because two
classes are empty with the former compared to one class with
the latter. However, this ranking is changed when both the aspects
are required to be satisfied together,

While considering both the aspects together, we have given
more importance to aspect 1 compared to aspect 2, ie., 4 =075
and 45 = 0.25, The reason is that the variance estimation of pattern
distribution among the classes mainly takes care of the first aspect
and also to some extent for the second one. That means aspect
1 by default searches for the classes with zemn number of classified
patterns. If we combine both the aspects then the combined effect
would lead to finding a more justifiable dispersion measure of
classified patterns. The following examples taken from Fig. 7 will

Assigned climes justify the above discussion. It is observed from Fig. 7 that with
L, L L aspect 1, classifier 8 is ranked second in descending order of
performance scale and is superior to classifier 2 which is ranked
True classes fourth. However with the combined aspect, classifier 2 secured
L Eii=8 Eize2 Ejz=0 second position and classifier 8 third position because the disper-
ﬁ E‘}::: E::g E::é sion score of 01500 with classifier 2 compared to 0.2500 with
classifier 8, obtained with aspect 2, is added to the combined
Clasfier Clusezs Digpersiom scome for dilferent aspects with &y =005 il 1, =025
1 2 3 1 5 3
Aspect | = Agpect = Raith
0751, "t 025 hg L
HE Cc-1
Soare Rank Score | Rank Score Rank
(descending) | {descending) [descending)
1 S| O i 1} il 0 | O 1 OO0 | | [ A |
2 4507 (25147 1 | 0 [ 0 [¢leX] 4 0, 1500 2 03121 2
3 A5 | 674 | 218 103 | 0 0|31 9 [NETT 2 04341 9
4 506 | 234 | 99 | 85 | &6 | 0 | D163] [ 02000 | E| 03631 5
5 TNEAERAE R E IR 7 02000 | 3 03604 7
[ 4505 | 442 | 13 & 12 | & |06z ] 02000 | E 13623 4
7 A300 | SRT | 210 | 45 | 48 | 0 | 0.224] 8 02000 | i A1 8
5 4708 [ 86 | M | 57 | 48 [ 47 [1M4 2 02500 | 4 3514 &
9 4030 | 487 [ 210 ) 146 | 95 [ 42 | (3060 10 0250 | 4 1. 5569 1
[ AGG | IBE | 48 | 3T | 53 ) 48 | D16 3 02500 | 4 N3RS [

Fig. 7. Typical example for the dispersion measure with10 classifiers.
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score. That means according to the combined aspect, classifier 2 is
superior to classifier 8, which is intuitively acceptable. In another
comparison between classifiers 7 and 8, the latter is superior to
former both with aspect 1 and in combined case, although the
former is superior to latter with aspect 2. In spite of all the
patterns being confined to five classes with classifier 7 and six
classes with classifier 8, the concept of the number of classes with
zero number of classified pattems did not support classifier 7 for
superority unlike in the previous example. This is reasonable
hecause classifier 8 contained 4708 pattemns in one class whereas
classifier 7 needed more than two classes (ie., classes 1 and 2) to
accommodate equivalent number of patterns. Similar comparison
can be made with classifiers 3 and 4. Hence the first example
justified the reason of combining the two aspects whereas the
second and third examples justified for giving more importance to
aspect 1 compared to aspect 2. Based on these findings we see that
dispersion score (DS) measure of a class reflects its overlapping
character with other classes, and it can be used as an index for
classifier's efficiency.

Apart from providing an index of class-wise performance, the
D5 measure provides a helpful clue for improving the class-wise
performance with additional (higher-level) information. Smaller
the D5 value (iLe., when the misclassified patterns are mosthy
confined into minimum number of classes), larger the possibility
that some of the misclassified pattems from the neighboring
class{es) may get rectified with the higher-level (e.g., syntactic,
semantic, contextual, etc.) information. Let us consider the
problem of analyzing remote sensing images where the land
cover classes are highly overlapping. Before determining the
classification accuracy of a particular class, it may be helpful
and appropriate to know the other classes overlapped with it. For
example, consider the scene of a bridge over a river. There is a
possibility that some of the bridge pixels would be misclassified
as water body. In that case if the misclassified pixels are only
confined into water body as indicated by lower DS value, then
with the help of higher-level information like, a bridge must be
connected to mads on either side, some of the said pixels
misclassified as water body can be easily corrected as bridge
pixels; thereby enabling the detection of the bridge structure.

32 Overall classification accuracy, Precision, Recall and
leappa coefficient

Along with the aforeszaid DS measure, we have used other
indexes such as classification accuracy, Precision, Recall and kappa
coefficient for completely labeled data sets, and f and Davies-
Bouldin (DB) for partially labeled data sets, while measuring the
classifier's performance. Brief descriptions of these indexes are
provided in this following.

To examine the practical applicability of proposed model for
completely labeled data sets various performance measures are
used. These are percentage of overall classification accuracy (PA),

Precision, Recall and kappa coefficient (KC). The PA value is the
percentage of samples that are comectly classified and can be
evaluated from confusion matrix (CM). In the present study, we
have considered the significance of CM with respect to individual
class. Sometimes a distinction is made between errors of omission
and errors of commission, particularly when only a small number
of class type is of interest. Thus interpreting a CM from a
particular class point of view, it is important to notice that
different indications of class accuracies will result differentby
according to whether the number of correct patterns for a class
is divided by the total number of true (reference) pattems for the
class or the total number of patterns the classifier features to the
class, The former is normally known as Recall and the latter as
Precision [22]. The following example illustrates the calculation of
these measures. Let a data set be represented with three classes.
The comesponding CM generated by a classifier is depicted
in Table 2.

Percentage of overall accuracy (PA) is calculated from the CM
(Tahle 2) as

A+E+I]
PA = T

Similarly, for class Ly, Precision and Recall are calculated as

A
Recall = —.
ecall = .=

2 A

Precision = X1

Mote that the overall classification accuracy does not provide
the class-wise agreement between the true and estimated class
labels and the Precision and Recall measures give the results for
individual class only. To get an overall class agreement based on
the individual class accuracy, we have used kappa coefficient
(KC) [23] estimation to validate the superority of the classifiers
effectively. The KC measure was introduced by the psychologist
Cohen [23] and adapted for accuracy assessment in the remote
sensing field by Congalton and Mead [29]. The KC and classifica-
tion accuracy are not proportional, that means a good percentage
of accuracy may lead to a poor KC value, because it provides the
measurement of class-wise agreement between the true and
estimated class labels. Higher is the coefficient value better is
the agreement of the estimated data with the true one. The KC
value iz estimated from a (M as follows:

_ MY Ya— 2 a(Yig x Y30

KC = J_
M _Ej—l{?’i- =¥ .

(8

where r is the number of mows in the error matrix, ¥; is the
number of observations in row i and column i, ¥;, is the total
observation in row i, ¥ ,; is the total observation in column i, and
M is the total number of observations included in the matrix.

A KC value ( = 0) indicates the amount of agreement between
the two observers (true and estimated). A value of 1 indicates
perfect agreement {when all the values are falling on the diag-
onal) [23].

Table 2
Typical example for the calculation of different measunes.
True classes Total
L Ly Ly
Assigned classes
L A B C A+B+C=X1
Ly D E F D+E+F=X2
Lz G H I G+H+I=X3
Number of true patterns A+D+G=¥1 B+E+H=Y¥2 C+F+I=¥3 X1+X2+X3=Y1+¥Y2+¥3 =T
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33. i index

The §# index has been defined by Fal et al. in [24], for
assessment of image segmentation quality, [ is defined as the
ratio of the total variation and within-class variation as

Yo T %P
Be= op S — (9)
b b X3 —X;)

Liiml Laijm

where X is the mean grey value of the image pixels (pattem
vector), M; is the number of pixels in the ith (i=1.2...., L) class, x;
is the grey value of the jth pixel (j=1,2,..., M;)in class 1, and X; is
the mean of M; grey values of the ith class. Since the numerator is
constant for a given image, {f value is dependent only on the
denominator. The denominator decreases with increase in homo-
geneity within the class for a fixed number of classes (L) Thus
for a given image and given number of classes, the higher the
homogeneity within the classes and lower the homogeneity
between classes, the higher would be the [ value.

34. Davies-Bouldin index {DE)

Davies-Bouldin (DB) index for cluster wvalidation has been
defined in [25]. However, here we are using the index for validating
our classification results on partially labeled data sets. The idea
behind DB index is that for a good partition inter-cluster separation
as well as intra-cluster homogeneity and compactness should be
high. The DB index is based on the evaluation of some measure of
dispersion 5; within the ith cluster and the distance between the
prototypes of clusters i and j. The DB index is defined as

I
DB=;;RM. (o
where K is the number of clusters/classes and K, =max;;.;
[15; 4 +54)/djis). 5y is the gth root of gth moment of the points in
cluster i with respect to their mean or centroid. dy, is the Minkowski
distance of order ¢t between the centroids that characterize the
extracted classes i and j. The smaller the DB value the better is the
partitioning.

4. Description of the data sets used

In the present study, we have chosen seven completely labeled
data sets (listed in Table 3) including synthetic remote sensing
image and two partially labeled real remote sensing images

collected from satellite. A short description for these data sets is
provided below,

4.1. Completely labeled data sets

4.1.1. VOWEL data
VOWEL data [30] is a set of Indian Telegu vowel sounds in
consonant-vowel-consonant context uttered by three male speakers

Table 3
Brief description of the data sets used in the present study.
AL no Name of the Number Number Number
data zet of classes of features of patterns
1 VOWEL ] 3 871
2 SATIMAGE ] 6435
3 WAVEFORM 3 21 5000
4 CALDOMNAZED ] IBBA
5 FHOMEME 2 5 S04
[ PAGE-BLOCK 5 10 5473

in the age group of 30-35 years. As a whole the data set consists of
71 patterns. It has three features and six classes /&), fa/, fif, fuf, fe/
and [of with 72,89, 172,151, 207 and 180 samples, respectively. The
data set (depicted in Fig. 11 with bwo dimensions for ease of
understanding) has three features: Fi, Fa, F3 comesponding to the
first, second, and third vowel formant frequencies obtained through
spectrum analysis. The classes are highly overlapping and possess ill-
defined boundaries.

4. 1.2 SATIMAGE data

The SATIMACE data [31] is generated from Landsat Multi-
Spectral Scanner image data. The data patterns used for the
present investigation is a sub-area of a scene of 82 x 100 pixels.
Each pixel value contains information from four spectral bands,
The aim is to predict six different land cover classes present inthe
data set. The data set contains 6435 patterns with 36 features
(4 spectral bands = 9 pixels in neighborhood). In our experment
we have used four features only as recommended by the database
designer [31].

4 1.3 WAVEFORM data

WAVEFORM data [32] consists of three classes of waves with
21 number of features. Each class of the data set is generated from
a combination of base waves. All the features are corrupted with
noise (mean 0, variance 1). The data set contains 5000 patterns.
Class distribution of the patterns present in the data set is made
with 33% for each class.

4. 1.4 CALDONAZZD data

CALDONAZZD data is obtained from multispectral scanner
satellite image. The data pattermns used in the present study is a
sub-area of a scene of 881 « 928 pixels. Each pixel value contains
information from seven spectral bands. The data set contains
3884 pattemns with the information of six different land cover
classes,

4. 1.5, PHONEME data

The aim of this data is to distinguish between nasal and oral
vowels (two classes) [31]. It contains vowels coming from 1809
isolated syllables (for example, pa, ta, pan, etc.). The amplitudes of
five first hammonics are chosen as features to characterize each
vowel The data set has 5404 patterns.

4 1.6, PAGE-BLOCK data

The problem involved in this data [32] is to classify the blocks
of a page layout of a document that has been detected by a
segmentation process. This is an essential step in document analysis
in order to separate text from graphic areas. The five classes are text
(1), horizontal line (2), picture (3), vertical line (4) and graphic {5}
PAGE-BLOCK data set has 10 features and five classes with 5473
patterns.

4 1.7. Synthetic image

A four-band synthetic image (size 512 = 512) has been gener-
ated with six major land cover classes similar to the IR5-1A image.
Fig. 8(a) shows the synthesized image in the near infrared range
(band-4). Different classification models are tested on various
corrupted versions of the synthetic images. The synthetic image is
corrupted with Gaussian noise ( zero mean and standard deviation
(m=12,..., 6)in all four bands. Fig. 8(b) shows the noisy version
of the orginal image with 7= 2, as an example.
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Fig. 9. (a) IRS-1A (hand-4) enhanced image and (b) SPOT (band-3) enhanced image.

42 Partially labeled data sets

421 IR5-1A image

The IRS-1A image (size 512 = 512) is obtained from Indian
Remote Sensing Satellite [33]. We have used the image taken
from the Linear Imaging Self Scanner with spatial resolution of
3625 m = 36.25m and wavelength range of 0.45-0.86 pm. The
whole spectrum range is decomposed into four spectral bands
namely, blue, green, red and near infrared corresponding to band-1,
band-2, band-3 and band-4, respectively. Since the image is of poor
illumination, we have presented the enhanced image (band-4) in
Fig. 9 a) for the convenience of visualizing the content of the image.
However, the algorithms are implemented on actual {original)
image. The image in Fig. 9a) covers an area amound the city of
Calcutta, India, in the pear infrared band having six major land
cover classes: pure water (PW), turbid water (TW), concrete area
(CA), habitation (HAB), vegetation (VEG) and open spaces (05).

422 S5POT image

The 5POT image (size 512 = 512) shown in Fig. 9(b) {enhanced
image (band-3)) is obtained from SPOT satellite {Systeme Pour
d'Observation de la Terre). The image used here has been acquired
in the wavelength range of 0.50-0.89 pm. The whole spectrum
range is decomposed into three spectral bands namely, green
(band-1), red (band-2) and near infrared { band-3) of wavelengths

0.50-059 pm, 0.61-0.68 pm, and 0.79-0.89 pm, respectively.
This image has a higher spatial resolution of 20 m = 20 m. We
have considered the same six classes as in the case of IRS-1A
image. Also, similar to IRS-1A image, the classification models are
applied on the actual {not enhanced) image.

5. Results and discussion

Fuzzy information granulation has come up with an important
concept of fuzzy set theory. Many attempts have been made in
the construction of fuzzy granule and used for various image
processing and pattern recognition applications [14.34-36]. In a
similar attempt, recently, Fu et al. [37] has described a method
of fuzzifing the artificial filters with some fuzzy decision rules
and aggregation operators. However, the selection of aggregation
operators or rules, as made above, is difficult in any decision
making process and highly data dependent, which finally makes
the approach empirical. Further, the task becomes cumbersome
for the data sets with highly overlapping classes.

Our approach defers in the fuzzification process of the input,
where the information extraction is data independent. The decision
process collects the class dependent information from the available
features of the data sets, and finally selects the likely optimum
features using rough set theory for the classification task. In the
present investigation we have compared the performance of the



2700 SK. Pal er al. / Pattern Recognition 45 (2012) 2600-2707

proposed model with different combinations of fuzzy granulation
and rough feature selection methods. The class-dependent (CD)
granulation method is also compared with class-independent (CI)
based method. For Cl based granulation, the whole feature space is
used for granule generation irrespective of classes, Each feature of
the pattern is represented by three fuzzy sets for characterizing
three fuzzy granules along each axis; thereby providing 3" fuzzy
granules in an n-dimensional feature space.

Five different combinations of classification models using
granular feature space and feature selection methods those are
considered for performance comparison as mentioned below,
Patterns with its original feature representation are fed as input
to these models.

e Model 1: k-nearest neighbor (k-MNMN with k=1) classifier.

o Model 2: CI fuzzy granulation + Pawlak's rough set (FaRS)
based feature selection + k-MMN (with k=1) classifier,

e Model 3: Cl fuzzy granulation + neighborhood mough set (MRS
based feature selection + k-MNMN (with k=1) classifier.

o Model 4: CD fuzzy granulation + PaRS based feature selection +
fe-MNMN (with k=1) classifier,

o Model 5: (D fuzzy granulation + MRS based feature selection +
fe-MM (with k=1) classifier.

Apart from the performance comparison with different quan-
titative measures for both completely and partially labeled data
sets, the efficacy of the proposed model of rough-fuzzy granula-
tion and feature selection is also justified with the following types
of analyses. However, the experimental results with these ana-
lyses are provided only for VOWEL data because similar trend of
comparative performance is observed for the remaining data sets.
The performance measure of models in terms of receiver operat-
ing characteristic (ROC) plot for the binary classification task of
PHOMEME data set is also made. ROC is a graphical plot of the
false positive rate (1, specificity or 1, true negative rate) vs
sensitivity, or true positive rate, for a binary classifier system.

e Varation of classification accuracy with different values of
parameter @ and distances used in MRS based feature selection
for optimal value selection.

e Performance comparison in
time (T.).

e Precision and Recall based analysis.

e Perdformance evaluation in terms of dispersion measure of
different classes.

e Pedformance comparison of the proposed model with other
classifiers such as k-MM with k=3 and 5, maximum likelihood
(ML) classifier and multi-layered perceptron (MLP).

e Performance comparison of models in terms of § and Davies-
Bouldin (DB) indexes.

e Statistical significance test called CHI-SQUARE for the proposed
model.

e Perdformance comparison of the models with principal compo-
nent analysis based feature reduction models.

terms of total computation

Table 4

5.1, Classification of completely labeled data sets

Selection of the training and test samples for all classes in case
of completely labeled data sets including synthetic image has
heen made after splitting the whole data set into two parts as
training and test sets. We have taken 10%, 20% and 50% as training
set and the rest 90%, BOE and 50% are considered as test data.
Training set are selected randomly and an equal percent of data is
collected from each class. We repeat each of these splitting sets
for 10 times and the final results are then averaged over them.

511 VOWEL data

The classification results for this data set with five different
models using k-MMN classifier (k=1) are depicted in Table 4 for
three different percentages of training sets. In the present
experiment, we have compared the classification performances
with respect to three different aspects. These are performance
based on (i) granulated and non-granulated feature space, (ii)
class-dependent (CD) and class-independent (CI) fuzzy granula-
tion, and (iii) Pawlak's rough sets (FaR5) and neighborhood rough
sets (NRS) based feature selection. As described in Section 2.2.2,
performance comparison with the MRS method of feature selec-
tion depends on the distance function 4 and parameter 4 of the
neighborhood granules.

In the present study we have analyzed the performance of
model 5 in terms of the variation of A and @ for 20% training set
of VOWEL data. We plotted the classification accuracy and the
number of selected features (Fig. 10) for three p-norm distances
for a vadation of 4 values ([0,1]) in Euclidean space. These are
Manhattan distance (p=1), Euclidean distance (p=2) and Che-
bychev distance (p= ).

As described earlier, variation of 4 values results in the change
of granularity levels, and significance of attributes. Accordingly,
the MRS5S based algonthm selects different feature subsets for
different 4" values. The subsets may or may not contain the same
features and lead to a possible variation in the number of features.
Also there is a possibility of selecting very few/none of the
features in the search process if the increment in dependency
introduced with every new feature is not satisfactory. This
situation normally comes when a higher value of & results in
the construction of a large granule that accommodates more
neighbors, thereby increasing the possibility of lowering the ratio
of number of relevant features to irrelevant features. This is
evident in Fig. 10{b) demonstrating the varation of the number
of selected rough set features with & for all types of distances.

It is observed from Fig. 10{a) that the classification accuracy
vares with @ in a similar manner for all types of distances. With the
increase of @ value the accuracy increases at first, attains a fairly
constant value for a moderately wide range of ¥, and then decreases.
This is also justified from Fig. 10(b). For all the distances, the highest
accuracy is obtained roughly for 4 = [0.2,0.5] with maximum value
for Euclidean distance. Beyond o= 0.5, the neighborhood rough set
hased classification model, as discussed above, does not get enough
relevant features to distinguish patterns and the classification

Performance comparison of models using k-MN classifier (k=1) with VOWEL data (p=2, i = 0.45).

Muaodel 10% of training set 0% of tmining set 50% of training set

PA KC Te (5] PA KC T:(s) A KC T. (5]
1 73240 07165 0.146 T5.150 07z 0.124 77560 07256 0.101
2 Ta010 07502 0236 77010 07704 0223 T79.030 Ly | 0214
3 77870 07621 0263 TEE10 07853 0252 BO.TO0 07901 0244
4 £1.030 OLB0O0E 0365 81370 0B165 0351 82110 L8202 0345
5 83750 08102 0381 B3.960 08253 0378 B4TTO 08301

0.354
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Fig. 10. Variation of (a) classification accuracy and (b) number of features for model 5 with size pammeter & for three p-nom distances (30% training set).

accuracy falls. It is interesting to note that, although the numbers of
selected features are different when 4 takes values in the interval
[0.2,05], they are producing similar classification performance. This
indicates that the & value should be varied in [0.2, 0.5] to find the
minimal subset of features with similar (highest) classification
accuracy. Bevond 05, finding that subset is drastically affected.
Accordingly, for presenting the results for the remaining data sets,
we have taken p=2 (Euclidean distance) and =045,

In a comparative analysis, it is observed from Table 4 that for
all percentages of training sets the classifiers’ perfformance mea-
sured with percentage of accuracy ( PA) values is more encoura-
ging for models using granulated feature space. For example, with
10% of training set model 1 provided PA value of 73.24, whereas
with other models the wvalues are nearly 4-11% higher. In a
comparson between CD and Cl fuzzy granulation based models
(Table 4), the PA values for models 4 and 5 (CD models) are
superior with the improvement of the accuracy by nearly 5-6%
compared to models 2 and 3 (Cl models), respectively. This clearly
indicates that CD granules efficiently explored the class-wise
belongingness of features to classes and provided an improved
class discrimination information responsible for enhanced classi-
fication accuracy.

In a performance comparison of models with MRS and PaRS, it
is observed from Table 4 that the PA values for model 5 (83.75)
compared to model 4 (81.03), and model 3 (77.87) compared to
model 2 (76.01) are higher. This specifies that the NRS based
feature selection method restores better local information from
neighborhood granules that is helpful for improved performance.
Thus comparatively among the five models of classification, the
model (model 5) that explored and incorporated granular feature
space, CD fuzzy granulation and MRS based feature selection
methods provided the best performance for all percentages of
the training sets as observed in Table 4. Further, it is seen that the
impact of CD fuzzy granule generation is more compared to NRS
based feature selection in the classification performance. That
i5, in an environment of PaRS or NRS based feature selection
met hods, classification models with CD fuzzy granulation provided
the PA value increment of about 5-6% (model 4 over model 2 and
model 5 over model 3) over CL In an environment of C0 or Cl fuzzy
granulation based methods, classification models with NRES based
feature selection performed well than FaRS based method with an
increased PA value of about 2% (model 3 over model 2 and model
5 over model 4). Further, the performance with the combining effect

of CI fuzzy granulation and MRS {model 3) is not comparable to CD
fuzzy granulation and PaRS (model 4). These comparisons clearly
justified the efficacy of CD granulation. The superority of the
proposed model to others is also validated with the kappa coeffi-
cient (KC) measure as shown in Table 4. All the crtically assessed
improved performance obtained with the PA is justified and sup-
ports the superiority claim of the proposed rough-fuzzy granulation
and feature selection model with KC measure,

Table 4 also reveals that the accuracy obtained with the
proposed model (model 5) for minimum percentage of trining
set is higher compared to the model incorporating Cl fuzzy
granulation and both PaRS and MRS based feature selection
methods at 50% training set. This is particularly important when
there is a scarcity of training set (e.g., land covers classification of
real remote sensing images). This critically assessed improved
performance claim is valid for both 20% and 50% training sets and
is depicted in Table 4.

A comparative analysis in terms of total computational time T
(sum of the trining and testing times), as required by different
models using k-NM classifier (k=1) for all three percentages of
training sets, is depicted in Tahle 4. All the simulations are done in
MATLAB { Matrix Laboratory ) environment in Pentium-0 machine
with 3.19 CHz processor speed. It is seen for all the cases that the
T.values (in 5) for model 5, as expected, are higher compared to
others with the cost of improved performance.

In addition to the above comparison of performance with PA,
measures like Precision and Recall with the VOWEL data at 20
training set have been calculated for different models. We have
selected models 1, 2 and 5 for comparison (Table 5) because the
first one is based on the non-granulated feature space, second one
with Cl fuzzy granulation and PaRS, and third one with the best
combination of CD fuzzy granulation and MRS, Thus a feel of
comparison with the models that provided different combinations
of results can be obtained. Although the measurements are made
for all percentages of training sets, we have shown the results
(Tahle 5) for 20% training set only because the claim for improve-
ment with the proposed model is similar for all training sets. It is
observed from the table that for all the classes and with both
accuracy measurements the proposed model performed better
than others in a class-wise agreement comparison,

Further, the performance comparison of models using  and
Davies-Bouldin (DB) indexes are made with VWOWEL data set.
Here, the classifiers are trained with 20% of the data set and then
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Tahle 5
Performance comparison in terms of Precision and Recall with the models 1, 2, and
5 using k-MM classifier (k=1), for all classes of VOWEL data at 20% training set
(p=2, @ =045]
Class Model 1

Mode] 2 Model 5

Precizion Recall Precision Recall Precision Recall
1 66105 7528 6943 7877 7568 T
2 T4 67 7780 TE62 B2.13 i BO.56
3 EI08 £49249 BEO3 a2 Ta a03a 9675
4 BO02 BTEG B4 65 a3 44 9339 Q5.75
5 R 44 TR 7089 BOTT T6.64 a1.m
& 7ROl BE21 £212 Q233 B6 76 9379

Table &
Performance comparison with dispersion score for all classes of VOWEL data at
20% fraining set (p=2, & = 045).

Class Model 1 Mode] 2 Mode] 3 Model 4 Model 5
1 09013 08208 0.B056 0.7846 0.7059
2 0.7134 0.5185 0.6295 0.4398 0.4248
3 04325 0.3467 0.2620 02601 02534
4 06132 0.53486 0.4386 04321 04422
5 0.7343 0.5338 0.5636 04974 0.4808
] 04262 0.3015 02021 02135 0.1950

Table 7
Performance comparison of models in terms of [ and DB values using k-MNN
classifier (k=1) for VOWEL data (p=2, &= 045]

Model B DB

Training samples 65421 07213
1 4 8463 1323
2 49901 12847
3 5.1033 12603
4 5.5664 1.1565
5 5.7352 11264

the said trained classifiers are applied on the whole data to
partition into six categories. Results in terms of f and DB values
are depicted in Table 7, which reveal the superiority of model 5to
others with respect to all aspects {iLe., (i) granulated over non-
granulated feature space, (ii) CD over Cl fuzzy granulation, and
(iii) Pawlak's and neighborhood rough sets (MRS) based feature
selection).

Dispersion measure: index of class overlopping and performance
evaluation. Classifiers’ efficiencies are also tested in terms of the
dispersion score (D5) defined in Eq. (7). Using DS the dispersion of
classified pattems into various classes is estimated and its
physical significance with VOWEL data set is highlighted. Also
we have analyzed and justified the superiority of the proposed
model with this measure. Comparative results of all the classes
with five classification models (with k-NN classifier (k=1)) for
20% training set using DS are depicted in Table &

Let us consider the results of confusion matrices and corre-
sponding DS values obtained with models 3 and 5 for VOWEL data
at 20% training set, as shown in Fig. 12 It is observed from the
scatter plot of VOWEL data set (Fig. 11 that class 1 (/2/)is highly
overlapping with classes 5 (fef) and 2 ({af), and a small over-
lapping with class 6 (fof). This is exactly reflected by the
confusion matrix of model 5 (Fig. 12(b)), whereas for model 3
(Fig. 12(a)) this is not so. Accordingly the D5 value is lower for
model 5, signifying its superiority. The superiority of model 5-3
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Fig. 11. Scatter plot of VOWEL data in Fy—Fz plane.

and other models is similarly observed for all classes except class 4
(fuf), where DS value of model 5 is higher than those of models 3
and 4 (Table 6). Therefore, DS value may be viewed to provide an
appropriate guantitative index in evaluating the owerlapping of
classes in terms of dispersion of misclassified patterns and to
quantify the class-wise performance of classifiers accordingly.

Performance comparison of rough-fuzzy granulation and feature
selection models using other classifiers. So far we have described the
effectiveness of the proposed rmough-fuzzy granulation and feature
selection model using k-MMN (k=1) classifier. In this section we
describe the effectiveness of the same model using some other
classifiers, e.g., k-MMN (k=3 and 5), maximum likelihood (ML)
classifier and multi-layered perceptron (MLP).

The comparative results of all models with these classifiers are
depicted in Table 8 for training set of 20%, as an example. The
superiority of model 5 to others for different sets of classifiers is
evident. Also similar improvement in performance of the models
(using different classifiers ) with granulated over non-granulated,
CD granulation over Cl granulation and MRS based feature selec-
tion over PaR5s is observed as in the case of k-NN (k=1) classifier.

Statistical significance test of the models using »* test. To
strengthen the claim of effectiveness of the proposed rough-fuzzy
model for classification, we performed the statistical significance
test using y*. The comparative results for all models are depicted
in Table 9 for test set of 80%, as an example. We have selected
models 1, 2 and 5 for comparison (Table 9), as we did for the
evaluation in terms of Precision and Recall measures. It is
ohserved from Table 9 that the p value obtained for model 5 is
in the mange of 0.30< p < 0.50, whereas it is 0.10 = p < 0.20 and
0.05 < p =010, respectively for models 2 and 1. This observation
shows that the significance of model 5 compared to models 1 and 2 is
much higher and therefore justifies its superiority.

Performance comparison of rough-fuzzy granulation and feature
selection models with fuzzy granulation and principal component
analysis bosed feature reduction models. Until now we have
compared the performance of fuzzy granulation and rough set
based feature selection models. Comparison of these models is
further made with fuzzy granulation and principal component
analysis (PCA) based feature reduction models. We have consid-
ered two models based on Cl and CD fuzzy granulation with PCA
feature reduction. The results are shown in Table 10 for training
set of 20% with k-NN classifier, as an example. Effectiveness of
models with rough set feature selection compared to PCA is
apparent.
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Fig. 12 Analysis of dispersion measure with confusion matrix for VOWEL data with (a) model 3 and (b)) maodel 5

Table &
Classification accuracies (PA) of models with different classifiers at 20% tmining
set of VOWEL data (p=2, d=0.45]

Maodel k-NN (k= 3] k-MNN [k=5] ML MLF
1 T4.20 7363 7521 7633
2 T6.11 TEH 7734 TB.06
3 T1.78 7789 T834 TO.87
4 81.03 BOBE 8225 B3.75
5 830 B B3IEBT B4BR
Table 9
Statistical significance test of models at 80% test
set with VOWEL data
Maodel p value
1 010 = p =005
2 030 = p=0.10
5 050 = p=030
Table 10

Performance comparison of models using k-MM classifier (k= 1) with VOWEL data
for 20% training set.

Maodel P KC

1 75.150 0.7212
2 77010 0.7704
3 TE.B10 0.7853
4 £1.370 08165
5 £3.960 0.8253
Cl granulation + PCA TE.8TE 07514
CD granulation + PCA 80113 07981

Table 11
Performance comparison of models wsing k-MMN  classifier (k1) with
EATIMACGE data.

Model  10% of training set 20% of tmining set % of training set

P KC P KC P KC

1 T3.070 06622 75150 0712 77230 07157

2 T7.050 06985 TRO60 0.7348 79270 07384

3 TE.B20 0.7095 T9.650 07401 BO.T60 07413

4 B1.670 0.7815 B1.980 0.7RBET B2.070 07882

5 B3.14 0.7a0@ B3680 0.7934 £3.4950 0.7T98R

5312 SATIMACE data

Comparative analysis of the five classification models using
fe=MM classifier (k=1) for this data is presented in Tahle 11 for
different training sets and for measures like percentage of
accuracy (PA) and kappa coefficient (KC). It is seen that for all
the training sets, the models with fuzzy granulated feature
space provided greater PA values compared to model 1 {ie., with

Table 12
Performance comparison of models using k-MM classifier (k= 1) with WAVERJRM
data.

Model  10% of training set 20% of training set 50% of training set
P KC P KC P K

1 T2.890 L6156 T4.460 L6302 TEO50 EETT

2 77178 OLEIRT 78.130 07105 TR0 L

3 79302 07011 TO.840 0711z 80020 07136

4 B1.460 07489 B1.980 07511 B2 110 07523

5 B3 ETO 075286 B4210 07554 B4.950 07581

non-granulated feature space); justifying the use of granular com-
puting based methods for improving the performance. The proposed
rough-fuzzy model {model 5) is seen to be more effective with CD
fuzzy granulation, and MRS based feature selection methods For
example, see the improvement of model 5 over 3 and model 4 over 2.
As in the case of VOWEL data, model 5 (i.e., combination of CD
granulation and MRS based feature selection) performed the best
Other findings and issues as discussed in the case of VOWEL data,
eg., effect of changing p and @ values, significance of D5 measure,
performance with the measures like Precizion and Recall, perfor-
mance of models using other classifiers, are also found to be true
here for the SATIMAGE data.

5 1.3 WAVEFORM data

Performance comparison of models using k-NN classifier
{k=1) for three percentages of training sets with this data set is
made and results are depicted in Table 12. It is observed from
Table 12 that for all training sets, model 5 yvields superor results
compared to models 1, 2, 3 and 4, in tenms percentage of accuracy
(PA) and kappa coefficient (KC). The superiority of model 4-2 and
model 5-3 justifies the advantages of using CD fuzzy granulation.
In another observation, supenority of model 5-4 and model 3-2
validates the effectiveness of NRS based feature selection. Similar
to VOWEL data, all the analyses hold true for WAVEFORM data.

5 1.4 CALDONAZZD data

The performance comparison of results in terms of PA and KC
measures with this data set is shown in Table 13. It is seen that
with 10%, 20% and 50% training sets, the performance of the
proposed model (model 5) is encouraging compared to rest four
models. All critical assessments (as performed with VOWEL data)
with CALDOMAZZO data are supporting the improved perfor-
mance of the proposed model that explores the mutual advan-
tages of CD fuzzy granulated feature space and MRS based feature
selection.

5.1.5. PHONEME data

It is observed from Table 14 that the proposed mugh-fuzzy
model provides a higher classification accuracy compared to
those obtained from models with non-granulated feature space,
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Tahle 13
Performance comparison of models using kMM classifier (k=1 ]with CALDONAZZOQ
data.

Table 15
Performance comparnison of models using k-MM classifier (k= 1) with PAGE-BLOCK
data.

Model  10% of training set 0% of training set 50% of tmining set Model  10% of training set 20% of tmining set % of training set
P KC P K PA KC P KC P KiC P KC
1 72550 05402 T3.780 05699 77050 0.6172 1 BEOZ 05880 BG5S 0.5708 B8.90 L6031
2 T4.010 e013 TE. 160 06112 TE180 06679 2 B39 6122 BBEE 0.6243 a0.03 06473
3 T7.710 06115 TR.653 06226 79910 0.6713 3 Q.76 L6436 a1.m 06532 e OLETED
4 BOGS0 06501 B1.140 (LEEED B2450 0.7201 4 a1.85 06532 9273 0667 93.15 07011
5 B2.180 6653 2710 06815 £3910 0.7315 5 9389 E6I1 Q465 0710 a5.89 0.7382
Table 14 Table 16

Performance comparison of models using -MN classifier (k=1] with PHOMEME
data.

Classification accuracies (PA) of models using k-NN classifier (k=1 for synthetic
image at 20% training set (different 7) (p=2, & = 045])

Model  10% of training set 0% of training set 50% of tmining set Maodel PA
PA KL PA KL A KC g=1 =2 =3 f |
1 T6.45 04502 Ta12 04682 8002 05001 1 95.72 8203 7217 6077
2 7837 04983 TOT6 05210 BO11 05623 2 a7 86 9110 7723 6301
3 B0 05420 BOL54 05632 BOOE 05706 3 ag.12 Q9223 8023 6783
4 B1.72 05889 5203 05980 8237 E103 4 ag 83 Q434 B236 69,36
5 B3.03 05974 B389 06137 B411 06572 5 o9 54 Q587 B441 T4
1 : . ’ . . . . The table revealed the superiority of the proposed model (model 5)to
0.95 others for all the noise levels. Since similar trend of observation, as
aal discussed in the case of VOWEL data, is obtained with other measures
g 0.85 L s for the synthetic remote sensing image, we have not put those results
g 08} - - modsd 1 here. Fig. 14 shows the resulting classified images obtained by
= models 1 and 5 for the noisy input image with & =2 (e, Fg &b
§_ 07 Superiority of model 5-1, as indicated in Table 16, is further verified
g ﬂlE;E | visually from Fig. 14 Here we have shown the classified images
= obtained from these two models, as an example, because one of them
ﬂﬂﬁ'z I performed the worst and the other performed the best,
05 1 1 1 1 1 1

'l L L
6 @1 02 03 04 G5 06 OF 08 09 1
False postive rate

Fig. 13. ROC plot of models 1, 3, and 5 with PHOMEME data set.

Cl granulation with Pawlak's rough set and MRS feature selection,
and CD granulation with Pawlak's rough set feature selection. This
is true for all three sets of trmining data. Further, the superiority of
the proposed model to others with all types of analyses are also
achieved for this data sets, as in the case of VOWEL data. Further,
we have compared the models’ performance in terms of ROC
curve and is plotted in Fig. 13 for the models 1, 3 and 5. Fig. 13
clearly reveals the superiorty of model 5 to others.

53.1.6. PAGE-BLOCK data

Like different data sets (Table 3), the superority of model 5 to
others in terms of PA and KC are observed with PAGE-BLOCK data,
as shown in Table 15. Various observations that justify the
advantages in the use of proposed rough-fuzzy model ( model 5)
are also found to be similar with this data set, as in the case of
remaining data sets.

5.1.7. Synthetic image

Moisy synthetic remote sensing images with different = (Fig. 8(h))
values are used to compare the performance of five models using
Ik-MM classifier (k=1), in terms of percentage of accuracy (PA) and
the corresponding results are shown in Table 16 for 20% training set.

5.2, Claossification of partially labeled data sets

In Section 5.1 we have demonstrated the performance of the
proposed model for classification of completely labeled data sets.
In this section we describe the same on two partially labeled data,
namely [R5-1A and 5POT images. Here the classifiers are initially
trained with labeled data of six land cover types and then the said
trained classifiers are applied on the unlabeled image data to
partition into six regions.

5.2.1. IRS-1A image

IRS-1A image is classified with five different models using
k-MM classifier (k=1), and the performance comparison in terms
of i value and Davies-Bouldin (DB) value is shown in Table 17, As
expected, the j7 value is the highest and DB value is the lowest for
the training set (Table 17). It is also seen that the proposed model
yielded superior results in terms of both the indexes, compared to
other four models. As a whole the gradation of performance of
five models can be established with the following /i relation:

Prining = Poraposed = Pinadeis > Prosers = Pz = Fivocten (11}

Similar gradation of performance is also observed with DB values,
which further supports the superiority of the proposed model.

In order to demonstrate the significance of granular computing
visually, let us consider Fig. 15/a) and (b) depicting the output
corresponding to models 1 (without granulation) and 5 (with
granulation), say. It is clear from the figures that the proposed
model 5 performed well in segregating different areas by properly
classifying the land covers. For example, the Howrah bridge over
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Fig. 14. Classified synthetic image (for & = 2] by (a) model 1 and (b] model 5 (proposed model).

Table 17

Performance comparison of models using k-MMN classifier (k= 1) with partially labeled data sets (p=2, i = 0.45].
Muodel [ value DB value

IRS-1 A SpOT IRS-1A SrOT

Training samples 2.4212 93343 05571 14893
1 G.B602 BBT45 09548 35146
2 7.1343 72301 0.9128 33413
3 73558 73407 08731 32078
4 B8.1372 B2166 0.7790 2.8Ra7
5 B4162 BATIS 0735 2.7338

Fig. 15 Classified IRS-1A images with {a) model 1 and (b) model 5 ( proposed model |

the south part of the river is more prominent in Fig. 15(b), whereas
itis not so in Fig. 15(a) A zoomed version of the said bridge region
is shown in Fig. 16{a) and (b) to have an improved visualization.
Similarly, the regions such as Saltiake stadium and water bodies are
more distinct and well shaped with model 5 as shown in Fig. 16{d)
(zoomed version). These observations further justify the signifi-
cance of the {f and DB indexes in reflecting the performance of the
models automatically without visual intervention.

522 S5POT image
With SPOT image, the comparative results of five models using
k-MM classifier (k=1) in terms of # and DB values are shown in

Table 17, which revealed the supremacy of the proposed model
(model 5). The significance of model 5 is further justified visually
from Fig. 17 that illustrates the classified images corresponding
to models 1 and 5. Fig. 17(b) is superior in the sense that the
different structures (e.g., roads and conals) are more prominent.

6. Conclusions

In the present article, we described a rough-fuzzy model for
pattern classification. The model formulates a class-dependent
(CD) fuzzy granulation of input feature space, where the member-
ship functions explore the degree of belonging of features into
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Fig. 16 (Zoomed) Two selected regions of classified IRS-1A image with (a and ¢) model 1 and (b and d) model 5

Fig. 17. Caszsified SPOT images with (a) model 1 and (b) model 5 ( proposed model |

different classes and make it more suitable for improved class
label estimation. The advantage of neighborhood rough sets that
deal with both numerical and categorical data without any
discretisation is also realized in the proposed model. The neigh-
boring concept facilitates to gather the local/contextual informa-
tion through neighbor granules that provide improved class
discrimination information. We have defined a dispersion mea-
sure for classifiers’ performance that reflects well the overlapping
characteristics of a class with others and can be viewed as an
appropriate index in evaluating the class-wise performance of a
classifier. It may be mentioned here that fuzzy granulation of
feature space described in [13] for case generation is similar
to the method of class-independent granulation used here.

With extensive expernmental results on various types of real
life as well synthetic data, both fully and partially labeled, it is
found that the effect of CD fuzzy granulation is substantial
compared to the rough feature selection methods in improving
classification performance and the combined effect is further
encouraging for the data sets with highly overlapping classes.
The statistical significance of the proposed model is also sup-
ported by the y* test.

The computational complexity of the proposed model is little
high. However, its learning ability with small percentage of
training samples will make it practicably applicable to problems
with a large number of overlapping classes. While the classifica-
tion accuracy appears to drop drastically after @#=005, it
is interesting and also beneficial to note that highest classification

accuracy is maintained for a moderately wide range of 4 for all
types of distances.
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