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Abstract—This paper describes, in a neurofuzzy framework,
a method for the classification of different modes of radiowave
propagation, followed by generation of linguistic rules justifying
a decision. Weight decay during neural learning helps in imposing
a structure on the network, resulting in the extraction of logical
rules. Use of linguistic terms at the input enables better human in-
terpretation of the inferred rules. The effectiveness of the system is
demonstrated on radiosonde data of four different seasons in India.

Index Terms—Classification, neurofuzzy approach, rule genera-
tion, soft computing.

I. INTRODUCTION

ROPOSPHERIC radiowave propagation is one of the

important areas in the field of wireless communica-
tions. Radiorefractivity N (T, P, e, h) and the radiorefractivity
gradient AN are the key parameters to estimate the mode
of radiowave propagation, where T, P, e, and h denote the
temperature, pressure, vapor pressure, and height, respectively
(of the tropospheric region). The radiorefractivity gradient
AN can be divided into four basic intervals defined as
)0 > AN > —40 N — units’km, 2) =40 > AN >
—75 N — units/km, 3) =75 > AN > —157 N — units/km, and
4) AN < —157 N — units/km.

If the estimated AN is lying in interval 1, the mode of ra-
diowave propagation is said to be subrefracted. Under this mode
of propagation, the signal propagating to the receiver experi-
ences a greater loss and sometimes becomes too small to use.
The mode of radiowave propagation is said to be normal if AN
lies in interval 2. In the presence of normal refractive condi-
tions, a radiowave travels between a pair of transmitting and re-
ceiving antennas with moderate path loss. On the other hand, if
AN lies in interval 3 or 4, the mode of radiowave propagation
is termed as superrefraction or ducting, respectively. On the oc-
currence of superrefraction or ducting, the radiowave between a
pair of transmitting and receiving antennas propagate with least
path loss, which, in turn, improves the reliability and the perfor-
mance of the system.

Artificial neural networks (ANNSs) attempt to replicate the
computational power (low-level arithmetic processing ability)
of biological neural networks and, thereby, hopefully endow
machines with some of the (higher level) cognitive abilities that
biological organisms possess (due in part, perhaps, to their low-
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level computational prowess). However, an impediment to a
more widespread acceptance of ANNS is the absence of a capa-
bility to explain to the user, in a form comprehensible to humans,
how the network arrives at a particular decision. Recently, there
has been widespread activity aimed at redressing this situation
by extracting the embedded knowledge in trained ANNS in the
form of symbolic rules [1]-[3]. This serves to identify the at-
tributes that, either individually or in combination, are the most
significant determinants of the decision or classification.

The connection weights of the trained network are used for
extracting refined rules for the problem domain. This helps
in minimizing human interaction and associated inherent bias
during the phase of knowledge-base formation and also reduces
the possibility of generating contradictory rules. The extracted
rules help in alleviating the knowledge acquisition bottleneck,
refining the initial domain knowledge, and providing reasoning
and explanation facilities. Fuzzy neural networks [1], used for
the same purpose, can also handle uncertainty at various stages.
Rules extracted from such networks are more natural and can
involve linguistic terms in the antecedent and/or consequent
clauses.

The objective of this paper is to design a neurofuzzy deci-
sion-making system, in a soft computing paradigm, for classi-
fication of different modes of radiowave propagation. Rules are
extracted to justify a decision. The proposed system is able to
exploit the parallelism, self-learning, and fault tolerance char-
acteristics of artificial neural network models while utilizing
the uncertainty modeling capability of fuzzy sets. Soft com-
puting is a consortium of methodologies that works synerget-
ically and provides, in one form or another, flexible informa-
tion processing capability for handling real-life ambiguous sit-
uations [4]. Its aim is to exploit the tolerance for imprecision,
uncertainty, approximate reasoning, and partial truth in order to
achieve tractability, robustness, and low-cost solutions. There
are ongoing efforts to integrate artificial neural networks with
fuzzy set theory, rough set theory, genetic algorithms, and other
methodologies in soft computing paradigm [1].

In this investigation, we have used a fuzzy multilayer
perception (MLP) [5] to learn the relationship between the
input parameters 7', P, e, h, T, e,-, and h,. and the output class
AN. Here T,., e, and h, are the temperature, vapor pressure,
and height at the reference level (the height with respect to
which the higher level is subrefractive, normal, superrefractive,
or ducting). The model helps us in predicting the mode of
radiowave propagation from the measure of 7', P, e of the
tropospheric region at a particular height h. Studies have been
made using different network topologies. Links are pruned
using weight decay. The learning rate is gradually decreased.
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Extensive results are presented for various numbers of hiddamor than the described minimum error. Here minimum error
layers and nodes, using different sizes of training sets for tmeplies the root-mean-square error for estimating the propaga-
four major seasons. The trained network is used for subsequon factor. It was observed that estimates based upon range-de-
rule generation. pendent refractive structures provided substantially less error
Section Il provides a brief review on radio climatology. Th¢han estimates based upon homogeneous refractive structures
fuzzy MLP, used here, is described in Section Il for classifienly if they were sampled at intervals of two hours or less.
cation and rule generation. The results on radiosonde data ovasseur [16] measured and analyzed one year’s radiosonde data
India for the four major seasons are given in Section IV. Seit+ Belgium. He suggested a new method to estimate the tro-

tion V concludes this paper. pospheric scintillation on satellite links. Fruitful research work
in the area of radioclimatology and radiowave propagation is
II. RADIO CLIMATOLOGY : AN OVERVIEW being performed also in Japan with rapid progress. In this con-

nection, Manabe and Furuhama have published a very useful
review work [17].

Research on radioclimatology solely depends upon the avail-
ability of meteorological observations ontempera{urg, pres- B, Tropospheric Radiorefractivity and Its Gradient

sure(P), vapor pressurée), and various other related parame- . . . . .
ters.Radiosonde, instrumented tower, andthreaded kytoon * are The tropospheric radiorefractivity at a particular heigi}
n be expressed as

the standard in-situ techniques used to obtain measurements fo

A. Background

these parameters. The availability of these data or observations P 6 €
helps the research in the area of radiowave propagation, which N= 776? +3.75x 10 T2
is one of the important fields of wireless communications.
u , rele: , 77.6 4810e
To facilitate the research in radioclimatology and radiowave =7 P T (1)

propagation, Kulsrestha and Chatterjee [6]-[9] studied the dis-

at 850 and 700 mb levels based on five years of data collecig@ssure in mb, an@l is the absolute temperature in Kelvin. On
from 36 surface stations and 12 radiosonde stations situated Q¥fright-hand side of (1), the first term is called thgtermand
over India in 1968. During the course of these WOI‘kS, the he|g§tval|d up to 100 GHZ, with an error less than 0.5%. Likewise,

resolution was restricted to 1 kmin refractivity profiles. In 1974ne radiorefractivity of the reference level can be written as
the height resolution was improved by Majumder by taking re-

fractivity at surface and at 500-m altitude [11]. P, . e,

Prasad [12] has deduced the radio refractive index profiles N = 77'6f +3.75 % 106ﬁ )
from radiosonde data collected from 32 stations twice a day
(0000 GMT and 1200 GMT) for a period of five years. He ha@here the subscript denotes the reference level.
also studied the radioclimatology of some selected regions oveAfter the estimation ofV and V,., its gradientAN can be
India by taking simultaneous observations from kytoon, aifalculated as
borne microwave refractometer, and radar [12]. Measurement of N_N
radiosonde data over the eastern coastal belt of India reveals that AN = - -
this region involves significant diurnal, monthly, and seasonal "

changes, which in turn affect the performance and reliability Qfhere N is the radiorefractivity at higher level, is the ra-
different communication systems operating in the higher frgiorefractivity at reference levek, is the height of the higher

quency ranges. Keeping this in mind, Choudhetrgl. analyzed |evel, andh, is the height of the reference level.
the radiosonde data over Calcutta to estimate the percentage oc-
currence of different radiorefractivity gradients during different m
months and seasons over this region [13], [14].

Apart from this, many scientists have analyzed the radiosondel he fuzzy MLP model [5] incorporates fuzziness at the input
data and tried to apply the results directly to estimate the usediild output levels of the MLP and is capable of handling exact
parameters and factors of radiowave propagation. Rogers [{B}merical) and/or inexact (linguistic) forms of input data. Any
designed a useful experiment to study the effects of variabilityput feature value is described in terms of some combination
of atmospheric radiorefractivity on propagation estimates. Tl membership values in the linguistic property skts (L),
outcome of his results revealed that, for over-the-horizon ovenedium (M), and high (H). Class membership valugg) of
water electromagnetic propagation calculations at very high apaltterns are represented at the output layer of the fuzzy MLP.
ultrahigh frequencies in the southern California coastal regidburing training, the weights are updated by backpropagating
the assumption of horizontal homogeneity leads to little moegrors with respect to these membership values such that the

contribution of uncertain vectors is automatically reduced. A
schematic diagram depicting the whole procedure is provided in

IHere a kytoon-shaped balloon is not allowed to rise freely but the height

controlled by a nylon cord attached with the balloon. Using this technique, onﬁeg' 1. The various phases of the algorlthm are described below.

can make observations up to a height of 2 km. Rules are generated from the trained network.

®3)

Fuzzy MLP: CLASSIFICATION AND RULE GENERATION



864

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 51, NO. 4, APRIL 2003

b,
Fraed 4 M @
AL P m— (oA
g FjH M3 v

Fig. 1.

0.5

0

Fig. 2. Ther-set.

HLU‘;C’M

Block diagram of fuzzy MLP.

f

A three-layered feed-forward MLP is used. The output of a When the input feature is numerical, we usethiizzy sets
neuron in any layeth) other than the input laydi’ = 0) is

given as

1

h
Yy; =

Ltexp (-, 00 'w

h’—l)

(4)

whereggf"_1 is the state of théth neuron in the precedin@g’ —
1)th layer andw]’;_1 is the weight of the connection from the

ithneuronin layeh’ — 1 to thejth neuron in layeh'. For nodes
in the input Iayery? corresponds to thgth component of the

input vector. Note that” = 3, Yl Ly

A. Input Vector

An n-dimensional patteri; = [F}q, Fio, . ..

3

sented as arddimensional vector

(in the one dimensional form), with range [0,1] represented as

2(1- 7”5‘“"“)2 for 3 < ||F; — ]l < A
Y ) 7 X J >

. — 2
TEEN =N 1y (1) foro < 18y - o <

0, otherwise

(6)

where)(> 0) is the radius of the-function withc as the central
point. Thisis shown in Fig. 2. Note that features in linguistic and

set forms can also be handled in this framework [5].

Hence, in trying to express an inpHt with linguistic prop-

erties, one effectively divides the dynamic range of each feature

, Fin] is repre-

into three overlapping partitions, as in Fig. 3. The centers and

radii of ther functions along each feature axis are determined

automatically from the distribution of the training patterns.

F;, = [“low(Fu)(Fi)» s Mhigh(Fm)(Fi)] = [y?, y& cee ,ygn]
where 4 indicates the membership function of the correlia" Output Representation
sponding linguisticr-setslow, medium, and high along each  Let then-dimensional vectorey, = [o1 ... 0r,] @andvy =
feature axis ang?, ..., yJ, refer to the activations of then3 [v.1,...,vr,] denote the mean and standard deviation, respec-
neurons in the input layer. tively, of the numerical training data for tHgh classcy. The
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Fig. 3. Overlapping structure of functions.

weighted distance of the training pattdfpn from thekth class of the rules are in terms of the linguistic values at the input to
¢, is defined as which the path can be traced.

Algorithms for rule generation from neural networks mainly
n 2 . . . .
B Fij — ok 7 fall into two categories—pedagogical and decompositional [3].
Zik = Z Vij ) Our algorithm for rule extraction [20], [21] can be categorized
=1 as decompositional. It is described below.

whereF;; is the value of thgith component of théth pattern 1) Compute the following quantities:

point. PMean = mean of all positive weight®?T hres; =
The membership of théth pattern in class;, lying in the mean of all positive weights less th@f/ean,
range [0,1], is defined as [19] PThresy = mean of all weights greater thahM ean.
1 Similarly calculateNThres; andNT hress for negative
p(Fi) = ————— (8) weights.
14+ (/Tf) ‘ 2) For each hidden and output unit:

' (a) For all weights greater thaRT hress search for
where positive constangg and f. are the denominational and positive rules only, and for all weights less than
exponential fuzzy generators controlling the amount of fuzzi- NThres, search for negated rules only Bybset
ness in the class membership set an& {1,...,/} for an method.

I-class problem withi output nodes. (b) Search for combinations of positive weights

above P Mean and negative weights greater than
NThres, that exceed the bias. Similarly search for
In general, the primary input to a connectionist rule genera- negative weights less thaN Mean and positive
tion algorithm is a representation of the trained ANN, in terms weights belowPT hress to generate rules.
of its nodes and links, and sometimes the data set. One interThe Subset method [22] conducts a breadth first search for
prets one or more hidden and output units into rules, which malf the hidden and output nodes over the input links. The algo-
later be combined and simplified to arrive at a more comprehaithm starts by determining whether any sets containing a single
sible rule set. These rules can also provide new insights into thrk are sufficient to guarantee that the bias is exceeded. If yes,
application domain. The use of ANN helps in 1) incorporatinthen these sets are rewritten as rules in disjunctive normal form.
parallelism and 2) tackling optimization problems in the daféhe search proceeds by increasing the size of the subsets until
domain. Fuzzy neural networks [1] can be used for the sarak possible subsets have been explored. Finally, the algorithm
purpose and can also handle uncertainty at various stages. removes subsumed and overly general rules.
The fuzzy MLP is trained using backpropagation and the con-Let us now explain our algorithm with a simple example.
nection weights pruned with weight decay. The trained netwoY¥e consider weights having value greater thBfi'hress
is next analyzed for rule generation. The strong paths from the strong connections [plotted as thick lines for a sample
output nodes (classes) to the input (features), i.e., those patbsvork, as shown in Fig. 4(a)] and weights having value
having large magnitude, are extracted. We consider both pdsétweenP M ean and PT hress as moderate links (plotted as
tive and negative link weights in the process. The antecedentgmal lines in the figure). We obtainedT'hres; = 81.95,

C. Rule Generation
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Post-Monsoon data.

PMean = 161.18, and PT hress = 220.23. Similarly calcu-
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Calcutta. There are four seasosst-Monsoon, Winter, Pre-
Monsoon, and Monsoon, each contributing 360 pattern points.
The seven input features correspond to temperdtliyepres-

sure (P), vapor pressurée), height (h), temperature at ref-
erence levelT}.), vapor pressure at reference leyel), and
height of the reference levéh,.). The four intervals forA N

are mapped to three output classes, clubbing intervals 3, 4 to
class 3 only. These classes refer to subrefraction, normal refrac-
tion, and superrefraction and ducting, and are denoted as 1, 2,
3, respectively, in the results. The input features are split into
21 components in the linguistic space of (5). Cross-validation
of results is made with atmospheric science experts.

Various three-layered networks were used with different
numbers of hidden nodes and training sets. The training set size
x% refers to random, class-wise selectiomf training data
from the entire dataset. The remaining ¥, data constitute
the test set in each case. Different random initializations were
made, and consistent results were obtained for classification
and rule generation.

Tables I-IV provide the classification results for the
Post-Monsoon, Winter, Pre-Monsoon, and Monsoon data,
respectively, forr = 50,60,70 and hidden nodes 2, 3, 4, 5,

6. The mean square error refers to the squared error between
the desired and computed outputs at the output layer of the
network, averaged over the test set under consideration. Sets of
refined rules extracted from the network, considering only the
strong and moderate links, are also presented.

Fig. 4 depicts the positive and negative connectivity of a
pruned fuzzy MLP with five hidden nodes and 60% and 70%
training set, respectively, foPost-Monsoon data. Extracted
rules are as follows.

 For class 1 (subrefractive):
Positive: If T'is medium, P islow or medium, 7. is low,
h is medium or high, e,. is medium, A,. is low;
Negative: If P is nothigh, e is notmedium or high.
* For class 2 (normal-refractive):
Positive: If T is low or medium, P is low or medium, 7.
is low, h is medium, e is high, e,. is high;
Negative: If e is notmedium or high.
« For class 3 (superrefractive):
Positive: If P islow, e, is medium, h,. is low.
The validity of the extracted rules can be cross-examined on
the basis of experimental result obtained from the analysis of
radiosonde data as well as on the basis of mathematical ver-

gradient [(1)—(3)]. The expression of refractivity implies that the
radiorefractivity is directly proportional to pressufeand vapor
pressurez, and inversely proportional to temperatdfeand its

late NThresi, NMean, and NThress for negative weights. Suare tern?. It also shows that the vapor pressureon-
The corresponding network (representing only the negatifféPutes very largely to radiorefractivity, as it is multiplied by

links) is provided in Fig. 4(b), withNThres; =
NTMean = —162.64, andNThress = —279.46.

IV. RESULTS

a very high numerical value. Moreover, the expression for ra-
diorefractivity gradient [(3)] depicts that the condition of subre-
fraction will be fulfilled when the radiorefractivity gradietd /v

is less negative or positive. To satisfy this condition, mathemati-
cally the radiorefractivity at reference lew®]. must be slightly
greater or smaller than that of radiorefractivity at higher level

The radiosonde data consist of a set of 1440 patterns obtaigahilarly, for normal-refraction}V,, must be moderately greater
from the database of the Indian Meteorological Departmetihan N. On the other hand, for superrefraction and ducti¥g,
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TABLE |
RECOGNITION SCORESWITH Fuzzy MLP FOR POST-MONSOON DATA

Training | No. of training set testing set mean
set hidden class class square
size nodes 1 2 3 net 1 2 3 net error
2 66.67 94.83 61.54 | 85.21 | 40.00 | 84.72 | 49.02 | 71.94 | 0.0829
3 70.37 96.55 65.38 | 87.57 | 43.64 | 86.90 | 45.10 | 73.43 | 0.0732
50% 4 88.89 99.14 76.92 | 94.08 | 52.73 | 86.90 | 47.06 | 75.22 | 0.0492
5 96.30 100.00 | 76.92 | 95.86 | 54.55 | 87.77 | 49.02 | 76.42 | 0.0368
6 100.00 | 100.00 | 73.08 | 95.86 | 58.18 | 87.34 | 50.98 | 77.01 | 0.0314
2 51.52 96.40 61.29 | 83.74 | 40.00 | 89.96 | 54.90 | 76.42 | 0.0873
3 54.55 97.12 80.65 | 87.68 | 40.00 | 88.21 | 62.75 | 76.42 | 0.0746
60% 4 75.76 99.28 67.74 | 90.64 | 54.55 | 91.27 | 54.90 | 79.70 | 0.0589

5 90.91 100.00 | 74.19 | 94.58 | 63.64 | 93.01 | 56.86 | 82.69 | 0.0385 -
6 96.97 100.00 | 70.97 | 95.07 | 67.27 | 89.52 | 54.90 | 80.60 | 0.0356
2 | 83.49 78.43 | 69.23 | 79.20 | 79.22 | 68.28 | 58.93 | 71.55 | 0.1042
3 83.49 63.73 76.92 | 74.40 | 76.62 | 53.79 | 62.50 | 65.07 | 0.1280
70% 4 91.74 90.20 82.05 | 89.60 | 83.12 | 80.00 | 64.29 | 78.87 | 0.0688
5 76.32 98.16 83.33 | 92.41 | 61.82 | 87.77 | 70.59 | 80.90 | 0.0591
6 89.47 99.39 83.33 | 95.36 | 69.09 | 90.39 | 66.67 | 83.28 | 0.0435
TABLE I
RECOGNITION SCORESWITH FuzzY MLP FOR WINTER DATA

Training | No. of training set testing set mean
set hidden class class square

size nodes 1 2 3 net 1 2 3 net error
2 83.10 | 83.12 | 55.56 | 81.53 | 67.38 | 69.33 | 50.00 | 67.31 | 0.1017

3 92.96 | 92.21 | 77.78 | 91.72 | 71.63 | 71.33 | 55.56 | 70.55 | 0.0617

50% 4 95.77 | 92.21 | 77.78 | 92.99 | 78.72 | 62.00 | 65.56 | 69.26 | 0.0628
5 92.96 | 94.81 | 77.78 | 92.99 | 75.89 | 68.67 | 61.11 | 71.52 | 0.0620

6 98.59 | 97.40 | 88.89 | 97.45 | 77.30 | 74.67 | 66.67 | 75.40 | 0.0328

2 87.06 | 78.26 | 60.00 | 81.28 | 80.58 | 64.45 | 55.56 | 72.17 | 0.0910

3 94.12 | 92.39 | 80.00 | 92.51 | 77.70 | 69.08 | 61.11 | 72.49 | 0.0572

60% 4 95.29 | 96.74 | 70.00 | 94.65 | 84.17 | 77.63 | 61.11 | 79.61 | 0.0544
5 98.82 | 95.65 | 70.00 | 95.72 | 79.86 | 73.03 | 38.89 | 74.11 | 0.0490

6 97.65 | 97.83 | 88.00 | 96.79 | 84.17 | 80.92 | 66.67 | 81.55 | 0.0379

2 76.77 | 67.29 | 25.00 | 69.27 | 77.70 | 64.05 | 29.41 | 68.28 | 0.1168

3 88.89 | 85.98 | 50.00 | 85.32 | 80.58 | 75.82 | 52.94 | 76.70 | 0.0880

70% 4 90.91 | 87.85 | 75.00 | 88.53 | 80.58 | 79.74 | 70.59 | 79.61 0.0696
5 95.96 | 94.39 1 83.33 | 94.50 | 82.73 | 79.05 | 58.82 | 79.61 | 0.0474

6 97.98 | 97.20 | 83.33 | 96.79 | 88.49 | 81.05 | 70.59 | 83.82 | 0.0336

must be significantly greater thas, so thatA N may become were thoroughly scrutinized, and it was observed that the oc-

more and more negative. currence of this type of combination of atmospheric parameters
The extracted positive rule fdPost-Monsoon season (class leads to formation of subrefractive gradients for the majority of

1) shows that the subrefractive condition prevails when tempeases. On the other hand, theoretically, this type of combination

atureT’ at higher level is medium, pressufes low or medium, suggests that the radiorefractivity at the higher IeVelill be

the temperature at reference leffélis low, the vapor pressure medium, whereas the radiorefractivity at the reference 1ayel

at reference levet,. is medium, the height of the higher levelwill be moderately high (because is medium and’’. is low).

h is medium or high, and the height of the reference |léyes Therefore, the ternV — N,. in (3) will be a moderately negative

low. The analyzed radiosonde data for Bost-Monsoon season term and the termh — A, will be medium or high (becauseis
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TABLE 11l
RECOGNITION SCORESWITH Fuzzy MLP FOR PRE-MONSOON DATA
Training | No. of training set testing set mean
set hidden class class square
size nodes 1 2 | 3 net 1 2 3 net error
2 84.62 | 93.15 | 67.86 | 85.47 | 72.23 | 71.72 | 53.57 | 69.30 | 0.0789
3 89.74 | 94.52 | 64.29 | 87.71 | 75.32 | 74.48 | 41.07 | 69.58 | 0.0666
50% 4 97.44 | 98.63 | 67.86 | 93.30 | 77.92 | 76.55 | 41.07 | 71.55 | 0.0500
5 97.44 | 100.00 | 75.00 | 94.97 | 80.52 79.31 | 48.21 | 74.93 | 0.0400
6 96.15 | 98.63 | 78.57 | 94.41 | 80.52 | 73.10 | 51.79 | 72.96 | 0.0408
2 82.98 | 82.95 | 63.64 | 80.00 | 75.32 | 73.10 | 50.00 | 70.42 | 0.0933
3 88.30 | 90.91 | 69.70 | 86.51 | 78.54 | 75.17 | 57.14 | 74.37 | 0.0740
60% 4 93.62 | 89.77 | 75.76 | 89.30 | 83.77 | 75.86 | 55.36 | 76.06 | 0.0639
5 95.74. | 93.18 | 63.64 | 89.77 | 85.06 | 80.00 | 51.79 | 77.75 | 0.0593
6 97.87 | 100.00 | 78.79 | 95.81 | 84.42 | 82.07 | 53.57 | 78.59 | 0.0374
2 82.57 | 73.53 | 69.23 | 76.80 | 80.52 | 68.28 | 60.71 | 72.39 | 0.1050
3 88.99 | 87.25 | 74.36 | 86.00 | 83.12 | 79.31 | 62.50 | 78.31 | 0.0852
70% 4 91.74 | 90.20 | 82.05 | 89.60 | 83.12 | 80.00 | 64.29 | 78.87 | 0.0688
5 98.17 | 95.10 | 76.92 | 93.60 | 88.96 | 80.00 | 58.93 | 80.56 | 0.0475
6 96.33 | 93.14 | 87.18 | 93.60 | 87.01 | 79.31 | 66.07 | 80.56 | 0.0518
TABLE IV
RECOGNITION SCORESWITH Fuzzy MLP FOR MONSOON DATA
Training | No. of training set testing set mean
set hidden class class square
size nodes 1 2 3 net 1 2 3 net error
2 75.00 | 96.70 | 72.73 | 92.11 | 48.00 | 84.90 | 52.38 | 77.43 | 0.0648
3 91.67 | 98.90 | 72.73 | 95.61 | 60.00 | 87.78 | 52.38 | 81.42 | 0.0521
50% 4 83.33 | 98.90 | 72.73 | 94.74 | 64.00 | 86.67 | 57.14 | 81.42 | 0.0498
5 75.00 | 96.70 | 63.64 | 91.32 | 52.00 | 86.67 | 38.10 | 78.32 | 0.0604
6 91.67 | 100.00 | 63.44 | 95.61 | 64.00 | 88.89 | 38.10 | 81.42 | 0.0449
2 53.33 | 92.66 | 61.54 | 85.40 | 32.00 | 86.74 | 50.00 | 77.43 | 0.0762
3 73.33 | 96.33 | 76.92 | 91.97 | 48.00 | 93.37 | 76.92 | 84.51 | 0.0575
60% 4 80.00 | 97.25 | 61.54 | 91.97 | 56.00 | 95.03 | 40.00 | 85.84 | 0.0563
5 66.67 | 90.83 | 69.23 | 86.13 | 48.00 | 88.40 | 50.00 | 80.53 | 0.0624
6 80.00 93.8 69.23 | 89.78 | 56.00 | 90.06 | 50.00 | 82.74 | 0.0634
2 47.06 | 96.09 | 66.67 | 83.12 | 40.00 | 93.92 | 60.00 | 84.96 | 0.0685
3 82.35 | 99.22 | 86.67 | 96.25 | 60.00 | 95.58 | 55.00 | 88.05 | 0.0419
70% 4 82.35 | 98.44 | 86.67 | 95.62 | 60.00 | 93.92 | 65.00 | 87.61 | 0.0400
5 64.71 | 96.09 | 80.00 | 91.25 | 52.00 | 91.71 | 50.00 | 83.63 | 0.0535
6 70.59 | 96.88 | 73.33 | 91.88 | 52.00 | 93.37 | 50.00 | 84.96 | 0.0526

medium or high and.. is low). On dividing, this contributes to In support of this, an investigation on analyzed radiosonde data
a less negative value fax vV, usually lying in the subrefractive for this season also shows that if the vapor pressure gradient
range. is negative, i.e., the vapor pressure decreases with height, then

This positive rule is also well supported by the negative ruléhe probability of formation of superrefractive gradient is very
which suggests that iRost-Monsoon season the subrefractivehigh. Likewise, the rest of the generated rules are verified for
condition will not occur when the vapor pressurat the higher this season as well as for the other three. We do not go into their
level is not medium or high, i.ee,is low. Now if e is low, then details here because of space constraints. Itis observed that there
N will be low and N — N,. will be more negative, which prac- exists a very good agreement between the generated rules and
tically indicates the occurrence of superrefraction or ductinthe recorded radiosonde observations.
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Fig.5. (a)Positive and (b) negative connectivity of fuzzy MLP\Wénter data.

Fig. 5 depicts the positive and negative connectivity of a
pruned fuzzy MLP with five and three hidden nodes and 50%yg. 6. Positive connectivity of fuzzy MLP for (afPre-Monsoon and (b)
and 60% training set, respectively, fovinter data. Sample Monsoon data.
extracted rules are as follows.

« For class 1 (subrefractive): Fig. 6(a) depicts the connectivity of a pruned fuzzy MLP with
Positive: If 7" is low, P is low or medium, A, is high, 1 three hidden nodes and 70% training setfoe-Monsoon data.
is medium or high, e,- is low or medium. Positive rules extracted from this trained network are as follows.
 For class 2 (normal-refractive):  For class 1 (subrefractive):
Positive: If P is medium, A is high, e,. is medium; If T"islow, e, islow, P islow, h,. is high.
Negative: If P is notmedium or high, i is notlow, 7;. * For class 2 (normal-refractive):
is notlow, e is notlow, A, is notmedium. If T islow, e, islow, P islow, e is medium.
« For class 3 (superrefractive): * For class 3 (superrefractive):
Positive: If 7" is high, P is high, e is mediumor high, h If T"islow, P is medium, ¢ is low or medium, h is high,

is low, T;. is low or medium. e, is high, A, is low.
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[10]
Fig. 6(b) depicts the connectivity of a pruned fuzzy MLP
with four hidden nodes and 70% training set fdonsoon data.
Sample positive rules extracted from this trained network are as
follows. (12]

 For class 1 (subrefractive):
If T is medium, P is medium, T;. is low, & is low or
medium, e,. is medium.
 For class 2 (normal-refractive):
If T islow or medium, T.. is high, P is low or medium,
e is medium or high.

[11]

[13]
[14]
[15]

V. CONCLUSION [16]

We have described a method of linguistic rule generation
for categorizing the modes of radiowave propagation in a neu-
rofuzzy framework. The fuzzy MLP used here learns the rejfig]
lationship between the input parametérs P, e, h and the
output classAN. Studies have been made using different net-lg]
work topologies. The extracted rules are used to justify inferred
decisions. These have been verified with the radiosonde obsd?0]
vations recorded over Calcutta during four different seasons. 151
has been found that there exists a good agreement between the
generated rules and recorded observations.

The use of the fuzzy MLP enables one to estimate the refrad??!
tive condition of the higher levelN) in the experiments, even
in the absence aP. of (2). The practical utility of this aspect is
that the robustness inherent in neural net architecture is able to
handle missing data, possibly caused by malfunctioning of ng
diosonde equipments.

It is concluded that said neurofuzzy approach, involving ru
generation, is useful in assessing the radiorefractive condit
of the tropospheric boundary layer. This enables the speculati
of radiowave signal situation at the receiver’s site. The extract:
knowledge can be used to set up ground-based radio comm
cation link over a region. The resultant model will also be adva
tageous to researchers working in remote sensing, atmospheéic
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