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Histogram Thresholding Using Fuzzy and Rough
Measures of Association Error

Debashis Sen, Member, IEEE, and Sankar K. Pal, Feflow, IEEE

Abstract—This paper presents a novel histogram thresholding
methodology using fuzzy and rough set theories. The strength of
the proposed methodology lies in the fact that it does not make any
prior assumptions about the histogram unlike many existing tech-
nigues. For bilevel thresholding, every element of the histogram
s associated with one of the two regions by comparing the cor-
responding errors of association. The regions are considered am-
higuous in nature, and, hence, the error measures are based on
the fuzziness or roughness of the regions. Multilevel thresholding
is carried out using the proposed bilevel thresholding method in a
tree structured algorithm. Segmentation, object/hackground sep-
aration, and edge extraction are performed using the proposed
methodology. A quantitative index to evaluate image segmentation
performance is also proposed using the median of absolute devi-
ation from median measure, which is a robust estimator of scale.
Extensive experimental results are given to demonstrate the effec-
tiveness of the proposed methods in terms of hoth qualitative and
quantitative measures.

Index Terms—FEdge extraction, histogram thresholding, image
segmentation, index of fuzziness, rough entropy, segmentation
evaluation.

I. INTRODUCTION

HRESHOLDING the histogram of an image, due o s
T simplicity and ease of implementation has been a popular
technigue used in various low-level image processmg tasks. A
plethora of bilevel histogram thresholding technigues exist in
literature for purposes such as separating the foreground from
the background in images [1]-[5] and removing the spurious
edges during edge detection [6], [7]. Multilevel histogram
thresholding finds application in partitioning an image into
different regions [1], [8].

Comprehensive reviews of vanous histogram thresholding
technigques are available m [9] and [10]. Most of these his-
togram thresholding algorithms are based on oplimizing certan
critena, searching certain features such as “valleys™ and “shoul-
ders,” or decomposing the histogram on the basis of modeling.
However, as mentioned in [11], such methods would perform
satisfactorily only when the histogram is “well-defined™ with
respect o the technigue vsed, that s, when the histogram
meets the prior assumptions made about it Some examples
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of histograms being “well-defined” are those which posses
specific characteristics such as prominent “valleys™ or “peaks,”
fit & particular model very well, or whose regions can be
approprately described vsing cerain homogeneily measures.
However, in practice, onge can nol guarantes thal images having
“well-defined™ histograms will be encountered. Hence, it is
desirable o have thresholding technigues that do not depend
on whether the histogram is “well-defined” or not.

In this paper, we propose such a bilevel histogram thresh-
olding method that assigns a bin of the histogram to one of
the two classes based on the computation of certain association
errors. The histogram of gray values n a grayscale image 1s
considered here, unless mentoned otherwise. In the proposed
methodology, the histogram is fisst divided into three regions,
say, bright (a region of larger gray values), dark (a region of
smaller gray values) and an undefined region. These regions
are obtained using two predefined gray values, which are called
the seed values. It s known (prior knowledge) that the bins
ol a histogram representing the smallest and the largest gray
value would belong to the dark and bright regions, respectvely.
Henee, we consider that the graylevel bins of the histogram
below the smaller seed value belong to the dark regon and
those above the larger seed value belong o the bright region.
Rest of the graylevel bins form the undefined region. Then, each
eraylevel bin in the undefined region is associated with the de-
fined regions, dark and bright, followed by the use of fuzzy
(index of fuzziness [4]) or rough (rough entropy [12]) set theory
to obtain measures of error due o the associations. The thresh-
olding 15 then achieved by companng the association errors and
assigning each graylevel bin of the undefined region to one of
the defined regions that corresponds to the lower association
error. A similar technigue that considers the similarity between
eraylevels for bilevel histogram thresholding has been proposed
in [11]. However, we find that certain aspects of the method in
[11]are flawed and, hence, might lead to incorrect thresholding
(see Secuon 1.

To carry out multlevel thresholding using the proposed
scheme, more than two seed values would be required. Unlike
bilevel thresholding, in the case of multlevel thresholding we
do not posses the pror knowledge required 1o assign all the
seed values. Hence, we present a tree structured wehnigue that
uses the proposed bilevel histogram thresholding scheme in
order o carry out mululevel histogram thresholding. In this
technigue, each region (node) obtamed at a particular depth
are further separated using the proposed bilevel thresholding
method o get the regions at the next higher depth. The required
number of regions are obtained by proceeding o a sufficient
depth and then discarding some regions at that depth vsing a
cerlain Crilenon.
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The effectiveness of the proposed histogram thresholding
methodology 1s demonstrated with the help of exlensive exper-
imental results and comparison with that of a few other existing
algorithms. We apply the proposed and existing schemes for
segmentation and edge extraction purposes, and especially use
images with not “well-defined” histograms. The dependency of
the proposed technigque on the required mput parameters, that
is, the seed values, is also examined by carrying out statistical
analysis.

We also present a new quantitative index o evaluate image
segmentation performance and refer it as the VMAD-index. The
proposed evaluation index measures varability vsing the me-
dian of absolute deviation from median (MAD) measure, which
15 & well-known outher rejecting (robust) estimator [13].

In Section 11, we present the measures of image ambiguity
used in this paper. The explanation of the proposed bilevel and
multilevel histogram thresholding methods are given in Sec-
tions 11 and IV, respectively. The proposed VMAD-index, var-
s experimental results and compansons, and parameter de-
pendency analysis of the proposed methodology are presented
in Section V. The paper concludes with Section V1L

II. MEASURING IMAGE AMBIGUITY USING INDEX OF
FUZZINESS AND ROUGH ENTROPY

Regionsin a grayscale image do not have well-defined bound-
aries. Moreover, a gray valoe does not have appreciable dis-
cernibility from the nearby higher or lower gray values. These
aspects of an image means that it is ambiguous in nature and
soare the areas inoan image corresponding o the dark, bnght
and undefined regions of the histogram. Ambiguily in images
can be quantified using fuzzy and rough set theories [4], [12].
Therefore, as mentioned earlier, we consider fuzey and rough
sl theories o measure cerlam association errors comesponding
to regions in the histogrm (see Sectuon 111). In this section, we
briefly explain the measures of image ambiguity that have been
used later in this paper.

A. Ambiguity Measure Using Index of Fuzziness [4]

Consider an {-level (graylevel) image { and let A be the uni-
verse of discourse of the I gray values with the elements repre-
sented by f v = 1.2, .., L. Let Abeaset in A which is given
as A =i, a6} In order to define A, all theelements &, in
A are associated with values from the interval [0, 1], which gives
the extent (membership) of possession of a patticular property
(that characterizes the set A) by these elements [
A s called a fuzey set and the Lum,spunding values associated
with {,, which are denoted by 2 4 L 1, are referred Lo as member-

cAuch asel

ship grades. Here we consider that p g represents the bnghiness
property [4] (defined on gray values) and use Zadeh’s S-func-
tion [4] to calculate the membership values as follows:

,i.!-_.L[:lri Ii= ‘?H!? i, b, r_‘.:l: = 2 R
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where o, A, and - are cenain gray values, b is refemred o as

the cross-over point given by [ [+ o]/ and a measure

Ah="0 a=uc biscalled the bandwidth of the fuzey set 1.

Index of furziness is & measure that can be used to quantify the

average amount of fueaness inthe set A and it s expressed as
g

e u_, WA Lfmfu-—srali " 2)

where pis a positive integer and yoa () is given by

Mallil =0,

=1, otherwise.

if o ifi0 = 000

When the value of @ L, the measure 15 called the hnear index
of fuzziness and when p = 2, it is called the gquadratic index of
fuzziness [4).

Now, let .Y be a portion of { having ¥ elements denoted
by o= L2 N Let H 4] represent the number of
elements in the array & having the gray value [; (that is, -,
£ In the notation of fuzzy sets, A may be considered as an
|40 pralma )1 }-
Therefore, the expression of the index of fuzziness in(2) can be
used to obtain a measure of ambiguity in X as follows:

array of fuzey singletons represented as ¥

. N Liw
r;}_lx' — TS Z, (poalra)  peaien) .*J;»
) i
2 o o
= ol — aha T
NI Z H.l-'-.|l'!f,l i-'_1--':a,-|,
F -1
I_.-'r.
x Hy U (3)

MNote that, the value of :vl:‘- lies in the range [, 1. Let us now
consider g pictorial interpretation of the formula given in (3).
Consider Fig. 1, where Hy and ;o are shown, As mentioned
earlier, foa represents the bnghtness property, which means that
the value of gy at each element gives the extent o which the
element is bright. When the value of j: 4 at an element is Oor 1,
it 15 not ambiguous o the decide whether the element 1s bright
or not bright. On the otherhand, when the value of ;i at an
element 15 greater than 0 and less than 1, 1t 1s ambiguous 1o
make such a decision aboul the element. In Fig. 1(a), the shaded
regionin fHf y represents the elements in A which are associated
with the aforesaid ambiguity. From the above explanation, it is
strmightforward that the formula in (3) gives an average measure
of ambiguity in X.

B. Ambiguity Measure Using Rough Entropy [12]

Let us again consider an L-level (graylevel) image I and let
A be the universe of discourse of the [ ogray values with the
elements represented by £, & 1,2, .. L. We now consider
the brightness property (defined on gray values) and define two
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Fig. 1. Image amhiguity measurement using index of furziness.

mutually exclusive sets Ay and B, respectively, representing
the “bright™ and “dark™ gray values in A as

_-'1.1_, = {i.‘.l l!\; = A -':.,' > 'IJ} [4}
B ALILEA:L b (5)

As can be seen, Ay, and £, are defined such that Aq L) M, = AL
The gray value b is called the cross-over point. Now, as in-
discernibality 15 created by the similarity between nearby gray
values in the universe A, granules or induced equivalence
classes (of equal size) are obtained by partiioning A. A granule
in A contains gray values which are considered similar o each
other. As mentoned in [12], the granules are obtained such
that the gray walue & s never at the boundary of a granule.
Let us denote the size of the granules in A by w. We consider
the ambiguity in A as the limited discernibility in its subsets
created by the similanty between nearby gray values and then
use rough set theory o obtain the lower approximations of A;
and Ay, which are given as

Ay =1 Ay Bl © ) (6)
i, = {_f:; e :lf\;]_,. o= H,«,_} (7)

and the vpper approximations of Ay, and &, which are ex-
pressed as
Ap =g A b A # 8] (8)
Oy L e Al By 2 B} (9)
where |1, . stands for granule of size w containing the ¢lement

{;. The rough entropy measure [12] quantifying the ambiguity
in the universe A is given as

FERPNIY —% [1?_4:_ log, (H'__L-' j + fig, log, (hi)]
I "

(107

where

5
e

Iy =1- g, =1-— :
A 3 |-H|,|

In the above, |4, |, Az, |B,, and |By| are the cardinalities of

the sets A,. Ay, 5. and B, respectively.
Nowy, as considered earher, let X be a portion of £ having v
elements denoted by iy, 0 = 1,2, 00 N Let I () represent

4,
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Fig. 2. Image ambiguity measumment using rough entmpy.

the number of elements in the array X having the gray value {
ithatis, «, ;). Inorder to find the rough entropy measure of
ambiguity in A&, we define

T il T sl
L R L L
B =1 sy AR S e (0
LEA, . £8.

We then obtain the expression for the rough entropy measure of
ambiguity m A as

px iy
—% [l?‘; lesw, ( 1'_:"" ) + 0t log,. ( b ! j] (12)
- £ : £

Mote that, the value of #£;% lies in the range [0, []. Let us
now consider a pretonial interpretation of the formula given in
(12). Conswler Fig. 2, where H . A, A Hyand B are shown
As mentioned earlier, the lower and vpper approximations of
Ay and By are considered as limited discernibility exists due
o the similadty between nearby gray values in A, When an
element belongs to the lower approximation of a sel, it means
that the element totally possesses the property chamelenzing
the set (for example, every element in A, is bright). When
an element belongs to the lower approximation of the set
of “bright” gray values {A,} or to that of the set of “dark”
eray values [D.), it is nol ambiguows to the decide whether
the element 15 bright or dark. On the otherhand, when an
element does not belong to both A, and JI,, it is ambiguous to
make such a decision about the element. Therefore, we infer
that the limited discernibility doue w the similanty between
nearby gray values in A leads o the aforesaid ambiguity.
In Fig. 2, the shaded region in Ay represents the elements
in X which do not belong to both 1 and H,. From the
above explanation, it s strmightforward that the formula in
(12} gives a measure of ambiguily in Y.

R E I.:“x

111. BILEVEL HISTOGRAM THRESHOLDING BASED ON
ASSOCIATION ERROR
In this section, we propose a methodology w carry oul
bilevel histogram thresholding that does not make any prior
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assumpton about the histogram. Let us consider two regions
in the histogram of an image T containing a few graylevel
bins comresponding to the dark and bright areas of the image,
respectively. These regions are obtained using two predefined
gray values, say gq and . with the graylevel bins in the
FANZE [Gp. fmex Tepresenting the initial bright region and
the graylevel bins in the range g, w9 representing the
mital dark region. The symbols g, and gy represent the
lowest and highest gray valve of the image, respectively. A
third region given by the graylevel bins in the range (g4, )
is referred 1o as the undefined region.

Now, let the association of a graylevel bin from the undefined
region to the initial bright region causes an error of Frerg
units and the association of a graylevel bin from the undefined
region 1o the initial dark region results in an error of Tirg
units. Then, if Ervy 5 Erey (Rrew = Ervgl, it would be
appropriate 1o assign the graylevel bin from the undefined
region o the baght (dark) region. As boundaries i an image
are nol well-defined and nearby gray values are indiscernible,
one can naturally consider the various areas inoan image as
ambiguous regions. Hence, the mitial dark and bright regions
of the histogrom will epresent two ambiguous areas in the
image. Therefore, fuzzy and rough set theory, which have
been extensively used o handle ambiguity, may be used 1o
quantify the associalion errors.

A, Proposed Methodology

Here we present the methodology o caleulate the ermor
caused due to the association of a graylevel bin from the
undefined region o a defined region. Using this method we
shall obtaim the association errors corresponding o the dark
and bright regions, that is, Fre, and Fyey. Bach of these
association errors comprise of wo constiluent error measure
referred to as the proxmmily emror and the change emor.

Let ff; represent the value of the ith bin of the histogram
of a grayscale image I. We may define 5, the array of all the
graylevel bins i the mitial bnght region as

He =[Hs 1 ie (3], where
T 7 i IR T (13)
and 5., the aray of all the graylevel bins in the imbal dark
FEZHN 4%

Sp=[IF i e ;. where

1. 1a]. (14)

G = [mine-- -« e
Now, consider that a graylevel bin from the undefined region
corresponding w a gray value g, has been associated o the ini-
tial bright region. The baght region after the association 18 rep-
resented by an array 5y as

Gy =[H} ¢ C {57, where

{’:E = Lr_1||'1.-. SR ! | I _."_1'1::::!]
I

H! =lelewhere.

ILowhen i g,ord 2 o)

(15)
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In a sirmilar manner, the dark region after the association 18 nep-
resented by an array 5 as
By =[H? ¢ Y] where
{-;g = [gmh,. R i S ,_r;,.L]
e I when (i
I =l elsewhere.

[FI T R N
(16)

Inorder todecide whether the graylevel bin corresponding to the
gray value g, belongs to the bright or dark region, we need to de-
terminge the comesponding errors Ferg and Py As mentioned
earlier, our measure of an association error [ Forr ) comprises of
a proxamily error measure o, ] and achange error measure (o).
We represent an associalion error as

Ervr =+ fet +o

“F

(17}

where «x and ;7 are constants such that e+ &+, and wy, ke values
from the same range, say. 1,17,

In order w detenmine the errors ry, and e, comesponding 1o
the bright and dark regions, let us consider the arrays 5 and 573,
respectively. We define the change error due to the association
in the bright region as

b _ AmBISET = AmbiSy)

AmblER — A 'rnl';[.‘:ff i

(18}

where the army ";f‘ 15 oblamed by replacing #7 by 0 57
and Ambi Sy gives the ambiguity in the image region repre-
sented by the graylevel bins in an array Sy as a real value in the
range 1, | . The function Armlbi(-) is implemented using fuzey
or mough set theory, which shall be explamed later. Now, in a
similar manner, the change emor due o the associnon in the
dark region 15 given as

i Amb{S}— ATIL}JI:.‘-::';]

e o (19)
Anhi 57 4+ Amh( 5y
where the amray .‘:"j 15 obtained by replacing H7 by O in 5.
It s evident that the expressions in (18) and (19) measure the
change in ambiguily of the regions due to the association of i,
and, hence, wereler the measures as the change errors. The form
of these expressions is chosen so as to represent the measured
change as the contrast in ambiguity, which i given by the ratio
af difference in ambiguity to average ambiguity. As can be de-
duced from (18) and (19}, the change errors would take values
in the range —1, 1|, It is also evident from (18) and (19) that
the change error may take a pathological value of 71, In such
a case, we consider the change error o be 1.

Next, we define the proximity errors due to the associations
in the bright and dark regions, respectively, as

A mh':; S-!:;r ,.:'

i

'
‘ RS —
and ¢, =1

(207

T (21)
In the above, we take f.:’f , if  x _'F"J.Iub-fﬁ;fj} = LIt will
be evident later from the explanation of the function Awmbi-],
that the ambiguity measures in (200 and (21) mncrease with the
merease in proximity of the graylevel bin corresponding 1o g,
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Fig. 3. Various defined armys shown for a multimodal histogrmm.

from the comesponding regions. Thus, the expressions in (20)
and (21) give measures of farness of the graylevel bin come-
sponding Lo g, from the regions, and, hence, we refer the mea-
sures as the proximity ermors. The symbol C s a constant such
that the values of e.';';; and e:f when g, equals g — Land g7 + 1.
respectively, are the same and, hence, the proximity error values
are nol biased towards any region. As can be deduced from (20)
and (21), the proximity ermors would take values in the range
[11, 1]. The various arrys defined in this section are graphically
shown in Fig. 3.

The implementation of function Awbi ) using Fuzzy Sets and
Rough Sets: Let us first consider an array Sg which has the
graylevel bins comesponding to the gray values given in another
array say f7o and let the length of the arays be &y, We shall
now define an array X,,, as follows:

N = Colll sy (Gl Nal]s, 0] (22

where a notation [G;gfl"]_-.,-“ {13 Tepresents an array formed by re-
peating the value (7, {1, .‘:?._;l:'l ) number of tmes. Considering
the array X, asthe army Y (portion of animage) mentioned in
Section 11, the index of fuzziness and rough entropy based mea-
sures of ambiguity in X, can be calculated. One of these mea-
sures is considered as the output of the function Arbs!- applied
tothe array 50 and represented as AmbU S )0 Note that arrays
G ;fr and 5‘“;_-‘

Amb{s,
Al 5%%, and _'—"Lullli.f&:_.:*‘_! are given in a manner similar to the
ong explained above.

From Sectuon 1L we find that we need wo define the cross-over
point A, the bandwidth Ab of the S-function and the granule
size (] in order w calculate the index of fuzziness and rough
entropy based ambiguity measures. For the caleulation of the

such as ¥, can be obtained for the arrays 55, 5}

defined earlier, and, hence, the measures Amb! 571,

association errors cormesponding to the bright and dark regions,
we define the respective cross-over points as

e oy
by, — 23
7 5 (23)
and Ay u (24)

Considerng the above expressions for the cross-over points and
the explanation in Section 11, it can be easily dedoced that the
ambiguity measures in (20 and (21 ) increase with the merease
in proximity of the graylevel bin corresponding to g, from the
defined regions, as mentioned earlier.

While calculating the association emors corresponding o
both the baght and dark regions, it 1s important that same
S-function bandwidth (Al and same granule size [w] be
considered. Although any constant value can be assigned 1o
Ahoand w, as suggested in [4], we vary the values of Al and
woover a range. As presented carlier in (17), the errors doe o
the association of g gray value from the undefined region to the
dark and the bright region are mven as

(25)

(26)

Frrpg=ia+ ‘5ch + {'f

y . el i o
By =io | Zeld | o)

We calculate the association emrors Erey and Ervy for all
graylevel bins corresponding to g, & [, ge]. that is, the
graylevel bins of the undefined region. We then compare the
corresponding  association ermors and assign these graylevel
bins w one of the two defined (dark and bright) regions that
corresponds to the lower association error. In (25) and (26),
we consider 0 = 5 = (1.5 and, hence, force the range of
contribution from the change errors to |0, 1], same as that of the
proxmmity errors. Thus, the bikevel thresholding 1s achieved by
separaling the bms of the histogrm mto two regions, namely,
the dark and the bright regions.

As mentioned in Secuon 1, a bilevel thresholding techmigue
similar to the one proposed in this section has been eported
in [11]. The authors in [11] have considered the indeces of
fuzziness of the two defined regions afler the association of a
graylevel bin from the undefined region as measures of simi-
larity and then compared these similanty measures (fuzziness)
corresponding to the two defined regions in order Lo cary out
the thresholding operation. Here, we point oul two extremely
important aspects of the algorthm in [11], which are flawed
and might lead o incorrect thresholding.

1y 1t is appropriate to compare two fuzziness values only
when they have been caleulated using similar member-
ship functions having the same bandwidth (same units).
Although the algonthm given in [11] vses similar mem-
bership functions for calculating the fuzziness values,
same bandwidth 1s not guaranteed.

20 Let us consider the emor due to the association of a
graylevel bin of certain value in the undefined region o
the defined dark and bright regions be fery and Kivy,
respectively. Let the ambiguities in the initial dark and
bright regions obtained using the seed values are equal
Then, if the proximity of the graylevel bin under consider-
ation from the bright region 1s greater than that from the



B84

dark region then fpee must be less than Fryy and vice
versi. The algorithm mven i [ 11 ] does not guarntee such
a condition.

The above problems do not exist in the proposed methodology.

IV, MULTILEVEL HISTOGRAM THRESHOLDING BASED ON
ASSOCIATION ERROR

In this section, we extend the bikevel histogram thresholding
methodology proposed in the previous secuon o the multilevel
histogram thresholding problem. One way of carying out this
extension would be to formulate a function of the gray values
in the undefined region based on their fvry and Fery, measures
and then search for a predefined number of local optima in the
funcuon and consider them as the required thresholds. But, this
approach would have the following drawbacks.

1) Presence of a predefined number of local optima would
not be guaranteed and, hence, such an algorithm may not
always be feasible.

2) As mentioned above, the function of the gray values would
bebased on Eregand B measures. Note that these mea-
sures are obtained vsing two seed values representing the
mnitial dark and bright regions. Thus, as the function would
relate to the association errors obtained with respect o two
initially defined regions, it is inappropriate 1o get multiple
regions (multlevel thresholding) in the histogram based
on such a function. In order to camy out multilevel thresh-
olding, multple seced values should be used.

As mentioned in Section L we donot posses the prior knowledge
required o assign more than two seed values. Therefore, we un-
derstand that the concept of thresholding based on association
ermr can be used Lo separate a histogram only o two regions
and then these regons can further be separated only into twore-
gions each and so on. From this understanding, we find that the
proposed concept of thresholding using association emror could
be used m a tree structured technigue inorder o carry out mul-
tilevel thresholding.

Nowy, let us consider that we require a multikevel histogram
thresholding technigue using association error in order 1o sep-
arate a histogram mto 8 regions. Let £} be a non-negative in-
teger such that 25=% = & < 27 In our approach to multilevel
histogram thresholding for obtaining @& regions, we first sepa-
rate the histogram into 2'7 regions. The implementation of this
approach can be achieved using a binary tree structured algo-
rithm [14]. Note that in [14], the binary tree structure has been
used for elassification purposes, which is not our concem. lnour
case, we use the binary tree structure to achieve multlevel his-
togram thresholding vsing association error, which 1s a totally
unsupervised technigue. We list a few characteristics of a binary
tree below statmg what they represent when used for association
ermr based multlevel histogram thresholding.

1) A node of the binary tree would represent a region in the

histogram.

2) The oot node of the tree represents the histogram of the
whole image.

3) The depth of a node is given by TF. AL any depth 7t we
always have 22 nodes (regions).
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Fig. 4. Separation of a histogmm imo three regions using the proposed multi-
level thresholding hased on association error,

4) Splitting at each node is performed vusing the bilevel his-
togram thresholding technigue using association error pro-
posed in the previous section.

53 All the nodes at a depth £2 are terminal nodes when our
goal is to obtain 27 regions in the histogram.

Inorder to get € regions from the 2 regions, we need to declare
certain bilevel thresholding of histogram regions (node ) at depth
17— 1 as invalid. In order to do so, we define 8 measure (10 of a
histogram region based on the association ermrors Erey and Flery,
obtained for the values of g, (see Secton 1) comesponding 1o
the histogram region as follows:

Z. Evrglya ! + Evrralg,)

He g

(27)

where g,. g0 and g are the same as explamed in the previous
section, except for the fact that they are defined for the under-
Iying histogram region and not for the entire histogram. We use
the expression in (27) o measure the suitability of the applica-
ton of the bilevel histogram thresholding technigque o all the
histogram regions at the depth I — 1. Larger the value of + for
a region of the histogram, more is the corresponding average
association ermor and, hence, more 15 the suitability. Hence, in
order to get B regions, we declare the bilevel thresholding of
27 — (3 least suitable (based on «) regions at depth £ — | as in-
valid, and, hence, we are left with & regions at depth IY. Fg. 4
graphically demonstrates the use of proposed multilevel thresh-
olding technigue using association emor in order wo obtain three
regions (Regions 1, 2, and 3) in the listogram. The values ¢ and
g gives the suitability of the application of the bilevel thresh-
olding on the two regions at depth I = 1.

V. EXPERIMENTAL RESULTS AND COMPARISONS
In this section, we provide experimental results evaluating the
performance of the proposed bilevel and multilevel histogram
thresholding methods and compare them with that of a few ex-
isting algorithms. We use the proposed and other thresholding
technigues o carry oul segmentation, object/background sepa-
ration and edge extraction in mages.

A. Segmentation and Object/Background Separation

The use of the proposed thresholding methodology in per-
forming segmentation and objectbackground separation in im-
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1g algorithms applied to extmet blood vessels in an angiogmphy image. (a) Image. (h) Histogram.

() Seg. by (i) (d) Seg. by (ii). (e) Seg. by (iii). (£) Seg. by (iv). (g) Seg. by (v). (h) Seg. by (vi). (i) Seg. by (vii). (j) Seg. by {viii).

ages 15 presented here. Both gquanttative and qualitative eval-
uation of performance are considered for study and compar-
isons. Quantitative evaluation methods can be classified into
those which require ground ruth and those which do not. Seg-
mentation resulls can be evaluated by homogencity based mea-
sures such asthe f-index [ 15] which do not require ground truth.
The expression for S-index is

i '
DD MRy

g=" (28)
20 by B
i=14—1

where ¢ gives the number of regions obtaimed after the segmen-
Lation process, my is the number of pixels in the ith region, /;;
is the gray value of the §4h pixel in the ith region of an image
£, 4; is the mean of the gray values in the ¢1L region and [ is the
mean of the gray values in the image {. In the case of evaluation
of object/background separation in images we have » 4

Note that S-index uses sum of squared distance from mean
as the undedying measure of variability. It is well-known that
such a measure of variability does not reject extreme values or
outliers effectively. Hence, the presence of a very few extreme
values of vanation could have a greater effect on the S-index
measure than the significant majority of moderate values of vard-
ation. We suggest that a segmentation evaluation index should
ignore the effect of an insignificant minority of extreme values
of variation (unlike S-index), and, hence, we present an alterna-
tive segmentation evaloation index in this regard.

A segmentation evaluation measure—VMAD-index:

Here we propose a new homogeneity based index, which is
less affected by extreme values of variation, 1o evaluate segmen-
tation mesulls quantitatively. We call this index as the VMAD-
mndex which calculates the rato of the total variation inan image
Lo the sum of within-region vanations. We use the median of ab-
solute deviation from median (MAD) measure [13], which 1s a
well-known robust estumator of scale, in order o quantify the
vanations. Hence, the VMAD-index 15 not heavily influenced
by a minority of extreme values of variation and it is given as

Mad( {1 — Med (1]

VMAD = —
EI,‘_—J « Med( | ;; — Med[T0)0

(29

where Med A represents the median element value in the array
A and I;7;, stands for the gray value of the %L pixel in the image
{. The symbols /¢ and n; are the same as the ones defined
for (28), wy is the number of pixels in the image T and T, rep-
resents the Ll region in the image £ It is evident from (29)

that for an image, the VMAD-index increases with increase
in homogeneity n the regions and, hence, higher the value of
VMAD-index better the segmentation. The VMAD-imndex takes
values in the range [0, =] for a given value of ¢ (¢ is a inleger
with | < ¢ < L, I being the number of graylevels). Note that,
in order to quantify the varations, one may also use the 5, or
i}, measure proposed i [16], which are also robust estimators
of scale having certain advantages over the MAD measure. We
shall use both S-index and VMAD-index while presenting the
quantitative results of the proposed and other histogrm thresh-
olding technigues.

Letus first consider the visual assessment of segme ntation re-
sults in different images in order to evaluate the qualitative per-
formance of the various techniques. The technigues considered
for comparison are: (i) thresholding based on fuzzy measure of
association errors (proposed), 1) thresholding based on rough
measure of association errors (proposed), (i) Otsu’s method
[1]. (iv) method by Kapur et al. [2], (v) method by Kittker er
al. [3].0vi) Tsai's method [5], (vii) fuzzy graylevel similarity
based thresholding [11], and (vin) thresholding based on index
(hinear) of fuzziness [4). These methods will henceforth be re-
ferred using therr corresponding numbers in the paper.

In Fig. 5, an angiography image is considered and the goal
is 1o extract the blood vessels. The number of occurrences of
a few gray values are very large compared to the others in the
histogram of this image. As can be seen from the figure, the
proposed methodology outperfomms the others as 1t extracts oul
the thinner blood vessels successfully. An mmage of a galaxy 1s
considered in Fig. 6. The graylevel histogram of this image 1s
almost unimodal in natre and, hence, extracting multiple me-
gions from it 15 a nontrivial task. We ose the proposed mula-
level thresholding scheme and the varnous other schemes 1o find
out the total extent and the core region of the galaxy. It s evi-
dent from the figure that the resuls oblained using the proposed
methodology 15 as good as or better than the others.

Let us now consider the quantitative evaluation of segmen-
tation results. Table 1 lists the gquantitative measures of object/
background separation and segmentation performance of the
various thresholding algorthms. The serial numbers in the first
(left most) column of the table represent vanous images used,
whereas those in the first (Lop most) row represent the technigues
considered. Object/background separation has been camied out
on the first five images [images { 1(5)] and multiple region seg-
mentation has been pedformed on the rest of the images.

In the evaluation on the basis on the proposed VM AD-index
and A-index, a higher value indicates betier object/background
separation or segmentation. Note that both these measures are
based on the intra-region homogeneity and the homogeneity of
the whole image. Although our methodology [technigues (1)
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Fig. 6. Qualitative perffonmance of the various thresholding algorithms applied to find the core and extent of the galaxy inan image. (a) Image. (b) Histogram.
() Seg. by (i), ) Seg. by {ii). (e) Seg. by (iii). (£) Seg. by (iv). (g) Seg. by (v]. (h) Seg. by (vi). (i) Seg. by {viii).

TABLE 1
CQUANTITATIVE RESULTS OBTAINED USING THE VAROUS THRESHOLDING TECHNIQUES ON [NFFERENT IMAGES

[ migges T Tewchoepees: [ v [ i [ [ [iv) L6l ] [viil Jeini)
il R T L5k LT ENITY 1.20 e 1.2 ]
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(&R G-index EX3] 5.03 [ 52 3 L. b
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4 A-inde S 4,12 Gdiv 1.03 3.ZH L. 532
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and (i)] 15 based on the calculation of cerlain association er-
rors which do not use any image homogeneily measure, the per-
formance is comparable (o the others in terms of both VMAD-
index and J-index. Moreover, it 1s evident from the able that
if we consider the evaluation only in terms of the proposed
VMAD-index, our technigues outperfomm most of the others.

We find that the proposed VMAD-index relates more to the
visual observation of the segmentation results. For example,
consider the image (2) in Table L I 1s the image which 1s con-
sidered in Fig. 5. The VMAD-imdex like the qualitative results
suggests that the proposed methodology performs better than
the others, whereas the S-index does not. This 1s due o the
fact that the J-index measure is influenced by outliers unlike
the VMAD-index.

MNote that as described in Section LI two gray values g and
fnoare needed o be predefined in order o use the proposed
thresholding methodology. We have considered (for 256-level

erayscale images) gy = gpin | 20 and go = gpax 200

B. Edge Extraction

We present here the use of the proposed thresholding method-
ology in carrying oul edge extraction from images of gradient
magnitudes, relerred o as gradient images. 1 1s mentioned in
[17] that quantitative evaluation of edge detection, which does
not use ground truth, s often misleading especially when used
on images with complex scenes. As our pnime goal 15 1o com-
pare the proposed thresholding methodology o others, we shall
use only qualitative evaluation 1o judge the perdformance of edge
extracton by the various echnigues.

Gradient magnitude histograms are in general unimodal and
positively (night) skewed in nature. In hiterature, very few tech-
niques have been proposed o carry out bilevel thresholding in
such histograms. Among these technigues, we consider the fol-
lowving for companson: (1%) unimodal histogram thresholding
technigque by Rosin [6] and (x) the thresholding technigue by

Henstock er al. [7]. In addition to the aforesaid techniques, we
also consider here some of the existing thresholding techniques
mentioned previously in this section.

As mentioned earhier in this section and in Section 1L two
gray values gy and gy are needed as inputl parameters inoomder
o use the proposed thresholding methodology. While using the
proposed thresholding methodology on gradient images, o and
s represent two gradient magnitude values and we consder the
inpul paramelers as g, Penive ] [L e |1 and g
fss — e [10 gues 1. The notation g .., denotes the gLl per-
centile of the gradient magnitude in the distnbution (gradient
magnitude histogram).

Figs. 7 and 8§ give the qualitative evaluation of the edge ex-
traction performance of the varous thresholding algorithms. In
Fig. 7, we find that the proposed technique does much better
than the others in determining the valid edges and eliminating
those due w the inherent noise and texture. In Fig. 8, we find
three regions in the gradient image. One (white) represents the
gradient values which surely comrespond to valid edges, another
(black) represents those which surely do not comespond o valid
edges and the third region (gray) represents the gradient values
which could possibly comespond w valid edges. Such multilevel
thresholding i gradient magnitude histograms could be used
along with the hysteresis technique suggested i [ 18] in order 1o
determine the actual edges. We see from the figure that the pro-
posed technigues perform as good as or better than the others.
Note that, edge thinning has not been done in the esults shown
in Figs. 7 and 8, as it is not of much significance with respect o
the mtended compansons.

C. FParameter Dependency of the Proposed Methodology

As given in Secton I the proposed bilevel thresholding
methodology requires two mpul paramelers, namely, gy and g,
which give the range of element values belonging to the initial
regions. The perdormmance analysis of the proposed methodology
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Fig. 8. CQualitative performance of the vanous thresholding algorithms applied to obtain the edge, nonedge and possible edge regions ina gmdient image. (o) Image.
{b) Histogram. {c) Edges by {i). {d) Edges by {ii). {e) Edges by {iii). (f) Edges by (iv). {g) Edges by {v ). {h) Edges by {vi).

TABLE 11
PARAMETER DEPENDENCY ANALYSIS OF THE PROPOSED FUZZY (F) AND RouGH {R) SET THEORY BASED THRESHOLDING METHODS
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would be mcomplete without assessing the dependency of the
proposed technigques on these inpul paramelers.

In orderto assess the dependency of the algorithms on theinpul
parameters, we consider fifteen different images (11-115) and
apply the proposed bilevel histogram thresholding technigques
on them in order o cay out object/background separation. Six-
teen different pairs of mmpul parameters are used o get different
threshold values and the vanation in the threshold values is then
analyzed statistically. Table ITists the meanof absolute deviation
from the mean (MADL) and the median of absolute deviation
from the median (MAD2) of the threshold values for each mage
I1 1o 115 obtained using the sixteen different pairs of paramelers
with the proposed techmigque of thresholding based on fuezy
(denoted by F)and rough (denoted by R) measure of association
ermors. Then we present the 99% confidence interval within
which the MADI and MAD2 measure would hie, considering
the MADI and MAD2 measures as values of random vanables
having normal density functions with their mean and standard
deviaton as the sample mean and sample standard deviation of
the MAD] and MAD2 values, respectively.

We see that the 99% confidence intervals of the MADI and
MAD?2 measures for the proposed thresholding  techmiguoe
based on fuzey measure of association errors are [0 11.128]
and |1} L3210, respectively and that of the MADI and MAD2
measures for the proposed thresholding wehnigue based on
rough measure of association errors are 24279 83335 and
|2.006305.8358 | Therefore, we see that, ingeneral, thedifferencein
threshold values obtamed using the proposed methodology with
different parameters 15 around 10, and, hence, the dependency of
thetechnigues ontheinput parametersis notol muchsigmificance.

V1. CONCLUSION

In this paper, a novel bilevel histogrum thresholding method-
ology has been proposed. Each element of the histogram has
been associated with one of the two regions by companng the
corresponding errors doe to the associtions. The errors due 1o
associations have been obtaned wsing image ambiguily mea-
sures given by the linear index of fuzziness or the mough entropy
measunes. The proposed bilevel thresholding methodology has
then been used ina tree strucured wcehnigue o present a novel
multilevel histogram thresholding algorithm.

The proposed methods of bilevel and mululevel thresholding
do not make any poor assumptions about the histogram unlike
many existing technmques. The proposed methodology has been
used o perform segmentation and edge extractuon on grayscale
and gradient magnitude images, respectvely. A new guantita-
tve index called the VMAD-mndex has also been proposed 1o
evaluate image segmentation performance. The VMAD-index
has been based on the median of absolute deviation from me-
dian measure, which 15 a well-known robust esumator of scale.

Cualitative and guantitative performance of the proposed
methodology have been studied and compared to that of a few
existing thresholding technigues. The methods based on mea-
sures of associbon error have been found suitable for images
with different kinds of histograms. Extensive expenmental
results have suggested that the proposed techmgues perform as
good as or better than the others.
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