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Abstract—0ften, ranking is pefomed on the basis of some scores available for each item. The existing practice for comparing

sconng functions is to compane the induced rankings by one of the multitude of rank comparison methods available in the literature. We
suggest that it may be better to compare the underlying scores themselves. To this end, a generalized Kendall distance is defined,
which takes into consideration not only the final o rdeing that the two schemes produce but also at the spacing between pairs of scomes.
This is shown to be equivalent to comparing the scores after fusing with another set of scores, making it theonatically interesting. A top
kversion of the scome comparison methodology is also provided. Experimental results cleady show the advantages scome comparison

has over rank comparison.

Index Terms—=Score comparnison, rank comparison, Kendall distance, top £ lists.
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1 INTRODUCTION

R.-\NK[NG a set of items is a fairly frequent task and
involves pairwise comparison of the given items. This
comparison may be performed by inquiring an oracle for
each pair of items, in which case, the ranking procedure is
known as comparison-based ranking. On the other hand,
One may assign scores o each item, thus producing a total
ordering on the set of items. Each item is assigned a score
that denotes how early the item appears in the list, and
thus, comparing each pair is now performed by comparing
the corresponding scores. The present work is concerned
with score-based rankings only, and each ranking is
assumed to be induced by a scoring scheme or function,

Several scoring schemes may compete with each other
for ranking the same set of items, and the items may be
ranked differently by each of them. Given two such scoring
schemes, two questions arise:

o  Which scheme is better?

o How different are the bwo schemes?

In this paper, we are concerned with the answers to the
second question. One may note that it is not sufficient to ask
the first question alone as, instead of just declaring one of
them to be better than the other, it is imperative to measure
how much better one scoring is over the other.

Comparing such scoring schemes is generally perfurmed
by comparing the induced ranking on the set of items.
Howewver, several different scoring systems may lead to the
same ranking of the items, and a rank-based comparison
cannot discriminate between such schemes. In this paper,
we propose a more general approach, whereby the scoring
schemes may be perceived to be different even if they
induce identical rankings.
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Our approach is based on the idea that similar scoring
schemes discriminate bebween two items in a similar
manner. If the scores assigned to items ¢ and j by one
scoring scheme are far apart, while those by another are
very close to each other, it indicates that the two schemes are
dissimilar. It is interesting to note that this also corresponds
to a fusion-based approach for measuring similarity/
dissimilarity of scoring schemes. Often, these scoring
schemes are used in combination with some other scoring
method, say T, to produce the final ranking [1], [2], [3], [4].
This process of combining scores is referred to as score fusion
[2], [3]. If two sets of scores are exactly the same, their
rankings remain the same even after score fusion. Also,
differences in the scores assigned by two methods may lead
to different rankings, depending on the scores used for
fusion. If we know T beforehand, then we may rank the
items after fusing their scores and compute a dissimilarity
value on the basis of the induced rankings.

In this paper, we look at the case where T remains
unknown. Based on certain simple assumptions about this
unknown scoring scheme T, we compare bwo scoring
schemes on the basis of how likely they are to produce a
discordant pair. We provide a metric in this regard, which
relies on the margins separating the scores. Even if two
items receive almost equal scores, they might be ranked
1:|i['fenﬂ1tl'fl.-r depending on T. The present investigation is
about studying how likely it s for them to be ranked

differently upon score fusion.
This paper is organized as follows: We introduce the

notation and baj:kgrnund for comparing scores and rank-
ings, and rank fusion in Section 2. The proposed methodol-
ogy is described in Section 3, which includes motivational
examples and a discussion on the characteristics of our
method. Section 4 deals with extending the proposed metric
for comparing top k scorings, and applications of the metric
are discussed in Section 5 We report some preliminary
experimental results in Section 6, before drawing our
conclusions and mentioning future work in Section 7.
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2 COMPARING SCORING FUNCTIONS:
BACKGROUND

2.1 Notation

Qur universe consists of a set of objects or items indexed by
={123... 1}, and each of them shall be referred to br'l.-r
its index. Unless otherwise stated, ¢ and j refer to two
elements of 2, and @ < j. These objects or items may be
documents in corpus, states in a country, students in a
university, and so on. A scoring scheme or function assigns
a real number 5; £ [, 1], called a score, to 4, foreach i £ (1. In
the present work, only normalized scoring schemes shall be
considered, ie, max; 5; = 1 and min; 5; = (). The kth scoring
scheme, or equivalently, the kth score vector is denoted by
St = (81, Sizs e ey Sin ). We use His;) to denote the rank of 4,
and R(S) is an abbreviation for (Ris), RBsa),.. ., Rs.0).
Objects with larger scores appear earlier in the ranked list,
so that s > s; = Ris;) < Ris;).

Let 5§ and % be two scoring schemes. A pair (i, ])
is called discordant with respect to & and 55, if
(810 — 81;)(82; — &27) = (), Le, the two schemes order ¢ and j
in different ways. If (51 — 1) (55 — 82;) = (), then i and j are
said to be concordant. The comparison is called a tie if
(81: — &1;)(82; — #2;) = (). A tie may occur in one of three
ways: s = &15, S = &z, or both, and it is called a 1-tie, a 2-
tie, or a double tie, respectively. Without loss of generality,
we assume that the first set of scores is sorted.

Assumption 1 (Monotonicity of S1hl=s =82 =
s1 = 0, for, otherwise, we may sort S and S in descending
order with 5 as the primary key.

Let Sand T = (t;,f2,..., i, ) betwoscore vectors. a8 + 4T
means that the score vectors § and T are fused together,
with the fusing proportions (| <o <1 and 3=1-a 5o,
the ith element of the fused vector is as; + 9. When
o= [ =0.5 we shall simply write 5§+ T, instead of the
technically correct (.55 + (.57, noting that the ranking
remains the same in both cases.

We now provide some backgrnund On comparing
rankings and fusion.

2.2 Background on Rank Comparison

Comparison of rankings is a fairly well-studied problem,
and we mention the most popular rank comparison
methods here. Comparing two different rankings has been
studied in various fields. In each case, a measure has been
provided that takes into account how much the positions of
each item differ in the two ordered lists. The measure is
zero when the two rankings are exactly the same, whereas
it is maximum when the rankings are completely opposite
to each other. Some VETY useful and widely used measures
for comparing two rankings are Spearman’s footrule,
Spearman’s rank correlation, and Kendall's 7.

Spearman’s footrule is defined as

=Y IR(s1:) — R(sx)- (1)
i=1

Spearman’s rank correlation [5] is defined as

- (Zcﬂm.-J = m:”) '
i=1

(2)
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Both g and po are 0 if both the rankings are the
same, and they attain their maximum wvalues when
B(5;)=n+1— RB(5y), ¥ic il

Kendall's Tau (or 7) [5] is defined as the difference of the
proportions of concordant and discordant pairs according
to 5 and Sa

2 :
T(S1, 82) = n(n—1) ,ZJ: sign(si; — s1;)( 55 — s25),  (3)

and may be rewritten in terms of only the number of
discordant pairs as

e 4 :

T8, Sa) —mg Nt <) 8
The summation in (4) is the number of discordant pairs with
respect to 51 and S, and is referred to as the Kendall distance

between them [6]. Formally, the Kendall distance between
each pair {7, j} with respectto 5 and 5, is defined as

if ¢ and jare discordant,
if ¢ and j have o single tie,
ow., ie., if ¢ and j are concordant,
or have a double tie.

K(5,, 53, 5) =

e L] L Y

(%)

When this quantity is summed over all the pairs of items,
then it is called the Kendall distance between S and 55, or
equivalently, between R(5)) and R({5.), and is denoted by
K5 .5 or I{R(S),R5:)). This i also referred to as
Kendall (Tau) distance, Kemeny distance, or bubblesort
distance between R(5;) and R 5 ) when interpreted as the
number of pairwise adjacent transpositions needed to
transform from one ranked list to the other.

More recently, Bar-Ilan et al. proposed that differences in
ranking in the initial part of the lists should be given more
weight than those toward the end of the lists [7]. The
dissimilarity between the two rankings is computed as

1
R(S2(1))|

1
;‘Rw} @ W

2.3 Background on Fusion

Fusion is the process of combining multiple sets of ranks or
scores available for the given items. Rank fusion [8], [9], also
known as rank aggregation [6], [10], obtains a consensus
ranking from the available ranked lists. These lists need not
be full lists, making rank fusion a very challenging problem.

Score fusion, on the other hand, combines the scores
directly, in order to produce a consensus score vector, on
which the final ranking may be based upon. Such fusion may
be performed by taking an average of the scores assigned to
an item. Two of the standard score fusion techniques are
CombSUM (a simple average) and CombMNZ (a weighted
average) [11], [4].

Several studies have compared the effectiveness of
rank and score fusion. Scores contain more information
than ranks but may be prone to noise. It is suggested in
[6] that only the induced ranks should be considered for
fusion, whereas in [12], it is found that score fusion is
advantageous, provided that normalization is perfmma:l
properly. A detailed discussion on ranks versus scores is
available in [13].
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Fig. 1. S5ame ranks, different scores.

3 CompaARING UNDERLYING SCcORES DIRECTLY

One may compare two score vectors directly using a measure
like Pearson’s correlation coefficient. However, the inter-
pretation of the coefficient in terms of the resultant ranking is
lost. Also, the correlation coefficient is not a metric and hence
cannot be interpreted directly as a distance between two
scoring systems. The correlation coefficient may be trans-
formed into a metric, but it still does not reflect the rank-
specific differences between two scorings and is not always
useful for comparing rank-inducing scoring functions.

An alternative is to compare the scores assigned to the
available objects on the basis of the rankings they produce.

3.1 Motivation

We shall now emphasize upon the :-:ig;nifica.nce of compar-

ing scorings directly. We start by asking the following

question: “Is it sufficient to use only R(5) and R(5:) for
comparing 5, and 527" We look at the f{]ll{ming examples
to gain some insight in this regard.

Example 1. Suppose that items ¢ and j receive identical
soores in each scoring scheme, i.e., s1; = 517 and s1; = 55
By definition, there is a double tie between ¢ and j with
respect to 5, and S5 Now, if there is a measurement
error, due to which the scores are slightly perturbed, i
and j would be declared to be either concordant or
discordant (with probability of 1), though, in reality, they
are neither of the two. This is a consequence of the fact
that discordance is a hard concept, and a pair may be
either discordant or not but nothing in between.

Example 2. Let n = 1. The objects 1,2
three dll‘fermtwaw, as shown in Flg 1. Here, 5 = 2=

li-1y* _ [mif

n—1*
&1 fre— I]'

i It may be noted that, while

the ranks are identical in all three cases, the scores differ

.10 are scored in

Sa; = 1—

significantly. For example, items 1, 2, and 3 have barely
distinguishable scores with respect to 5, whereas the
scores are quite varied in the cases of 5 and S If
ranking by themselves is the sole objective of the three
sooring functions, then they may be deemed identical.
Otherwise, that the resolving power of the three scoring
functions is different implies some amount of dissim-
ilarity between them.

23

Example 3. Let (s 80, 520 825 830 81,0 = (004,005, 0.5, 0.4,
1.9,0.1). So, the items ¢ and j are discordant with respect
to 51 and 52, as well as, with respect to 51 and Sa.
However, are they “more” discordant in the second case?
Again, this question cannot be answered without the
notion of a degree of discordance.

EXB'ITI'PI.E 4, Let g2 = ”.?, 13 = ﬂ.—i, e {].ﬁ, and Jaq = 0.5.
Assume s = 507k € 04 {2, 3}, Note that items 2 and 3
are concordant with respect to 5, and 5; and also that
both &, and & induce the same rankings, ie.,
R(5) = R{5:). Now, suppose that the objects are to be
ranked after fusing their scores with T. So, the two
rankings obtained are R(5 +7T) and R{5% +T). The
question we are concerned with is whether these two
rankings are identical. It & obvious that the answer
depends on the values of t; and ;. For example, if t2 = 0.3
and t3 = (1.5, then the fused scores are given by 52 + 2 =
10 > 53+t =09 and su +t=09< s3+1t;=1.10,
and hence (2, 3) forms a discordant pair according to 5, +
T and 5 +T. One may easily observe that (2, 3) would
form a discordant pair whenever t; — £, € (0.1,0.3).

Example 5. Now, if 5,2 = 0.9 and sy = (1.1, while sz and
s23 remain the same as in Example 4, 2 and 3 again
form a concordant pair with respect to &, and 5.
However, (2, 3) forms a discordant pair with respect to
8§ +7T and 5 +T whenever &3 —i, £ (0.1,0.8). In a
sense, it is more likely for (2, 3} to be discordant in this
case than in the earlier one.

The essence of these examples was to demonstrate that
EVEen thm.lgh &) and 5; may appear identical or similar on
the basis of the rankings they produce by themselves, the
likelihood of a discordant pair being produced after score
fusion depends both on the distribution of t; —# (for all
pairs ¢ < j} and the spacing between the scores assigned to
the objects of the universe.

Another compelling reason for comparing scores directly
is that given just 5, and 55, rank comparison methods have
no way of distinguishing between the cases when the fusing
parameter, o, is big (say, 0.9) or small (say,0.1). In isolation,
as long as both the vectors are multiplied by the same
scalar, rank comparison measures come up with the same
value each time. Of course, if all one needs to do & o rank
the items on the basis of just 5, and &, then R{S,) and
R{5:) should suffice for comparing the scores, ie., score
comparison methods provide no additional advantage.

3.2 Comparing Scores Directly

The objective in the present investigation is to discern
between two scoring functions directly without performing
the additional task of computing the induced ranks. Taking a
cue from Examples 1 and 3, we propose the concept of a
degree of discordance for a pair of items, which subsumes the
usual definition of discordance as a special case. Asdiscussed
in Example 2, the dissimilarity of two scoring functions with
respect to a pair {4, j} may be inferred from the differences in
the separation of ¢ and j by the scoring functions. Thus, a
measure of dissimilarity between 5 and 55 ma}r be based on
the ﬁeparah{ms dl ' = 51; — &1; and :1',' A = — Saj. The more

:1',' U and :1',' are apa.rt the higher the 1:||*-.1*-,|rru|ar|t'|.-r
WE mrw look at an alternative approach, which leads to
the same notion of discordance once again. In particular, we
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would like to study how likely it is for a discordant pair to
appear during score fusion.

In this regard, let us formalize our observations in
Examples 4 and 5 in Section 3.1. The fused scores of i with
respect to 5\ +7T and 5 +7T are s; +# and sy +1;,
respectively, for each 1<i{<wn The pair (i,j) forms a
discordant pair with respect to 5, +7T and 5 + T, if and
only if

|{I:.'§‘||' + tl.j e !

(51 +1;)) ({52 + ;) — (59, +15)) <0

or equivalently, if and only if

|{I[f_|- R BT e '?JJ'JJ “t_{ =il =g -*'!Jﬂ < (. {TJ

That the quantity (7) is negative is equivalent to having
(t; — t;) in the interval

(lll'ﬂ‘l{d.l:_:-).d:-j:'},llmx {d}}ﬂd}j"}),

where df}_l!" and d'l._'f:' denote the differences s, —s; and
s2; — §1;, Tespectively. Thus, once again, the dissimilarity is
proportional to the difference of d.,l-_:-.’ and d,lj’ MNote that
d,l-_l!’ is positive, by Assumption 1, in Section 2.1.

Similarly, it may be easily seen that the pair (i, j) forms a
discordant pair with respect to a5, + 47 and a8 + 47, if
and only if t; — t; belongs to the interval

(mu{ddw,ﬁdl J} i 1x{ddll_:’,5.{|?r‘}).

Let - denote the ratio ¢, and let, for each pair i < j,

ﬂl.‘ll- * = min{s); — &, 82; — 89}, and ()
b * = max{s; — 815, &3 — Sa5}.

We note that, for each pair (i, j), there are associated real
numbers n"'
according to a8 + _JT and a5 + 9T whenever t; — i is in
the interval I[";-TL'E-' ol 1-1‘}:_';.' “). For ease of notation, we drop
the superscripts &, and S; when they are clear from the
context. As seen earlier, the interval [, & ] holds the key to
the likelihood of a discordant pair being produced. For this
reason, we propose

and h’""" . such that (4, j) is a discordant pair

n—1 "

D,(81,8) =Y Y D.(8), S d), (9)

i=1 j=i+1

as a measure of discordance between 5, and 5., where
D (5, 8324, 7) is a suitably chosen measure on the interval
(7. b;). We shall write I as a shorthand for D). In this
paper, we make the choice of D (5, 5214, j) as

iy v |sd — =)

D.,{S..E:’-_J:'.i,jj—[fl[rjdn:— [ Jix)dn,

i —m14)

(10)

where f(x) is a continuous probability density function
with (—1.1) as its support. As a particular case, in the
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present work, we choose f to be the following triangular
density function:

1+x if —1l<z=<(
flxy=¢1—x if O0=<xr=<1 11)
1 0.W.

D.(5,,55:1, j) ranges between 0 and 1 and shall be called
the degree of discordance between ¢ and j with respect to 5,
and S5. A value of 0 denotes either a double tie or perfect
concordance (i.e., n{m = d'l ), whereas 1 implies perfect (or
Exl'reme}dﬁcmdaru:e (i.e., Jf”:f = —1)

The significance nfchummg this particular function f is
as explained below. The relevance scores lie in the interval
[0, 1], and thereby, t; —# € [—1.1]. We make a simplistic
assumption that t; and t; are #id U(0, 1), in which case the
density of t;—t; is f. Another reason for choosing the
uniform distribution is that it is the least biased prior
distribution and corresponds to the fact that nothing else is
known about T' (that is, there is no particular T on the basis
of which 5§, and 5: are being compared). Now, let I, be
defined as follows:

I(a,7) = [ (1 - z)do

!
J(l—zjdr i qaz1
il (12}
J(1—z)dr ow.
il
3 # yz3
ye —1va? ow.
Also, one may note that
il
[{1 +x)dr =1 (—a,v).
Thus, D, (5, 524, j) may be evaluated as
[ sy
i i e
J" (1—z)dr — j' (1 —x)dz if 0 < a; < by
u,,l
=¢ [(1—x)dr+ II"l['l +xjde if a; <0< b (13)
il el
J' 1+ z)de — J' (1 +x)de ifa;<b; <0
-
Ill:hf_f"}"_:' = IJ |::'ﬂ'|'_|'- d}_:' if () = 5 = jI:"l'_|'

= I]':hl'j-'}'_] + Ill:_u'l'j- 1‘_:'
h(~a57) = i(=b.7)
It may be noted that we do not need to consider the
case a; < by < (0, sine b= m.-uc{:#_l!],d:.f’} = d}_lu =1, by
Assumption 1.

if @y <0 < by
if ;< by < 0L
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3.3 Characteristics and Discussion

It may be easily verified that the proposed measure for
comparing two scoring systems, [).(5,, 5:), &5 a pseudo-
metric. It is a metric when 5 < 1. The following theorem
provides a more general proof, where f is chosen to be any
continuous probability density function on (-1.1) (ie,
taking strictly positive values on (—1,1) and 0 elsewhere)
and is not restricted to the triangular density function.

Theorem 1 (Metric properties of D). (5, 5:)). Let 5, and 5,
be two normalized score vectors of length n, and let + be a
positive real number. Let the discordance for the pair (4, 3) with
respect to Sy and Sy, D (8, S04, 7)), be defined as in (10),
where a;; and by; are as defined in (8) and let D.(5,, 51) be
defined as in (9). Then, D. (8, 52) &5 a metric if v = 1 and a
pseudometric otherwise,

Proof. To prove the theorem, it needs to be shown that
. (5, 5;) satisfies the following properties:

D.(5.,5)>0Y5,5, (14)
D.(8,.5) =0, (15)
Ify<1D,(5, 5)=0= 5 =5, (16)
D8, 5) = D (8, 570, (17)

D (81, 82) + D82, 53) = D, (51, Sy). (18)

Properties (14), (15), (16), and (17) may be easily
verified from definitions (9), (10), and (11). Property (14}
(nonnegativity) follows immediately from the fact that
each D.(5.5:4.j) is the probability that a random
variable with density f takes a value in a subinterval
(a5, b;) of (=1, 1). The proof of Property (15) is trivial, as
each of the subintervals (a,;,b,;) are now of length 0.

To prove Property (16), we note that v <1 =
(qas;, 4bi;) € (—1,1) ¥i < j. Since f(z) > 0 i z € (—1,1),
we have

D (51,8558 ) <= 06 v = by,
S0, D,(5:.5:) = 0 implies that

Sl — 815 = &2 — 82, Vi< JELL
MNote that 517 = 1. Also,

n—1
821 — 82n = E F2i — 82i+1

i=1
-1

= E S1i — S1,i4]
i=1

=811~ S

=1.

Thus, 511 — s =1, and so the normalization con-
straint implies that s5 =1 and s, = 0. Setting j=
i+1 and varying ¢ from 1 to n — 1, we observe that
s1;,= &;%2<= j<n, and hence, 5 = 5%. Thus, Prop-
erty (16) is proved. This property need not hold for
7 > 1 because the integration interval may have no
intersection with (—1,1), in which case, f would be 0
throughout the interval

25

From the definition in (8}, and the symmetry of max
and min ,

and

Wi =" Vi<jeq,

and hence,
D.(8y, 8224, 1) = DS, 813, 7).

thereby confirming Property (17).
To prove Property (18), we make use of the following
facts about max and min:

min{a, b} < max{b.c}, (19
min{a, c} > min{min{e. b}, min{b, c}}, (20)

and
max{a, c} < max{max{ae, b} max{b c}}. (213

Fact (19) implies that

i e g

11 e

and
i b I 1 i
R < 4 (22)

and hence, the following inequalities hold:

AiAr g hLE ol B I T B
(.r],l._l. Z hl._l. ) U ('ﬂ’fj 2 J‘}I.J. )
= (m'm {aﬁ-‘ oL ;3':}""‘:' } L mAX {f}ﬁ-"'ﬁz, f}}jT'"‘é' }) 23)
B T T T
= ('ﬂ’u'j _hI.J. )
Here, the first equality is a consequence of (22}, which
ensures that the union of the given intervals is indeed an
interval. The second inequality is a consequence of (20}
and (21). It may be noted that the same inequalities hold
even when the ;s and & ,'s are multiplied by a positive
constant .
Integrating the nonnegative function f over the above

intervals (scaled by the constant 4), we have the
following set of inequalities:

5y By 5
P i

[ f@is+ [ oy

~jel

By
o Wil
if i

~ WX {.'_.::l '8 'I":.-_I I }
= [ flz)dx (24)
) ||:|i||.{u::' = u:_'-".l }
'n'.l::' ]

[ flx)dr,

=
"l "

1%
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which is the same as the triangular inequality

DI::E!] I.{}J?-J-:I-'-Dl:l.‘].ll.{]i?-‘lr.:l DI:;‘” ;‘J{J-Ji‘_:l

Summing over all pairs (i < j), we have Property (18).
Thus, D. (5, 5;) is a metric if 4 < 1, and a pseudo-
metric otherwise. |
Kendall distance corresponds to a spedal case of the
proposed metric by choosing f to have equal mass on
(—10) and (D, 1) (a weaker condition than symmetry),
and 4 to be very close to zero, or equiva.lmtly, T very
large. Intuitively, this means that there is no fusion, and 5,
and 5: are being compared directly to each other. It may
be observed that, in such a case, the interval (7a;, vh;)
either contains the whole of (—1,1) (when a;; < 0) or does
not have any intersection with (—1.1) (when a; > 0),
which is the support of f, and thus, the degree of
discordance is either 1 or 0, respectively. When there is a
tie (and it is not a double tie), one limit of the integral in
(10} becomes zero, and the other limit is either larger than
1 or smaller than —1, and hence, the degree of discordance
is 1. For a double tie, the degree of discordance is 0 for
anj} v (indicating perfect concordance). Thus, when v is
very large, D, (5, 5::4.7) assumes the value of 1 whenever
(1, 7) is a discordant pair with respect to 5, and 55, 0 when
it is a concordant pair, ! in case of a single tie, and 0 for a
double tie, and hence, D. (5, %) is the Kendall distance
between S, and 5. Formally, this may be defined as

K($,8i,5) = lim D,(5, 836, ) Vi<j  (25)

For each pair, {i.j}, as < increases, the value of
D. (5, 8324, ) monotonically decreases to 0 if {7, j] is
concordant and increases to 1 otherwise. However, this
does not imply that D.(5.5) either monotonically
increases or decreases with <, the reason being that some
of the individual components may increase while others
decrease, and the rates may not balance each other. It may
be easily verified in the case of n =3 that D, (5, 5) may
first increase and then decrease with .

[.(5),5) is bounded above by "2 This
because I} (5, S2:4,j) is bounded above by 1 for each pair
{i,7}. Also, I0,(5), 5,) and K8, 5;) do not dominate each
other. For example, when K( 5, 8) = 2221 [ (8, §3) may
be smaller (say, when « = 1), and D[ &, L‘}gj may be positive
when K5, 85) is zero (when 5 # S but R 5)) = H(54)).
Thus, [:(5, 52) — K({5:. %) may be positive for certain
choices of &) and 5; and negative for some others.

Though the Kendall distance may be computed naively in
(Hn?) time, Knight's algorithm [14] based on mergesort
achieves the same in O nlogn) time by taking advantage of
the redundancy involved in computing (5, 5 ). No such
algorithm is known, as yet, for computing D.(5, %)
Preliminary ongoing research in this direction is promising
and suggests the existence of linear time algorithms to
compute a “reasonable” approximation to D. (5, 52). Alter-
natively, when the number of items, n, is large, one may
resort to a method like the one suggested by Fagin et al. [15],
where only the k top ranked items of both lists are considered
for comparison. A “top & version of the proposed metric is
presented in Section 4.

is obvious

JANUARY 2009

4 CowmpaARING ToP i SCORES

A top k list is the set of items with the largest scores. Top &
lists differ from full lists because two lists need not have the
same set of items. If (' is the set of items common to both
lists, then there are a total of 2k — || items in the two lists
combined together, and thus, there is a total of
M pairs. To compute the degree of discordance
of a pair {4, j}, the four score values, namely, s, 51, 52;, and
52 need to be known. However, all four scores are known
for only w pairs, and for the remaining pairs, either
one or bwo of the scores are unknown, and hence, some sort
of estimation needs to be performed for determining their
degree of discordance.

We extend our procedure to comparing the top k scores
of two scoring functions by mimicking the work of Fagin
et al. [15]. Fagin et al. compared the top k lists obtained by
two different rankings [15]. When dealing with items
that appear in only one list, the definitions of ranks and
discordance are appropriately maodified, resulting in, among
many others, a Kendall distance for top k lists.

4.1 Comparing Top i Lists

We first study the approach of Fagin et al. [15] for
generalizing the definition of discordance to the case of top
Elists. We reproduce the text from [15] and, simultaneously,
make a note of how the same extension for computing the
degree of discordance would differ in each case. Let r and =
be two top k lists. The generalized discordance between ¢
and j, with respect to two lists 7, and 7, is denoted as
KPP w30

o Casel (i and j appear in both top & lists). If i and j
are in the same order (such as i being ahead of j in
both top & lists), then let K'™(r, w4, j) = (; this
corresponds to “no penalty” for {7, j}. If 7 and j are
in the opposite order (such as ¢ being ahead of j in 7
and j being ahead of ¢ in w), then let the penalty
KW {ry, msd, ) = 1.

In this case, the usual definitions of discordance and degree
of discordance are applicable.

o Case 2 (i and j both appear in one top & list (say 7)),
and exactly one of 7 or j, say {, appears in the other top
k list (72)). 1f i is ahead of j in 7, then let the penalty
K'P{3, 1414, §) = 0; otherwise, let KP\{7, m:i,j) = 1.
Intuitively, we know that ¢ is ahead of jas faras = is
concerned, since { appears in but j does not.
Here, there is no confusion regarding what the discordance
should be as it is dear that { is ahead of j in 7. However,
the degree of discordance needs the information regarding
the separation between ¢ and j. If ¢ appears higher in 7,
then j is far below ¢ as compared to when i is toward the
bottom of 2. Also, since Fagin et al. [15] consider only lists
of items, there are no ties, whereas in our case, the scores
may be tied.

o Case 3 (i, but not j, appears in one top & list (say 7 ),
and j, but not ¢, appears in the other top & list (r2)).
Then, let the pma]h-r K"{r, 131, j) = 1. Intuitively,
we know that i is ahead of j as far as 7 is concerned
and j is ahead of i as far as ™ is concerned.
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Again, though one is sure of discordance in this case, the
degree of discordance may be partially inferred from the
positions of ¢ and j in their respective lists.

» Case 4 (i and j both appear in one top & list (say ),
but neither i nor j appears in the other top k list (7).
This is the interesting case (the only case where there
is really an option as to what the pEﬂalw should be).
Such pairs {1, j} are called special pairs. In this case,
we let the penalty K'™/(r, =:i, j) = p.
This is the most difficult case, since the order of i and jin =
is not known. However, the positions of i and j in 7 carries
some information regarding what the degree of discordance
may now be,

4.2 Degree of Discordance for Top k Scores

We shall now extend the definition of the degree of
discordance to the case of the top k scores by making the
maximum use of the available information and averaging out
the unknown part. To compute the average over the
unknown score values, we assume (as in Section 3.2) that
they are uniformly distributed and independent of each
other, and take the expectation. We assume that the top
k scores of two scoring functions 5 and S;, say S| and 55, are
given, along with the corresponding lists of items, 7 and 7.
By Assumptionl, 7, = {1,2,....k}.Let D55, 55:4, j) denote
the degree of discordance between i and j with respect to 57
and S5 (though not mentioned explidtly, DE(ST. 55:4, j)
involves 7 and ™ also).

o Casel (i.jem MNm) Since, 5y, 55, 52, §2; are all
known, the earlier definition is applied straightaway
and DE(ST, 85:4,5) = Dy(S1, S2:, 7).

o Case2(i,jecn, buti em and j & ). So, 515, 515, 52
are known but s;; is unknown. All that is known
about y = sq; & that () < 55; < 55 = §2;. Let a denote

s1; — 515 Therefore, we have
~ e e, s — 7 |
D, (8, Said, ) = flz)de.
F ||:|j||.{rlj..-°_-—|r'|-

e Since, y is unknown, we average the degree of
discordance over all possible values of y by taking
the expectation as follows:

DE(S%,8%:4,5) = E[D,(51, Sa34, )]

4 sy maxda, s -1} {zﬁj
. [ i@
S, '
i yminfasy—y}

o It may be noted that, as it is already given that
{1 = y < sx, the above is a conditional expectation,
where y is assumed to be from [7((), s2;) distribution.
Also, (26) cnrrespnndﬁ to the definition of
K'"){7, 7231, j) in Case 2 in Section 4.1. This may be
SEEn bvnuhng that when < is large, the integralin (26)
is0,? 5.0r 1l accordingly as ¢ > 0,2 = 0, or a < (.

e Case3(icn,jem andig m, j¢ 7). Letting y =
s1;and z = sy, and noting that z — 5.; < 0 < 5, — ¥,
the expected value of the degree of discordance may
once again be computed as

27
DE(SY,85:4,5) = E[D,(8y, 823, )
] sie s Tlsu—y) {2?}
— [ fle)de dz dy.
S Fak

B 0 z—m)

o Cased (i,jen.i,j¢& ™) Let us denote s; — 515, 51,
and sy by a, y, and z, respectively, and without loss

of generality, assume that « > (. Thereby, the
expected degree of discordance is given by
DE(55, 850 5) = E[D, (51, 824, 5)[
sap sy mamcd] yay[y—z il {28}
[ [ [ fle)de dz dy.
! LU '-f]l.':ll_[‘— 21}

5 APPLICATIONS

Scores contain more information than ranks, especially
because the ranks may themselves be derived from the
scores. 5o, comparing scorings finds applications in any
field where rankings need to be compared. We describe two
such application areas related to page ranking. In addition,
we elaborate on how the scores may also be used to
measure how representative the ranks are.

5.1 Comparing Web Page Rankings

Ranking web pages has attracted the attention of several
researchers, mainly due to the challmges it poses in terms
of scalability and the imprecise and subjective nature of the
task. Given the wide variety of ranking methods available,
it is natural to compare them to decide which one is better.
A more fundamental task is to decide whether the two
given rankings are indeed different, and if so, how well
separated they are.

Though the task is to rank Web documents, page ranking
a]g{rrlthms assign scores to pages. These scores are called
page ranks. Existing works [16] compare the rankings by
converting the scores into ranks and then computing the
distance between these ranks. As discussed earlier in this
paper, and also, as is evident from the literature, these
scores are seldom used in isolation for producing the final
rankings. In such a case, the proposed TI'IEH!'I{)dﬂl{}E}’ is
more appropriate for comparing the page ranks, as it takes
maximum advantage of the available information regard-
ing the intended use of the page ranks. For example, if the
fusing proportions (and thereby, ) are known beforehand,
the distance D (5,.5:) may be computed appropriately.
On the other hand, if the algorithms produce the final
ranking without fusing the scores, then, & may be set to a
very high value, which results in the computation of the
Kendall distance.

It is common in the case of ranking web pages that the
number of items is very large, and undersuch circumstances,
D57, 55) should be used to compare 5 and 55 in terms of
their top k scores, with & set to a few hundred or thousand.

5.2 Stopping Criterion for the Power Method

Another application of the proposed metric is in deciding
when to stop the iterations in the power method [17]. The
power method is used to obtain the dominant (or principal)
eigenvector of matrix A, starting with an arbitrary vector x",
It is an iterative procedure, whereby successive vectors x/'
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are produced by multiplying A with x", and is guaranteed
to converge as the number of iterations tends to infinity.

In several studies like [18] and [19], the page rank
vectors correspond to the principal eigenvectors of some
transition probability matrix and are computed iteratively
by the power method. Once again, as in Section 5.1, the size
of the document collection under consideration may be
huge, in which case, each iteration is very costly, sometimes
taking several hours to a few days [20], and hence, early
stopping is desirable. The page rank vectors produced by
consecutive iterations are cm‘npared to see if near conver-
gence is attained.

In some instances, the computation is performed for a
fixed number of iterations, say 50 or 100 iterations [18].
Though convergence may not be attained (in the L, or
Ly sense) by the time the computation is stopped, the
resultant vector is declared to be the final page rank vector.
The justification provided for such a behavior is that this
vector serves its purpose in terms of ranking the docu-
ments, which is the final objective. In other words, even if
the iterations are allowed to run for longer, the ranking
would not change by much, as determined by the Kendall
distance. Allemahvelv, one may base the stopping criterion
in terms of the I, distance between the consecutive page
rank vectors. However, since the ultimate nb]echve is to
rank the pages, it is preferable to use a rank comparison
method for determining the stopping time [18].

While such a justification is acceptable if ranking is the sole
objective, there might also be other objectives. In most cases,
the page rank vector is considered as a set of importance
scores and is combined with other entities, such as relevance
scores, before the final ranking is produced [21]. Thus, it is
natural to ask if it is sufficient to stop the computation after a
certain number of iterations. The proposed distance measure
may beused tocheck if (near) convergence has been attained.
This convergence would be in a sense that considers the
purpose of computing the eigenvector.

5.3 Quantitative Measurement of the
Representation of Scores by Ranks

A system ranking items on the basis of scores assigned to
them may choose to reveal only the ranks of those items,
usually, by returning them in a particular order. While it s
true that the items would be ordered in exactly the same
manner on the basis of their scores too, the scores are only
partially revealed. For example, let there be four items (1, 2,
3, 4), each of which is E%IEIIEC' a score 5;,1=1,2,3,4, and
the items are ordered in descending order of scores. If it is
known that the ordered list is 1, 2, 3, 4, then all that is
revealed about the scores is that 1 =5, = 52 = 83 = s, =1
However, there is a general (human) tendency to perceive
that the scores are uniformly distributed. So, the scores are
implicitly assumed to be 1, i, _11, and 0, respectively (or
:imnething similar). This also corresponds to the average
case, where one may observe that thnugh 53 may be either
less than or greater than 1, it is expa:ted (under the
assumption of uniformity) to be close to 1 3. Such uniform
scores, implicitly assumed on the basis of the ranks, shall be
called the uniformly perceived scores, and the uniformly
perceived score vector shall be denoted by R(5) (or *ilmplv
by Rif 5 is clear from the context). For the ‘sake of notational
HI]‘I‘I.F'ICI[}’, we shall sometimes refer to uniformly perceived
scores as just perceived scores in the rest of this paper.

In reality, the underlying scores may not be reflected
properly bv the rankings awvailable. For instance, in the
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above example, the actual scores could have been (1, 0, 0, 0),
or (1,1, 1,0) or (1, 0.5 0.5, 0), or any such 4-tuple satistying
the ordering criterion. 5o, the percewed SCOTEs may or may
not reflect the underlying scores. Thereby, one should be
able to measure if at all the perceived scores are similar to
the actual scores.

The present work provides a methodology to quantify
the separation between the actual scores and the perceived
scores. Let there be n items 1.2.....7n, and let their
perceived and actual scores be denoted by ry.ra,..., i
and &1, &1, ..., 5, Tespectively. So, the perceived score of the
ith item is given by r; =1 — =L = = It may be noted that
Kendall distance between the scores and the perceived
scores is zero, which is due to the fact that both of them
result in the same rankings.

The degree of discordance of a pair (i < j) is thereby
given by

||.|.:|x|::.-<_- 8, |_:|
DR 84,5 = (1— x)dr,
||.|i||.|::-=_.—-<l. h:l

since it is adreadv known that s; = s;and r; — iy = h = . If
g5 — 5 =17, then the degree of discordance is zero. The
other extreme is the case when the degree of discordance for
the pair (7,7) is maximum. This happens, when s — s, is
either 0 or 1, which of the two is determined by j—d. If j — 4
is close to n — 1, then D, (R, 54, j) is maximized at 5; = 5,
whereas if j — i is near 1, 5; =1 and 5; = () maximizes the
value of D (R 5:1. j).

As earlier, we would also be concerned with the total
score-based discordance between the two scorings. This is
obtained by summing the degree of discordance over all
possible pairs and is given by

-1

3. Y DR S .

i=l j=i+1

D.(R,S) =

Again, if 5, =1-2L, for each i=12,....n the 5's
coincide with the '.I 's, and hence, D[R, HJ turns out to
be zero.

Since each D (R. 5. j) is bounded above by 1, it may be
trivially seen that D, (R.5) < ﬂ”:;ll! However, finding R
and S suchthat [ (R, §) attains a maximum is not as simple
as maximizing [}, (R, 5:4, j) for each pair (i,j), the reason
being that the pairs are not independent of each other, due
to the monotonidty and normalization constraints. For
example, if n =5 D.(R.5:1,2) is maximized when s, =10},
whereas I (R, 5: 1, 3) is maximized when 53 = 1; however,
both cannot happen simultaneously (because 52 = &3).

How well 7 represents a particular score vector 5; may
be measured by the notion of the pvalue of D (R.S5).
Consider the set, 5, of all § vectors such that B(5) = R(5;).
The p-value is the probability of having an 5 vector (5 £ &)
such that I (R.8) = D (R, &). In other words, the pvalne
of D[R, 5) is the proportion of 5 vectors in Sy, which are at
an equal or higher distance from R than &, is from R.
So, when most of the § vectors are such that D (7. 5) =
D.(R, 8), then D.(R, 5 ) may be considered to be small,
and vice versa. Thus, when the p-value corresponding to
D.(R, §)is very small, it may be declared that B{5) does not
represent 5 well enough.
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6 EXPERIMENTAL RESULTS

To understand the significance of the present work and to
validate the claims made in this paper, several experiments
of the following kinds were conducted:

o Study of the behavior of D.(5,.5) for various
values of .

o Study of the behavior of DY(5,5) for various
values of n and &, and testing the dependence on the
assumption of uniformity.

» Determining the number of iterations for eigenvector
computation.

» Predicting the discordance in a pair of vectors after
score fusion.

o Computing the distance between uniformly per-
ceived and actual scores.

We now describe each of these experiments and their
results along with our observations and analysis.

6.1 Behavior of D_(5,, 5]
It is theoretically assured that D, (5, 5:) < and ako
that lim. .. [ (5, 8) = K(§,5:). Moreover, our remarks
in Section 3.3 make it amply dear that D (5. 5:) is not a
monotone function of 4 although each D.(5,,55:1, j) is so.
The aforementioned properties are graphically depicted
in Figs. 2a, ?b, and 2c. Here, n is set to 3, 4, and 5,
respectively, and 10 5,, 5 pairs are randomly generated,

nlr—11
2

and I).( 8, 5 ) is computed for values of 4 varying from 1 to
30. The Kendall distance, K{5). 5:), may take values only
from {0.1,..., 2ln-l} and the D, (8, S2) values are seen to
be converging to the respective Kendall distances. The rates
of convergence, however, are different in each case. Also, in
some of the cases, [},(5, %) varies monotonely with -,
whereas in the remaining cases, it is not so. However,
eventually (beyond some value of <), monotonicity is
restored in each of the cases.

6.2 Behavior of Df:'{ﬁ} L5

We now study the properties of D' (). 53} as k varies from 1
to . A pair of score vectors is generated randomly and min-
max normalization [22] is applied. The top k items (accord-
ing to the scores) are selected from each vector, while the
scores of the remaining items are assumed to be unknown,
and D‘f:'l[.‘:'] .82) is computed as described in Section 4.2. Since
(5, 51) is an expected value, with the expectation being
taken over all the unknown score values, it is imperative to
know how good this approximation is. In the present case,
all the score values are known, and therefore, the exact value
E(5, 5:) may also be computed by summing up the (exact)
degree of discordance of all the pairs appearing in the union
of the two top k lists,

The computed values of D(5,.8;), E}(5,5:), and
D‘“{‘h Ha) — E‘i'l[H.. &3 ) are shown graphically in Fig. 3, from
which it may be seen that the D(S,S:) approximates
E(5), 52) very well. It may be noted that the computation
of DY(5,5) is based on the assumption that 5 and 5
arise from the uniform {70, 1)) distribution. In order to test
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Fig. 2. Plots of 1. (5, . 5:) versus -+, for 10 randomly chosen ( 5, . 5, | pairs,
with (a) e = 3, (b) = =4, and () n = 5.

the dependence of the approximation on the distributional
assumptions, two more experiments were conducted, with
&y and 5 arising from the Gaussian (V((), 1)) distribution in
one and the exponential { E(1)) distribution in the other. The
results are presented in Figs. 4 and 5, respectively, and it may
be observed that there is a consistent overestimation in the
case of the Gaussian distribution, whereas the approxima-
tion is very good in the case of the exponential distribution.

6.3 Determining the Number of Iterations for
Computing Page Ranks

As discussed in Section 5.2, one would like to know when

to terminate the power iterations based on the amount of

change in the rankings in the consecutive iterations. We
chose two data sets from Stanford’s WebBase [23] and
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varsus &, for (5, 5:) generated from uniform distribution, with
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named them WB1_7440 and WB4_7060, after the host and
port numbers from which they are available. The former is
a crawl of a part of the berkeley.edu domain, and there are
about 140,000 (140K) pages with over 1.6 million (1.6M)
links to pages within the same data set. WB4_7060, which is
a crawl of a part of the stanford.edu domain, consists of
about 40,000 (40K) pages and over 260,000 (260K) links to
pages within itself. The PageRank [24] algorithm was run
for 100 iterations on both the chosen data sets. We then
computed K15, 5;.,) and D55, S 41) (v setto 1), which
are the top & versions of Kendall distance and the proposed
distance, respectively. Here, 5; is the page rank vector at
the end of the ith iteration, and & was chosen to be 100,
1,000, and 5,000. We have also computed K" 8;, Syq) and
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D"l[.‘:',-. S1on), though these quantities would not be available
during the page rank computation. These wvalues are
presented in the plots in Figs. 6 and 7.

It may be noted from Figs. 6 and 7 that if D"(5;, 5.,)is to
be wsed instead of K45, 5.,), (near) convergence is
declared much earlier. For example, in Fig. 6a, D"l[.‘:',-. i)
would have recommended the termination of the procedure
after 20 iterations, whereas K" (5;, 5;,,) would have led to
at least 26 iterations. This indicates that once it is decided
that the obtained ranks would be fused together with some
other score vector (in equal proportions, since we have sety
to be 1), there would be no significant improvement by
continuing be].-r{md 20 iterations.
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6.4 Predicting Discordance after Score Fusion

This set of experiments is aimed at predicting the dis-
cordance after score fusion, without actually performing the
fusion. Such requirements arise often in the Web domain,
say, for comparing page rank vectors. The traditional
method of comparing page rank vectors is to use each of
them to retrieve the top pages for a set of queries and
computing the discordance between them (see, for example,
[21]). This involves doing the following for each query. The
set of documents matching (or containing) the query is
identified, and the query relevance scores for each document
are computed. These relevance scores are combined with the
ranks of the documents, and the documents are ordered
according to the fused scores. A rank comparison measure is
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(b} & = 1,000, and (c) &= 5000,

then computed between the top k lists arising from each of
the page rank vectors fused with the relevance vectors.
Ideally, the set of queries should be very large so that a
comprehensive comparison between the page rank vectors
may be made. In addition, the number of documents in the
corpus may also be huge. Under such circumstances, it is
computationally prohibitive to compare the page rank
vectors for various choices of the weights (or fusing
parameters). To this end, the proposed measure may be
employed to circumvent the actual computation of dis-
cordance measures between the fused score vectors by
having a reasonable approximation as demonstrated by the

following experiment.
We consider the WB1_7440 and WB4_706(0 corpora once
more. Two page rank vectors, labeled 57 and 52, over these
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data sets are obtained by considering the vectors after 3 and
50 iterations, respectively, of the eigenvector computation
mentioned earlier. Note that the exact method of obtaining
these vectors is not relevant to the present experiment. The
fusing proportion 7 (= 1 — «) is varied over the values 0.25,
0.50, and 0.75.

We first compare the two vectors in the following naive
manner. We choose each word in the corpus as a single-
term query and stem them using Porter's algorithm [25].
An inverted index is created for each data set. Now, for
each stem word w in the corpus, the list of documents
containing that stem is extracted, and the TFIDF [26]
vector, T, is computed. Let the corresponding page rank
vectors, of the same length as T, be called S and Sar,
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TABLE 1
Kendall and Degree of Discordance Values
Averaged over All Words

WHILEAL | R TN
chl:icu.:-:u | el | I ;hi;-;&-‘u D T BT
AN | nalan 3 g | Al rnk LA Kl (R
Al 40K | 00160 1 000z | Al =0K) 00222 1 (R
All V0K | 00000 s noaL2 | Al=0K) 00222 T (R
Top 00 | W10 | F DaEw EEEEE T
Tapy 5000 N1220 1 TLEAE | Top 300y (U130 | Gl
[ERELIE N S EEENETEE N

respectively. There are over 44,000 (44K) and 35,000 (35K)
distinct stems in WB1_7440 and WB4_7060 data sets,
respectively. When only the 5000 top ranked documents
are considered in these data sets, there are over 14K and
16K distinct stems, respectively.

MNow, for each word, we compute K'"%(5,,, S, ) and
K" (a8, + 8T, .08, + 3T,), which are the top k dis-
cordance values between 5, and 5%, and between the
fused vectors oS, + 587, and a8, + 67, respectively.
These quantities are averaged over all the words hr].-r
dividing their sum by the sum of all possible pairs for each
word, and the averages are denoted K7, .(5.5) and
DE( 5, 85) (where, as earlier, v = "f-’ ), respectively, reflect-
ing the quantities they estimate. Mathematically, if df, is
the number of documents in which w appears, the average
is computed as

2 E"_ j{l“--’- "':Hln- . f,'!"_J
S dfo(df, — 1)

K7y5(8.8) = (29)

and

2 K" (a8), + 8T,,aSs, + 8T.)
2 idfeldf — 1) '

The above procedure is repeated using just the top
5,000 documents in each data set. These averages, which
would have been the measurements from the traditional
rank comparison technique described earlier, are tabu-
lated in Table 1.

MNext, we employ the proposed metric to obtain an
approximation of the values in Table 1. The discordance
measures K7,.(5.5) and D75(5.5%) are shown in

¥

Table 2. Here, K775, 5) is the top & Kendall distance

¥

D7(8), 8) = (30)

K998, 5) normalized by all possible pairs of pages in
the union. Similarly, D75, S2) is the normalized version
of D¥(5,, 5). These computations are repeated for the top
5,000 pages of each data set and are also tabulated in

TABLE 2
MNormalized Kendall and Degree of Discordance Values
WL WD
Pz, : Hizuy g

L__"m:“.*_-:_ | Koo, - | i"?': |.'||-.|ss:i:-;'|':'-':l:' | iy -."I.'- | T | .ITJ-.-__E.
All (1K IEE ] TLENR2 | Al ek ILNZRS 1 TLiNIRT
ATHE0E) | GOLE0 | 1 | 00007 | AT =0E) | 00355 [ 1 [ 0.003%
ATTH0E] | 0080 |4 | 0ions | ATT 0Ky [ 00255 | | 4000l

fop 30 | i | 3 | 03 | Top s | oo | 3| aasz
Top &0 I2nd [ TLANTE | Tap S1eX] 11,11 | R
TE ETE N ST T T T




BHAMIDIPATI AND PAL: COMPARING SCORES INTENDED FOR RANKING

TABLE 3
EFl for 20 States of India

ik RIHTFS Ikl ik RIETH [Ey
I Gujara 040 Ll Clrigza 052
a Arthty Prndesh 11,5 13 e 1,31
A Bocrala n.a 11 Liar ratesh 1311
4 Chbartiszach 0.57 14 Wost Bonpal 0.50
A Tl Mindn 137 1% it il Preclesh 131l
[§ “aharaghira n;in 11 Taarkhamd n.20
7 Eajusthan 0.53 (R Fuminb bz
L] iy ana 1L.45 13 Lokerarizbal 1124
El Medhva Tradesh n.55 1% Blhar N.20
1] limvme d Kushmir | 035 20 Asyim 022

Table 2. Note that the values in Table 2 are independent of
the content of the web pages, or to rephrase, the relevance
of pages to queries is not considered during ranking.

We observe from Tables 1 and 2 that the corresponding
values in Tables 1 and 2 are very similar and show similar
patterns and trends. For example, on the WB1_7440 data set,
when ~ is set to 1, the discordance value as found from the
naive experiment is (L0023, and its estimate turns out to be
0.0017. When the possibility of fusion is not taken into
consideration, the corresponding estimate is (.0189, which is
well away from 0.0023. The Dr} values in Table 2, however,
are all underestimates of the corresponding values in Table 1,
possibly due to the TFIDF scores not being uniformly
distributed. Nevertheless, these values differ significantly
from Kendall's v values and shrink as 7 is increased.
Moreover, it was also observed that, as 9 increases, the
shrinking happens for each word (and not just on average).

In conclusion, the proposed metric helps us directly
predict the discordance between the two page rank vectors
instead of taking recourse to the traditional rank-based
comparisons, which involve comparing fused vectors for a
large number of queries that, in the present case, run into
several thousands. In cases where more relevance factors
are involved (for example, search engines like Yahoo! and
Google weigh hundreds of factors to compute relevance
[27]), for comparing two variants of a particular factor, all
that is needed to be known is the fusion parameter (o) for
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the factor under consideration. That way, without knowing
the weights for the remaining factors involved, or even
what the exact factors are, one may estimate the amount of
discordance that could result from differences in the two
variants of this single factor.

6.5 Unifnrmly Perceived versus Actual Scores

This experiment is aimed at measuring the similarity
between the uniformly perceived and actual scores by
computing the distance 1. 5). In other words, this is an
attempt to quantify how much information is lost by
converting the scores toranks. For this purpose, the Economic
Freedom Index (EFI) data set is chosen, in which 20 states of
India were assigned a set of composite scores and were
ranked accordingly [28]. The data set is presented in Table 3.

For the EFI data set, the distance between ranks and scores
is 11.36. In order to be able to judge how good or how bad it
is, we generated several score vectors (of size 20) l.lI'I.ifﬂrl'l'I]:I.-’
and counted the number of times a score vector had a
distance of 11.36 or more from the perceived score vector.
The pvalue turns out to be 0.12, which indicates that only
about12 percent of score vectors are more separated from the
perceived score vectors. This, in turn, signifies that the scores
in the EFI data set are not very well represented by the
corresponding ranks (through the perceived scores). The
authors in [28] had expressed their opinion that the ranks did
not represent the scores well. The results of our experiments
now provide a quantitative evidence for the same.

The individual degrees of discordance for each pair of
states are displayed in Table 4. We have also computed the
p-values for each of the individual cells. For each pair of
states, we count the number of randomly generated score
vectors with a higher degree of discordance for the same
pair of states. All entries with the corresponding p-value less
than 0.05 are shown in bold, and there are 31 such values,
which is about 16 percent of the total of 190 entries. It may
be noted that the 31 entries in bold are not the largest entries
of Table 4. For example, the entry at position (3, 8) (0.12) is
larger than that at (3, 19) (0.06), however, the former is more
likely to occur than the latter.

TABLE 4
Degree of Discordance between the Actual and Uniformly Perceived Scores for Each Pair of States in the EFI Data Set
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7 ConcLusions anD FuTure WORK

This paper has dealt with generalizing measures of dis-
cordance for the case when the underlying scores are known.
A metric has been provided to compare score vectors
directly. This metric turns out to be the Kendall distance
when a parameter -, denoting the ratio of fusing proportions,
is large. Experiments of various kinds demonstrate the wide
range of theory and applications of the metric introduced in
the present work.

There is a tremendous scope for future work, induding
studying the cases where T is assumed to arise from
specific distributions, obtaining the properties such as
maximum and minimum of {5, 8) and D%5,.5:) for
particular values of -, and speeding up the cnniputaﬁ{m of
the proposed metric.
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