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pointed out for an ideal error-free measurement system, the
sensitivity of Bayes’ rule in feature selection is sometimes quite
low and hence should be treated carefully for the nonideal case
also. Nevertheless, any strategy for feature selection should in-
clude a component with minimum average measurement error.
Relaxation of the assumption that stage 1) is perfect may be
treated as follows. If the number of prototypes is small but
feature measurement is accurate, the estimated parameters may
deviate from its true value. If the deviation is small, the tolerance
of misclassification probability may be studied by sensitivity
analysis. This problem along with nonparametric classification
problem in a noisy environment will be reported in future.
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Abstract— An application of the theory of fuzzy sets in understanding an
image is demonstrated. The task of understanding consists of three parts—
1) representation of image contours by their respective chains of octal
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codes, 2) smoothing of the chain to remove spurious wiggles, and 3)
segmentation and assignment of degree of “arcness” to each segmented
smoothed chain in order to extract their primitives for description. Octal
code is provided to a two-pixel or, even more length contour by taking
maximum of its grades of membership corresponding to “vertical,” “hori-
zontal,” and “oblique” lines. Four different smoothers have been used to
eliminate the spurious wiggles occurring in the contours. Segmentation of
edges into different curves and lines is made on the basis of constant
increase / decrease in code values. The primitives for description and
interpretation of images are extracted by assigning the appropriate mem-
bership value which provides a measure of curvature to the different arcs.
The sense of curving is also determined. The effectiveness of the algorithm
is demonstrated when a gray tone edge-detected X-ray image of wrist is
considered as input.

I. INTRODUCTION

Pictorial pattern recognition may be considered to be a twofold
task, namely, image processing and image understanding. Image
processing primarily involves enhancement, restoration, smooth-
ing, sharpening, and other noise-reduction techniques in order to
isolate the objects in the picture. Input and output are therefore
both the images, with output an improved version of input. In
image understanding the input is an image, but the output is an
interpretation and description of the various figures characteriz-
ing the objects (contents) of the input image. This correspon-
dence presents an algorithm for computer-based description and
interpretation of contour outlines of objects in an image.

The various approaches developed so far for line representa-
tion, shape description, and figure interpretation [1]-[17] in an
image are based on either the heuristic principles in artificial
intelligence or on the topological information of patterns. The
heuristic way of interpretation and recognition involves selection
of an observation and then its evaluation with respect to the
predictions made by the current hypothesis. Rubin [13] used an
artificial intelligence search technique (called locus) to recognize
the major buildings, rivers, and other objects from the photo-
graphs of the city of Pittsburgh, PA, given a knowledge base of
over 50 objects. Other investigators [14] used edge-detection and
line-finding techniques for linear feature extraction, which identi-
fies the linear features like roads and airport runways from the
aerial images. Topological properties of patterns (geometric con-
figurations), on the other hand, have been successfully used in the
cases of description of alphanumeric characters [4], recognition of
handwritten characters [9), interpretation of finger prints [5],
studying the connectedness and convexity of figures [2], and
finding the convex hull of a digitized figure [15]. Recently, Tou
[15] developed an algorithm for computer-based interpretation
and description of different curves, single-loop, and multiple-loop
figures using their topological information. This information was
extracted from the corresponding octal-coded chains which were
assumed to be the input to the system. In practice the conversion
from a contour to its coded version poses many problems.

In this correspondence we present a model, Fig. 1, which
demonstrates an application of the theory of fuzzy sets [18]-[22]
in automatic interpretation and description of gray tone edge-
detected images. The procedure involves the following operations.

1) Encoding of image contours in order to represent them by
their respective one-dimensional octal-coded strings. Octal chain
codes are used because of storage requirements, ease of manipu-
lation, ease with which it can be adapted to standard display
techniques, and simple topological properties [15], [23]. We use
this code to describe multiple-pixel length contour by taking the
maximum of its grades of membership corresponding to “ verti-
cal,” “horizontal,” and “oblique” lines.

2) Smoothing of the chains to remove the spurious wiggles in
the contours. Here we have used four smoothing operations.

3) Segmentation and assignment of degree of “arcness” to each
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segmented smoothed chain in order to extract the primitives of
the contours for interpretation and description of image. Degree
of “arcness” is provided by defining a suitable fuzzy membership
function which measures the amount of curvature of an arc.

In this model the input is assumed to be an edge-detected
image. It should be noted that there are numerous algorithms
available in the texts [24]-[28] for detecting the edge contours of
objects in an image. The effectiveness of our algorithm is demon-
strated when a gray tone edge-detected image of an X-ray of the
wrist is considered as input. Digital computer CDC-6400 was
used for numerical analysis.

II. Fuzzy SETS AND MEMBERSHIP FUNCTION

A fuzzy set A with its finite number of supports x,, x,,- - -, X,
in the universe of discourse U is defined as

A= {py(x;)/x:}s

where the membership function p ,(x;) having positive value in
the interval [0, 1] denotes the degree to which an event x; may be
a member of or belong to 4.

Let us now define membership functions of some basic primi-
tives which have been used here for interpretation and descrip-
tion of X-ray images. These primatives are often encountered in
generation and recognition of geometrical figure, character,
numeral, finger print, etc. The fuzzy set of straight lines labeled
“vertical,” “horizontal,” and “oblique” are defined as

vertical=fp,,,(x)/x (1a)
horizontal = [ (x)/x (1b)
X
oblique = [ oy (x)/x, (1)
p
where
F,
p() = { Ty | 0 Imel > (22)
0, otherwise
1 - F, <1
pr(x) = { |m,| [m,] . (2b)
0, otherwise
1 — fl_::_ﬂéi fe 0 < |n1 | < o0
Bop(x) = 45 ’ x (2¢)
0, otherwise.

m, (= tan@) is the gradient of a straight line x making an angle
6 with the horizontal line H, as shown in Fig. 2(a). p, (x), p 4 (x),
and po,(x) represent the membership function for vertical,
horizontal, and oblique, respectively, of this line x such that

pr(x) =1 as|f] - 90°
pu(x)—>1 as|f|—0°
Boo(x) =1 as|f] — 45°

and
py(x) 2 py(x)as|f| 2 45°.

The positive constant F, which controls the fuzziness in a set is
known as the exponential fuzzifier [21], [29].

Block diagram of description model.

Vv

~<.
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Fig. 2. Membership functions. (a) Line. (b) Arc.
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Fig. 3. Direction of octal codes.

Similarly the grade of membership of a line segment x to be an
“arc” may be expressed by the function

e () = (1 - %)F 3)

where a is the length of the line joining the two extreme points of
an arc x as shown in Fig. 2(b) and / is the arc length such that the
lower the ratio (a//) is the higher is the degree of “arcness.” In
other words it provides a quantitative measure of curvature of an
arc.

In the next section we will show how the previously described
membership functions have been implemented in order to encode
and interpret the image contours.

III. ENCODING

The contours of an M X N dimensional gray tone edge-
detected image were encoded into one-dimensional symbol strings
having “NC” octal codes (Code;, i = 1,2,- - -, NC) by using the
rectangular (octal) array method shown in Fig. 3. In this method
an octal code is used to describe a w-pixel (w > 1) length contour
by taking the maximum of its grades of membership correspond-
ing to “vertical,” “horizontal,” and “oblique” lines (1). This
approximation of using a w-pixel (instead of one pixel) length
line saves computational time and storage requirement without
affecting the system performance. The block diagram for en-
coding images is available from the author (also see Appendix A).

During scanning operation of the image the system first looks
for a nonzero pixel intensity (starting point (xsp, ysp)). Its move-
ment to the next pixel is then determined by the “max” operator
on the values of the eight neighboring pixels. In case the max
value is possessed by more than one pixel (i.e., at a multiple-
crossing pixel, as shown in Fig. 4), the final decision is taken by
choosing that direction which most closely matches that of the
previous description of the path. Of course this matching proce-
dure is not used until some codes (say NC = 5) have been
generated. A flow chart of the matching algorithm (available
from the authors) with respect to codes (Code;, j = 1,2,---,
NALT) shows that there are “NALT” number of possibilities of
the resulting movement. In the case of ambiguity a maximum of
“NMATCH?” preceding codes are considered to decide the con-
tinuing direction. If this is still indecisive the first code is accepted.
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Fig. 4. Multiple-crossing pixel.

It is to be mentioned here that all but the multiple-crossing
pixels are deleted after their consideration. Retention of the
multiple-crossing pixels enables us to use these pixels on the
return path, and hence to continue the description of other
contours connected to them. Although the starting pixel for each
contour has been initially deleted, we need to replace it after a
certain length of string has been produced. This permits the
system to decide if the contour is closed. Provision is also made
in the algorithm for temporarily storing the coordinates
((xst, yst);, j=1,2,---,10) of the ten previous pixels. This
allows the machine to be able to retrace its path in case it gets
lost in undesirable side tracks (lost path) which may have been
generated from the main one during the operation of edge
detection of the image. The contour description corresponding to
the lost path is not finally taken into consideration.

IV. SMOOTHING

After a string of NC octal codes has been produced by the
encoding algorithm (as described above), we use four different
smoothers on it to eliminate those symbols which were generated
due to spurious wiggles in the contours. The resulting smoothed
chain then consists of NCM symbols where NCM < NC. Let us
now explain the principles of the four smoothing algorithms
which have been tested in the smoothing block of Fig. 1.

A. Smoother-1

A code which is preceded and followed by a specific number
(e.g., four) of other identical codes is either replaced by the
neighboring code if it represents an oblique line, or deleted,
otherwise. For example consider the combination ““ * * * + *.”
If the asterisks and the plus sign represent horizontal /vertical
and oblique lines, respectively, we simply replace the plus sign by
an asterisk, keeping the number of codes constant. On the other
hand if the plus sign denotes either a horizontal or a vertical line
we delete it, thus making a reduction in codes by unity. The
reduction technique is logical if we look at Figs. 5(a) and 5(b)
corresponding to two different cases. For both cases the length of
curves (the net displacement) after smoothing remains unaf-
fected.

The same principle of replacement/deletion is also applied for
the combination “ * + + * * % * +” or its other forms where two
identical codes + + aie preceded and followed by, e.g., six other
identical codes.

B. Smoother-2

In Smoother-1 we see that the number of changes in a set of
codes to be smoothed is two. The second smoother, on the other
hand, smooths all those combinations having three or four such
changes in code values, e.g., a) “ * + .* * *” or other combina-
tions where four identical codes preceded and followed two other
codes and b) “* + P+ *xx %47 “x 4 4 xxxxx” “x
+.***x*xx” or any other combinations where six identical
codes preceded and followed only three other codes. A flowchart
for Smoother-2 (available from the authors) shows that the typi-

Rl

(a) (b)

Fig. 5. Principles. (a) Replacement. (b) Deletion.
TABLE I
REPLACEMENT DIGITS FOR DIFFERENT COMBINATIONS OF CODES
1 2 3 4 5 6 7 8
1 22 2 8 ’8
2 3 1 8 1
3 22 44 4 2
4 2 3 5 6
5 4 44 66 6
6 8 4 5 7
7 88 8 6 66
8 1 2 6 7

cal replacement/deletion procedure is the same as used in
Smoother-1. A, is equal to five and eight for categories a) and b),
respectively.

C. Smoother-3

Two adjacent inverse codes (like one and five, two and six,
three and seven, and four and eight) are omitted in this algo-
rithm. A simple way to find the inverse of a code is to add /sub-
tract four if it is less /greater than four. Another way is by adding
“four” modulo eight.

D. Smoother-4

Smoother-4 is based on the principle that within a group of
four (or three) codes having zero-total vector rotation, each pair
(or only one pair) is replaced by a digit or a pair of digits
depending upon its combination. Table I illustrates all such
possible replacement digits when the absolute difference (subtract
from eight if the difference is greater than four) in code values of
a pair is either two or three. When the difference is unity we
simply delete the code representing vertical or horizontal line.

Double-digit entries are shown in Table I when the pair is
formed between two codes denoting oblique lines. Such a replace-
ment does not permit reduction in the length of string.

V. SEGMENTATION AND INTERPRETATION

The next task before extraction of primitives and interpretation
of contours is the process of segmentation. The flowchart for
segmenting (available from the authors) the smoothed chain into
different curves and lines shows that splitting up of the chain is
dependent on the constant increase /decrease in code values. For
extracting an arc we segment the string at a position whenever we
find a decrease/increase after constant increase/decrease in val-
ues of codes. Again, if the number of codes between two succes-
sive changes exceeds a prespecified limit (LARC), a straight line
is said to exist between the two curves. In the case of a closed
curve we have kept provision for increasing the length of the
chain by adding the first two starting codes to the tail of the
string. This enables one to take the continuity of the chain into
account in order to reflect its proper segmentation.
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After segmentation we need to provide a measure of curvature
along with direction to the different arcs, and also to measure the
length of lines in order to extract the primitives of contours. The
degree of “arcness” is obtained by assigning the appropriate
membership values p,.. (3) to them. For measuring the length of
a line we assume that “LRATE” number of codes make one unit
of straight line where LARC = LRATE + 1. As soon as the final
segment position of any segment is obtained, the system com-
putes the number of lines (preceding) and then p,. of the
following arc. This consecutive measurement process continues
for each segment until the end of the chain is reached, when it
finally computes the number of ending lines.

For measuring p,.. using (3) we have used the codes between
initial and final segment positions (inclusive) in order to compute
the length / and the diameter a of the arc. If a code represents an
oblique line, the corresponding increase in arc length would be by
V2w, w being the pixel-length of line denoting the code. Other-
wise increase / by w. Arc diameter is computed by measuring the
resulting shifts Am and An of spatial coordinates due to those
codes in question. For example we consider a sequence of codes

5667

denoting an arc where Codeggy; = 5 and Codeggye = 7. Here
we have forw =1 and F, = 0.5

Am=140+1-1=0
An=—-1-1-1-1=-4
a=V(Am*> + An?*) =4

I=1414+ 14+ 1+ 1.414=42328
and

Pare = 0.414.

Since Codegiur is greater than Codeg;yy; the sense of the curve
is positive (clockwise).

VI. IMPLEMENTATION AND RESULTS

Fig. 6 shows an 145 X 128 dimensional gray tone edge-
detected image [22], [27] of a part of the wrist containing radius
(with epiphysis and metaphysis) and a part of two carpal bones.
To implement the abovementioned algorithm we have consid-
ered w = 2, LRATE = 3, NMATCH = 10 and F, = 0.5. A com-
puter-based description of the contours is explained in Fig. 7.

Here, L, A, and A denote the “straight line,” “clockwise arc,”
and “anticlockwise arc,” respectively. Suffices of L and A4 repre-
sent the number of line units and the degree of “arcness” of the
arc A. For example L; denotes three units of straight line, and
Ay 54, indicates that the sense of the arc is negative and its degree
of “arcness” measuring the amount of curvature is 0.541.

Now among these varying membership values of arc, one can
use a threshold according to his problem in order to select a
specific set of primitives. These primitives, which can describe the
contours, would then be used to develop a grammar such that an
unknown string representing some contour can automatically be
recognized using the syntactic pattern-recognition technique.

As a typical illustrative case, the coded strings (before and
after smoothing) of only contour ii) have been shown here. The
arrows (| ) indicate the positions of segmentation. Application of
the four smoothers has reduced the lengths of the strings (except
for contour v) greatly.

Again we consider a part (shown by the arrowed lines in Fig,. 6)
of contour ii) as an example to demonstrate the encoding and
smoothing algorithms, which have been described in Sections III
and IV. The octal-code representation before and after smoothing

<

Fig. 6. Input image showing gray tone contour outlines of part of wrist.

operations (with w = 2) of that part of the contour is shown by
the respective underlined strings. The corresponding pictorial
representation of these strings is sketched in Figs. 8(a) and §(b).
Fig. 8(a) gives an approximate version of the part of the contour
in question as obtained using algorithms based on the concept of
fuzzy sets. Some of the undesirable small loops are also found to
be eliminated. The four algorithms have further approximated the
shape of that segment (Fig. 8(b)) by smoothing the direction of
contour, thus simplifying the problem of extracting its primitives.
It should be noted here that the first two smoothers may disturb
the total bend around a contour (Fig. 8), but as an approximation
it does not really affect much as far as its syntactic recognition is
concerned.

VII. CONCLUSION

The concept of fuzzy sets is found to be applied successfully to
the problems of computer-based description and interpretation of
gray tone contour outlines of an X-ray image. The ultimate aim is
to recognize the images using the syntactic pattern-recognition
technique, which needs a suitable grammar to be developed
before classification of the image contours. The extracted primi-
tives can therefore be used to program such a grammar.

Contours have been encoded using fuzzy membership func-
tions corresponding to “vertical,” “horizontal,” and “oblique”
lines. Although we have considered the line segments of two-pixel
length it can be extended to longer line segments, making the
encoding technique more approximate but yet effective. The
problem of choosing final code at a multiple crossing point is
solved by measuring the closeness of the possible code values
with the previous codes.

Smoothing algorithms are seen to be effective in removing the
spurious wiggles in a contour, and hence make the task of their
primitive extraction more convenient. These also reduce the
amount of data to be processed in the following segmentation
algorithm. The four smoothers we have programmed here are
sufficient to serve our purpose and are also expected (because of
their flexibilities) to be encountered very much in any practical
problem of the same line. Degree of “arcness” providing a
measure of curvature is used to extract the primitives of contours
for their final description.
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i) Starting point of contour :
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(22,1)
End of contour is reached at (129,1)
Number of octal codes = 166

Number of smoothed octal codes = 138

Description of the contour is as follows

Ly Ay 65 Lo Ao su1 L Ao ona L Ao 292 L1s Ro 533 Ly Ao 272 Us Ro.ues L2 Ao, sun

Ro.202 L A0 202

ii) Starting point of contour :

(24,1)
End of contour is reached at (119,1)
Number of octal codes = 355

Octal coded chain is as follows

211111111112223333333333328118 8788811212

33333333433334343312334343%4
4L33334333333335677677777777
551135355568777788787781881
87876L4hL45454454468888818788

433333443333
777666654355
818818188888

o o N W

557712176777

7177766744333344533365343455567557532343
56575544234355713356L4353244232333333322

221111881881888888818888824345L45L4L4L345

L54L5LL55L4555L5666777777667576676666

2tt11111111h1 2223

Number of smoothed octal codes = 317

Smoothed octal coded chain is as follows

l35333333332888888888111253

+
3333333333333333333333333333333333333335

67

4
4
299277772777 771766665555555555555'568777'78

8888888888888888888888888‘876&’&%&&%&&&&“66

gss88888886ss7797777777777 74 335333333333

' '
l3 4 5‘5 55 5‘5 313}3 5665544233 s's 7213356440404 3'3 33333

Lhbbbubububtus'ssss

5333222211118888888888888888888244450414144

bs6667'7977777'76%666666

(a)

Description of the contour is as follows

R, 272 12 Ao, 397 Us Ro euy L2 R0.u88 L1z Ro.757 U Ro.3u8 Lu Ao.euy Ro. 272

Ao, 202 Lg Ao, 902 U3 0,816 L2 Ro.6uu Po.5u1 Ly Ro.765 U3 Bo.ues © Ao, su

Ao.6u5 R0.587 %0.559 20.816 20707 Ro.272 Po.up Y3 Ro.u29 Ls 20,816 L6 Ro.272

L Ao, 397 L2 A0.292 L2

A0.272

L

iii)

iv)

v)

vi)

Starting point of contour : (133,1)

End of contour is reached at (120, 128)
Number of octal codes = 70

Number of smoothed octal codes = 58
Description of the contour is as follows

Ly Ao su1 L Ao, ues L Bo. 272 Ro.272 L Ro. 292 Ls Ao, 292 Y2 Ro. 272 Ro.sin

Starting point of contour : (39,128)
End of contour is reached at (1,86)
Number of octal codes = 32

Number of smoothed octal codes = 27

Description of the contour is as follows

40,202 L5 A9, 272 L

Starting point of contour : (54,128)
End of contour is reached at (100,128)
Number of octal codes = 27

Number of smoothed octal codes = 27

Description of the contour is as follows

Ro.202 L2 Ro.2p2 L Ro. 202 L3

Starting point of contour : (22,64)
The contour is closed

Number of octal codes = 132

Number of smoothed octal codes = 121

Description of the contour is as follows

11 %0.86 1y Ro.272 L Ro.e62 1y Po.598 1 Ro.2p2 Ro.765 Ro.816 Ro.272 ¥ Ro.765

(b)

Fig. 7. Computer-based description of contours

(a)

(b)

Fig. 8. Pictorial representation of string. (a) Before smoothing. (b) After
smoothing.
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expediency and e-optimality in a single-teacher environment are extended
by the introduction of an average weighted reward and are redefined for a
multiteacher environment. As an extended form of the absolutely expedient
learning algorithm, a general class of nonlinear learning algorithm, called
the GAE scheme, is proposed as a reinforcement scheme in a multiteacher
environment. It is shown that the GAE scheme is absolutely expedient and
e-optimal in the general n-teacher environment. Learning behaviors of the
GAE scheme in various multiteacher environments are simulated by com-
puter and the results indicate the effectiveness of the GAE scheme.

I. INTRODUCTION

The study of learning automata operating in an unknown
random environment was started by Tsetlin [1]. He considered
the learning behaviors of deterministic automata and showed that
they are asymptotically optimal under some conditions. The
learning behaviors of stochastic automata were investigated by
Varshavskii and Vorontsova [2], and since then have been studied
quite extensively by many researchers. Fu [10], Norman (7], [8],
Flerov [13], Chandrasekaran and Shen [6], Shapiro and Narendra
[9], Lakshmivarahan and Thathachar [15], etc., have contributed
many fruitful results to the literature of learning automata. Survey
papers written by Narendra and Thathachar [19] and Narendra
and Lakshmivarahan [23] contain most of the recent work in this
field along with the comments for future research.

However, almost all research so far has dealt with learning
behaviors of a single automaton in a single-teacher environment.
Recently Koditschek and Narendra [22] considered the learning
behaviors of fixed-structure automata acting in a multiteacher
environment. Thathachar and Bhakthavathsalam [24] then studied
the learning behaviors of variable-structure stochastic automata
operation in two distinct teacher environments. The behavior of a
collective of interacting stochastic automata in a single-teacher
environment was also considered by El-Fattah [26].

In this correspondence we consider the learning behaviors of
variable-structure stochastic automata acting in the general n-
teacher environment. In the first section brief explanations about
the stochastic automaton acting in the general n-teacher environ-
ment are given. In the second section the new concept of an
average weighted reward is introduced and several basic norms of
the learning behaviors of stochastic automata in the general
n—teacher environment are given. In the third section a class of
nonlinear reinforcement scheme in the general n-teacher environ-
ment is proposed. It will be shown to be absolutely expedient and
e-optimal in the general n-teacher environment. In the final
section several numerical examples which indicate the effective-
ness of our proposed learning algorithm are given.

II. STATEMENT OF THE PROBLEM

The learning behaviors of stochastic automata have been exten-
sively discussed under a single-teacher environment. Recently
Koditschek and Narendra [22] introduced the concept of learning
automata under a multiteacher environment. They considered
the learning behaviors of fixed-structure automata under the
multiteacher environment satisfying the condition (2). In this
correspondence we will consider the learning behaviors of varia-
ble-structure stochastic automata under the n-teacher environ-
ment satisfying the more general condition (1).!

Let us briefly explain the learning mechanism of the stochastic
automaton A under the n-teacher environment (NTE) (Fig. 1).

The stochastic automaton A4 is defined by the set (S,7Y,
W,g, P(t),T). S denotes the set of n inputs (i, i,, -, i,),
where i; (j=1,---,n) is the response from the jth teacher

'Koditschek and Narendra [22) considered the fixed-structure automata
operating under the multiteacher environment in which there is an action ¥y
such that

< ¢/ foralli(l <i<n),andallj, (1 <j<r.j=v). 2)
The condition (1) is more general than (2). Because it is assumed in (2) that all
n-teachers agree that the yth action, y, is the best one. That is the reason why
we call the environment satisfying (1) the general n-teacher environment.
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