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Hough transform network 

J. Basak and S.K. Pal 

A two-layered Hough transform network is proposed which 
accepts image co-ordinates as the input and learns the parametric 
forms of the lines in the image adaptively. It provides an efficient 
representation of visual information embedded in the connection 
weights. It not only reduces the large space requirements, as in the 
case of the classical Hough transform, but also represents the 
parameters with high precision. 

Introduction: The Hough transform [ 11 is a transformation from 
image space to parameter space in such a way that pixels belong- 
ing to a straight line form a cluster in the parameter space. A 
straight line can be parametrically expressed as 

r = x1 cos4 + x2 sin4 (1) 
where (x,, x,) is the co-ordinate of any point on the straight line 
and (r, Q) are the parameters of the straight line. Any point on the 
straight line in the image space can be viewed as a curve (sinusoi- 
dal in nature) in the parameter space passing through the point (r, 
Q). The parameter space is quantised and each slot represents a 
range (Ar, A$). An accumulator array (A)  is defined such that for 
any (r,,, go), A(r,,, $,,) is incremented by unity if any parameter 
value in the range (r,, f Ar/2, $,, f A@/2) satisfies eqn. 1 correspond- 
ing to a pixel. Thus from the effect of all pixels on the straight line 
in the image space, a local peak in the accumulator values will be 
formed around (r, Q). The straight line in the image can then be 
identified by detecting the local peaks in the accumulator. This 
technique has natural extensions for detecting curves and arbitrary 
shapes [2]. The identification of peaks in the quantised parameter 
(accumulator) space is one of the major problems behind applying 
the Hough transform to real life problems. It is often difficult to 
obtain the peaks by thresholding since the selection of the thresh- 
old is very much subjective and an improper selection may lead to 
several spurious peaks. Moreover, space requirements are another 
major problem of the Hough transform. For higher precision, if 
the slots are chosen to be very small then the required storage 
space becomes enormous. Also, this leads to the peak response 
being distributed over the neighbouring slots. On the other hand, 
for coarse quantisation, the precision in estimating the parameters 
becomes reduced. 

Here we describe a two layer neural network model, namely, the 
Hough transform network, for calculating the Hough transform. 
The network consists of two layers: input and output. Each output 
node is connected to all input nodes. The number of input nodes 
is equal to the dimensionality of the input space. For example, the 
network consists of only two input nodes when it accepts the 
image co-ordinates (in the object region) as the input. The number 
of output nodes is chosen to be equal to the number of straight 
line segments in the image. The connection weights from the input 
layer to any particular output node along with the threshold of the 
output node represent the parameter values of the corresponding 
straight line segment (or the hyperplane in the case of a higher 
dimensional input). The network accepts the image co-ordinates 
(i.e., (xl, x2) as in eqn. 1) sequentially as the input and learns 
adaptively the parameter values in the form of connection weights 
in an unsupervised mode. The activation in the output layer indi- 
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cates the straight line segment(s) (or hyperplane) to which the 
input pixel (or input vector) belongs. 

C d 

Fig. I Straight lines extracted by Hough transform network 
Maximum shifts in pixel locations: a 1, b 2,  , c 3, d 5 

Learning Hough transform: Eqn. 1 can be represented as 

where x = (x,, x2) is the co-ordinate of a pixel in the object region 
of the image. In the case of a higher dimensional input, x = (xl, 
x,, ..., x,) represents a variable on the hyperplane to be identified. 
8 is the distance of the straight line (hyperplane in the case of a 
higher dimension) from the origin (in the Euclidian sense), i.e. 8 = 
r, and C,w,’ = 1. A set of m such straight lines (or hyperplanes) can 
be represented as Wx = 8, where W is an m x n, matrix and 8 is 
an m x 1 vector. Each row of W corresponds to the parameter set 
of one hyperplane, i.e. Z,wi = 1 for all i. 

Corresponding to x, the input to the neural network, the output 
y is given as 

where U is the input to the output neurons, given as 

u z W x - 8  (4) 

A.) is a bell-shaped transfer function with peak at zero. We have 
chosen a Gaussian form of the function, i.e. 

y, = exp(-u?/P) ( 5 )  

If x belongs to the ith hyperplane then U, = 0, i.e. y, = 1, otherwise 
y, < 1. To learn W and 8, an objective function (a continuous and 
differentiable one) 

is chosen such that it is zero when yi is zero for any i. The param- 
eter a > 0 determines the steepness of the function near minima 
(i.e. a f ied  point). As a increases, the steepness decreases. The 
weight matrix W and 8 are updated in order to decrease E. Fol- 
lowing the steepest gradient descent rule, the weight updating is 
given as 

where p is a constant of proportionality and y = ap. Similarly, the 
change in 8 can be represented as 

The learning rate for 8 is considered to be /cy, where k is a con- 
stant. The change in w,, should be such that at any iteration 
X,wt ( t )  = 1 for all i. After normalisation of W, the updating rule is 

Considering X,wi ( t )  = 1 ,  and Awt,{t) to be sufkiently 
respect to w,(t), 

w2, ( t  + 1) = 

7 

(9) 

small with 
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WJ(t) + ~ f’(U,(t))(ZJ(t) - WJ(t)(U,(t) + OZ(t))) 

(10) 
1 - Y%(t)  

Note that, in the principal component analysis network [3] also, 
the same kind of normalisation is performed with different activa- 
tion functions. From eqns. 5 and 10, the learning rule becomes 

The parameter h determines the width of the bell shaped activa- 
tion function. For small values of h, the activation function is 
highly localised. Therefore the hyperplanes become slightly per- 
turbed by the distant points. This is necessary when the dynamics 
of the network settles to the desired stable state. On the other 
hand, for large h the attraction of the hyperplanes towards the dis- 
tant points are small, thereby, making the network very inefficient. 

Let, in the vicinity of the desired futed point, the weight matrix 
W and 8 be perturbed in such a way that it makes the objective 
function E zero for the given sample point, i.e. 

where ADy = [Ay,, Ay2, ..., Ayn] is the change in output due to the 
updating of W and 8. Near the fxed point (minima), the required 
change in y is small and therefore we can restore only the first 

I -  

order terms of Ay in eqn. 12, i.e. 

Therefore 

The change in U is given as 

Auz(t)  = uz(t + 1) - uz(t)  

where X = Z$. The change in the output y for small changes in U 
can be written as 

(&I log( i) [ k + X - ( ~ , + 6 ’ , ) ~ ]  = - 1 (16) 
cy 

The updating rules reveal the fact that the changes in the parame- 
ter values are independent of the selection of h. The parameter h, 
however, is implicitly embedded in the output y of the network. 
Initially, when the parameter values of the network are far from 
the fxed point, the denominator is very small. To account for this 
situation, the learning rate is clamped to a constant value when 

the denominator is very small. Near the optimal solution, the 
learning rate changes according to eqns. 17 and 18. 

Seven different straight lines are synthetically generated in a 100 
x 100 image. The pixels on the straight lines are randomly shifted 
both horizontally and vertically. The maximum shifts in pixel 
locations are 1, 2, 3, and 5 as shown in Fig. lu-d, respectively. 
Parameters a and h are chosen as 2 and 5, respectively. The learn- 
ing rate is clamped to 0.05ia when the denominators of eqns. 17 
and 18 are less than 20a. The value of k is taken to be equal to 
the average distance of the points from the origin. The straight 
lines depicted are those identified by the network. 

Conclusions: The Hough transform network is able to learn the 
parametric forms of the lines in all unsupervised manner, and pro- 
vides an efficient model for the learning and representation of vis- 
ual information. The space requirements are much lower than 
those of the classical Hough transform and also the parameters 
can be represented with very high precision. The network can be 
naturally generalised to higher order models for determining 
curves and arbitrary shapes. Here the number of line segments 
present in the image is assumed to be known. This restriction can 
also be relaxed by incorporating the self-organising mechanisms 
into the network. 

0 IEE 1999 I 1  Februarv 1999 
Electronics Letters Online No: 19990283 
DOI: 10.1049/el:19990283 
J. Basak and S.K. Pal (Machine Intelligence Unit, Indian Statistical 
Institute, Calcutta 700 035, Indiu) 

References 

1 BALLARD, D., and BROWN, c.: ‘Computer vision’ (Prentice-Hall Inc., 
Englewood Cliffs, NJ, 1982) 

2 BALLARD, D.H.: ‘Generalizing the Hough transform to detect 
arbitrary shapes’, Pattern Recogn., 1981, 13, pp. 11 1-122 

3 OJA, E., KARHUNEN, J., WANG. L., and VIGANO, R.: ‘Principal and 
independent components in neural networks - recent 
developments’. Proc. Italian Workshop on Neural Networks, 
WIRN’95, Vietri, Italy, 1995 

2.5Gbit/s free space optical link over 4.4km 

G. Nykolak, P.F. Szajowski, G. Tourgee and H. Presby 

A new record in terrestrial free space optical transmission, 
2.5GbiUs (single channel) over a 4 . 4 h  range is reported. Optical 
data are transmitted over a horizontal path through the 
atmosphere, error free, using a specially designed optical 
telescope-transceiver, a conventional 1550nm laser transmitter, 
2.5Gbitis receiverhegenerator and a high power optical amplifier. 

Introduction: Terrestrial free space optical communications is 
becoming an attractive alternative or adjunct to both RF wireless 
and, in some instances, to fibre as well. Free space optical commu- 
nication is licence free, and secure over a line-of-site link. By com- 
bining advances in device technology taken from 15501x11 fibre 
optical systems with new telescope designs, free space optical com- 
munications can provide multi-gigabit transmission capacities in a 
cost effective manner with high availability [l]. 

Our demonstration uses a pair of custom developed optical tele- 
scope terminals, a directly modulated DFB 1550nm laser and a 
2.5 Gbit/s digital lightwave receiverh-egenerator. The input to the 
free space optical terminal is a singlemode fibre. The optical signal 
from a directly modulated DFB laser source is connected to the 
terminal’s input. This signal is equally divided three ways and sent 
to three separate transmitting apertures, that are part of the termi- 
nal unit. Each aperture element is adjusted to provide approxi- 
mately 0.5mrad divergence to the existing beam. In this way, the 
transmission path through the optical terminal is completely opti- 
cally transparent. The receiver portion of the optical terminal uses 
a Schmidt-Cassegrain telescope configuration, with an effective 
receiving area of 0.025m2. The transmitted free space optical sig- 
nal enters the receiving terminal and is effectively coupled to a 
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