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Abstract: The definition of Shannon’s entropy in 
the context of information theory is critically 
examined and some of its applications to image 
processing problems are reviewed. A new defini- 
tion of classical entropy based on the exponential 
behaviour of information-gain is proposed along 
with its justification. Its properties also include 
those of Shannon’s entropy. The concept is then 
extended to fuzzy sets for defining a non- 
probabilistic entropy and to grey tone image for 
defining its global, local and conditional entropy. 
Based on those definitions, three algorithms are 
developed for image segmentation. The superiority 
of these algorithms is experimentally demon- 
strated for a set of images having various types of 
histogram. 

1 Introduction 

The entropy of a system as defined by Shannon [l, 23 
gives a measure of our ignorance about its actual struc- 
ture. In the context of information theory, Shannon’s 
function is based on the concept that information gain 
from an event is inversely related to its probability of 
occurrence. The logarithmic behaviour of entropy is con- 
sidered to incorporate the additive property of informa- 
tion. 

Several authors [3-5, 7-12] have used this concept to 
image processing and pattern recognition problems. Pun 
[3,4] used Shannon’s concept to define the entropy of an 
image assuming that an image is entirely represented by 
its grey level histogram only. Finally, he used this entro- 
pic measure for image segmentation into object and 
background. Kapur et al. [SI recently have also used the 
similar concept for image segmentation. They, instead of 
considering one probability distribution for the entire 
histogram, used two separate probability distributions for 
the object and the background. The total entropy of the 
image is then maximised to arrive at the threshold for 
segmentation. 

Deluca and Termini [6]  defined a nonprobabilistic 
entropy of a fuzzy set which is also based on the concept 
of Shannon’s function. Instead of the probability func- 
tion, the membership function is used here to give a 
measure of fuzziness (ambiguity) in a set. 
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Pal and others [7-121 have implemented this non- 
probabilistic entropy to formulate algorithms for image 
enhancement, thresholding, clustering, edge ambiguity 
and other information measures. They also defined intra 
and interset ambiguity (fuzziness) measures [l 13 to 
determine an index for feature evaluation problem. 

It is to be mentioned here that the definition of 
Shannon’s entropy which was formulated in the context 
of information theory was used by the above mentioned 
authors to image processing problems without high- 
lighting the suitability of its concept in the case of a grey 
tone image. 

The segmentation algorithms [3-51 using Shannon’s 
function resulted in an unappealing result, namely, same 
entropy and threshold values for different images with 
identical histogram. Furthermore, in Reference 3 the 
maximisation of the upper bound of the a-posteriori 
entropy for threshold selection is not justified. 

The present work attempts to introduce a new concept 
of entropy along with its applications. First of all, a new 
definition of classical entropy is proposed along with its 
justification. Unlike the logarithmic behaviour of 
Shannon’s entropy, the gain function considered here is 
of exponential nature so that the gain in information 
from an event i with probability of occurrence pi is 
defined at all points with bounds at both ends. All other 
properties except the additive property for independent 
event (which does not carry any extra weight for an 
image, as pixel intensities are normally dependent on 
each other) of Shannon’s entropy are also proved, 

In the second part, an extention is made to fuzzy sets 
for defining a nonprobabilistic entropy. This non- 
probabilistic entropy is found to satisfy all the desired 
properties stated by De Luca and Termini [6] and Pal 

Based on the new concept, three definitions (e.g. 
global, local and conditional) of entropy of an image are 
then introduced. As an application of these definitions, 
three algorithms are developed for image segmentation. 

The algorithms are finally implemented on a set of 
images with widely different types of histogram. 
Superiority of the proposed methods is established by 
comparing the results with those of Pun [3] and Kapur 
et al. [SI. 

c121. 

2 Shannon’s entropy 

Shannon [l-23 defined the entropy of an n-state system 
as 

H = - C p i l o g , p i ,  i = l , 2  ,..., n (1) 
1 

where pi is the probability of occurrence of the event i 
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and of the system. Thus for an n-state source, the entropy 
may be defined as in eqn. 1. 

In case of a binary system, the entropy becomes H = 
-P log, P - (1 - P)l%,(f - PI. 

The entropy H is claimed to express a measure of 
ignorance about the actual structure of the system. In 
order to explain why such an expression is taken as a 
measure of ignorance, let us critically examine the philos- 
ophy behind Shannon’s entropic measure with an 
example given below. 

Suppose a six-faced die, covered with a box, is placed 
on a table and someone is asked to guess the number on 
the top most face of the die. Since the exact state of the 
die is not known, he/she can describe the state of the die 
by the probability distribution of occurrences of different 
faces on the top. In otherwords, the state of the die can 
be expressed by specifying p i ,  i = 1, 2, . . . , 6 ;  where p i  is 
the probability that the ith face is the topmost face. Obvi- 
ously, 

6 

O < p i < l  and c p i = l  
i =  1 

When the box is opened, the state of the die becomes 
known to us and we gain some information. A very 
natural question arises, ‘How much information did we 
gain ? 

Let pk = maxi { p i }  : the most probable event and pm = 
mini { p i } :  the least probable event. Now, if the kth face 
appears on the top, the gain in information would be 
minimum, whereas the occurrence of the mth face on the 
top would result in the maximum gain. 

Thus we see that the gain in information from an 
event is inversely related to its probability of occurrence. 
This, of course, intuitively seems all right. For example, if 
somebody says, ‘The sun rises in the east’, the informa- 
tion content of the statement is practically nil. On the 
other hand if one says, ‘He is ten feet in height’, the infor- 
mation content of the statement is very high, as it is an 
unlikely event. A commonly used measure of such a gain 
is 

AI = log,( l/pJ = - lOg,(pi) (2) 

In order to justify the logarithmic function, the following 
points can be stated: 

(a) It gives additive property of information. To make 
it more clear, suppose two independent events m and n 
with probabilities of occurrence pm and p,, have occurred 
jointly, then the additive property says 

AI@, . p.1 = AIbm) + AI@,) (3) 
where (p, . p,,) is the probability of the joint occurrence 
of the events m and n. Thus the additive property can be 
stated as follows. The information gain from the joint 
occurrence of more than one event is equal to the sum of 
information gain from their individual occurrence. 

(b) The gain in information from an absolutely certain 
event is zero, i.e., Al(pi = 1) = 0. 

(c) As pi increases, Al(pi) decreases. 

Referring back to our experiment of die, the expected 
gain in information from the experiment can be written 
as 

6 

H = E(A1) = - 1 p i  log, pi. 
i =  1 

The value of H denotes the entropy (Shannon’s entropy) 
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Based on the concept of Shannon’s entropy, different 
authors have defined entropy for an image and its exten- 
sion to fuzzy sets. Let us discuss here those measures and 
the associated problems when applied to image pro- 
cessing and recognition problems. 

be an image of size P x Q, where 
f ( x ,  y) is the grey value at (x, y ) ; f ( x ,  y )  E GL = (0, 1, . . ., 
L - l}, the set of grey levels. Let N i  be the frequency of 
the grey level i. Then 

Entropic measures for image processing 

Let F = [ f ( x ,  y )Ip  

L - 1  

1 N i  = P x Q = N(say). 
i = O  

Pun [3-4] and Kapur et al. [SI considered the grey level 
histogram of F an L-symbol source, independently from 
the underlying image. In addition to this, they also 
assumed that these symbols are statistically independent. 

Following Shannon’s definition of entropy (eqn. l), 
Pun [3] defined the entropy of the image (histogram) as 

(4) 

for an image segmentation problem. 

3.7 Evaluation function of Pun [3 ]  
Let s be the threshold which classifies the image into 
object and background. Let N ,  and Nw be the number of 
pixels in the black and white portions of the image. Then 
the a-posteriori probability of a black pixel is P ,  = N$N 
and that of a white pixel is Pw = N w / N .  Thus, the 
a-posteriori entropy of the image is 

H;(S) = -PE log2 P E  - Pw log2 P ,  

= - P ,  log, P ,  - (1 - Ps)  log,(l - P,) ( 5 )  

as 
S 

Ps = 1 p i  = P ,  and P ,  = 1 - Ps (6) 
i = O  

Since the maximisation of HL gives the trivial result of 
P ,  = 1/2, Pun [3] maximised an upper bound g(s) of 
HL(s), where 

where 

and 
S 

H i  = - 2 pi log, pi. 
i = O  

The value of s which maximises g(s) can be taken as the 
threshold for object and backgiound classification. 

3.2 Method of Kapur, Sahoo and Wong [5] 
Recently, Kapur et al. have also used Shannon’s concept 
of entropy but from a different point of view. They, 
instead of considering one probability distribution of the 
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entire image, considered two probability distributions; 
one for the object and the other for the background. The 
sum of the individual entropy of the object and back- 
ground is then maximised. 

If s is an assumed threshold, then the probability dis- 
tribution of the grey levels over the black portion of the 
image is 

- P o  p. 
P,’ P,’ ”” P, 

and that of the white portion is 

Ps+l P s + 2  P L -  1 -- 
1 - P,’ 1 - P,’ ...’ 1 - P, 

The entropy of the black portion (object) of the image is 

and that of the white portion is 

The total entropy of the image is then defined as 

(10) 
In order to select the threshold they maximised H$). In 
other words, the value of s which maximises H$) gives the 
threshold for object and background classification. 

3.3 Entropy of fuzzy sets 
The entropy so far we have considered is related only to 
the classical sets. There is another kind of entropy 
defined for a fuzzy set [6]. A fuzzy set A with its finite 
number of supports xl, x2,  . . . , x, in the universe of dis- 
course U is formally defined as 

A = {(pA(xi),  xi ) } ,  i = 1, 2, ..., n (1  1) 
where pa(xi)  is called the membership function of xi  with 

De Luca and Termini [6] defined the entropy of a 

“s’ - Hg’ + H(S) 
T -  W 

0 < P A ( X i )  < 1. 

fuzzy set A as 

H ( A )  = K 1 Sn(pA(xi)) ,  

S,(x) = - x  log, x - (1 - x) log,(l - x) 

i = 1, 2, . . ., n (12) 
i 

where S ,  is Shannon’s function having the form 

(13) 
and K is a normalising constant. 

The entropy H ( A )  has the following properties : 
P1: H(A)  is minimum if, and only if, pa(xi) = 0 or 1 for 

P2: H(A)  is maximum if, and only if, pA(xi) = 0.5 for 

P3: H ( A )  > H(A*), where A* is any sharpened version 

all i. 

all i. 

of A.  

A sharpened version of A is defined as 

PAX,.) 2 pa(xi) if pa(xi) > 0.5 

pA.(xi) < pA(xi) if pA(xi) < 0.5 
P4: H(A)  = H ( A )  with A = complement set of A. 

and 

It is very easy to see that with proper choice of K proper- 
ties P1 to P4 are satisfied by W(A) of eqn. 12. 

H ( A )  is thus seen to use Shannon’s function but its 
meaning is quite different from classical entropy (eqn. l), 
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because no probabilistic concept is needed to define it. 
H ( A )  provides the degree of fuzziness which expresses, on 
a global level, the average amount of difficulty (or 
ambiguity) in deciding whether an element would be con- 
sidered to be a member of A or not. 

Pal and others [7-121 have used this concept for 
image enhancement, fuzzy thresholding, edge ambiguity 
measure, feature selection and other information mea- 
sures by optimising H(A), with respect to S and K mem- 
bership functions. 

3.4 Some remarks 
All the methods [3-51 discussed so far virtually assume 
that an image is entirely represented only by its histo- 
gram. Thus, different images with identical histograms 
will result in same entropic value in spite of their different 
spatial distributions of grey levels. This is, of course, not 
intuitively appealing. For example, consider Fig. 1 and 
Fig. 2. Both of Fig. 1 and Fig. 2 have identical histograms 
but different spatial distributions of grey levels. As a 
result, the entropy (information content) of Fig. 1 and 
Fig. 2 are expected to be different. 

Fig. 1 Two tone image 

Fig. 2 Two tone image 
Histogram identical to that of Fig. 1 but different spatial distribution 

Under those definitions all images with identical histo- 
grams but different spatial distributions of grey levels will 
therefore give rise to same threshold value. Our experi- 
ence and intuition also do not support this. 

In the algorithm of Pun [3], the concept of maximisa- 
tion of the upper bound of the evaluation function g(s) 
(eqn. 7) for object background classification is not justi- 
fied. For example, the maximum value of eqn. 7 may even 
correspond to a minimum value of the a-posteriori 
entropy (eqn. 5). 

Moreover, all these methods have used Shannon’s 
concept of entropy in image processing without high- 
lighting its adequateness in the case of an image. 

4 New definition of entropy 

4.7 Justification 
Before introducing the new definition of entropy the fol- 
lowing points are in order. 

(a) It is to be noted from the logarithmic entropic 
measure that as p i  -+ 0, AI@,) + CO but AI(pi = 1) = 0 
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and AZ(pi) = -logz(pi) is not defined for pi = 0. Thus we 
see that information gain from an event is neither 
bounded at both ends nor defined at all points. In prac- 
tice, the gain in information from an event, whether 
highly probable or highly unlikely, is expected to lie 
between two finite limits. For example, as more and more 
pixels in an image are analysed, the gain in information 
increases and when all the pixels are inspected the gain 
attains its maximum value, irrespective of the content of 
the image. 

(b) The additive property for independent events does 
not carry any extra weight for an image, as pixel inten- 
sities in an image are normally dependent on each other. 

(c) In Shannon's theory the measure of ignorance or 
the gain in information is taken as log,(l/p,) i.e., igno- 
rance is inversely related to pi. But mathematically, a 
more sound expression is possible to arrive at. If ui is the 
uncertainty of the ith event then using the knowledge of 
probability one can write that ui = 1 - pi. Since ui is the 
unlikeliness (i.e., probability of nonoccurrence), stat- 
istically ignorance can be better represented by (1 - p i )  
than l/pi. 

Now if we define the gain in information correspond- 
ing to the occurrence of the ith event as 

AI(pi) = log (1 - pi) 
then AI < 0 which is intuitively unappealing. Further- 
more, taking -log (1 - pi) as gain in information leads 
to the fact that AZ(pi) increases with pi; this is again not 
desirable. 

The above problem can be circumvented by consider- 
ing exponential function of (1 - pi) instead of the 
logarithmic behaviour. This is also appropriate while 
considering the concept of information gain in an image. 

For example, consider the Figs. 3a-e. Suppose the 
images have only two grey levels; one corresponding to 
the lines (black portion) and the other corresponding to 
the white portion. In the case of the first image we have 
analysed only few black pixels and from this image we 
cannot say firmly about the content of the image. At this 
stage we see that it can be either a curtain or the hair of a 
face or something else. From the image b we can say that 
it is not a curtain (i.e., some gain in knowledge) while, 
from image c one can realise that it is a face. The image d 
says that it is a face with the mouth. However, image e 
does not say anything more than what is described by 
inage d,  though the number of black pixels (hence 
probability) has increased. 

25 

d e 

Fig. 3 Examples showing gain in injormation 

Let AZ(a), AI(b), AI(c), AZ(d) and AI(e) be the informa- 
tion content of the images a-e, respectively. Now define 
the following quantities, representing change in gain : 
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G1 = AI(@ - AI(a) 

G, = AZ(C) - AZ(b) 

G, = AZ(d) - AI(c) 

G ,  = AZ(e) - AI(6). 

Obviously, G1 > G, > G, > G, N 0. 
The above analysis and the fact that information gain 

approaches a finite limit when more and more pixels 
(increase in N, and hence pi) are analysed strengthen the 
assertion that the gain in information (i.e., increase in 
knowledge or decrease in ignorance) is exponential in 
nature. 

4.2 Definition 
The previously mentioned analysis led us to the following 
properties for the new entropic function. 

P1: A Q )  is defined at all points in [O, 11. 
P2: lim AZ(pi) = AZ(pi = 0) = k , ,  k ,  2 0 and finite. 

P3: AZ(pi = 1) = k, , k ,  2 0 and finite 
P4: k ,  < k ,  
P5: With increase in p i ,  AZ(pi) decreases exponentially. 

In other words, with increase in the uncertainty (ui) the 
gain in information increases exponentially. 

P6: Al(p) and H ,  the entropy, are continuous for 

P7 : H is maximum when all p i s  are equal. 

Under the above framework let us define the gain in 
information from an event with probability pi as 

(15) 

(16) 

p i - 0  

O Q p G l  

Al(pi) = eUi = el-Pi 

H = E(AI) = 1 pie'-Pi 

and the entropy H 

i 

It is easy to see that the properties P1 to P6 are satisfied 
where k ,  and k ,  take the values e and 1, respectively. The 
proof of P7 is given in Appendix 1 1 . 1 .  

In the case of a binary source, the entropy H takes the 
form 

II = pe'-P + (1 - p)eP. 

It is proved in Appendix 11.2 that H monotonically 
increases in [O, 0, 51 and monotonically decreases in 
[ O S ,  13 with a maximum at p = 0.5. 

4.3 Extension to fuzzy sets 
Based on the aforesaid analysis, let us define a new 
expression for the entropy of a fuzzy set A as 

{ 1 - p A ( ~ i ) } e C A ( X i ) ]  (17) 

Like eqn. 12, "(A) also satisfies all the properties P1 to 
P4 of Section 3.3. Proofs are given in Appendix 11.3. 
Therefore, eqn. 17 can be regarded as a measure of fuzzi- 
ness in a set which gives the average amount of dificulty 
(ambiguity) in deciding whether an element would be 
considered to be a member of a set A or not. 

1 "  
n i = l  

"(A) = - C [p A I  (X.)e(' - ~ ( x i ) J  + 

5 Entropy of an image 

5.1 Global and local entropy 
We know that in an image pixel intensities are not inde- 
pendent of each other. This dependency of pixel inten- 
sities can be incorporated by considering sequences of 
pixels to estimate the entropy. In order to arrive at the 
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expression of entropy of an image the following theorem 
can be stated based on the idea of Shannon [l ,  2, 131. 

Theorem: Let p(si)  be the probability of a sequence si of 
grey levels of length q. Let us define 

where the summation is taken over all grey level 
sequences of length q. Then is a monotonic decreas- 
ing function of (q) and 

lim H(4) = H ,  
4-a ,  

the entropy of the image. 

For different values of q we get various orders of entropy. 

Case 1: q = 1, i.e., sequence of length one. If q = 1 we get 
L -  1 

(19) 

where p i  is the probability of occurrence of the grey level 
i. 

Such an entropy is a function of the histogram only 
and it may be called the ‘global entropy’ of the image. 
Therefore, different images with identical histogram 
would have same H‘” value irrespective of their contents. 
The definitions used by Pun [3] and Kapur et al. [SI, in 
fact, belong to Case 1. 

~ ( 1 )  = C p i e ( 1 - p i )  

i = O  

Case 2: q = 2, i.e., sequences of length two. Hence, 

~ ( 2 )  = 1 p ( s i ) e ( l  -P(si)) ,  

where si is a sequence of grey level of length two. 

where p i j  is the probability of co-occurrence of the grey 
levels i and j .  Therefore, H ( 2 )  can be obtained from the 
co-occurrence matrix. 

H ( 2 )  takes into account the spatial distribution of grey 
levels. Therefore, two images with identical histogram but 
different spatial distributions will result in different 
entropy, H”) values. Expressions for higher order 
entropies (q > 2) can also be deduced in a similar 
manner. i 2 2 may be called ‘local entropy’ of order i 
of an image. 

5.2 Conditional entropy 
Suppose an image has two distinct portions, the object X 
and the background Y .  Suppose the object consists of the 
grey levels {xi} and the background contains the grey 
levels {y,}. The conditional entropy of the object X given 
the background Y i.e., the average amount of information 
that may be obtained from X given that one has viewed 
the background Y, can be defined as 

Similarly, the conditional entropy of the background Y 
given the object X is defined as 

The pixel y j ,  in general, can be an rnth order neighbour 
of the pixel xi ,  i.e., y j  can be the rnth pixel after x i .  Since 
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the estimation of such a probability is very difficult, we 
impose another constraint on xi  and y j  of equations (21) 
and (22). In addition to xi  E X and y j  E Y ,  we also 
impose the restriction that xi and y j  must be adjacent 
pixels. Thus eqns. 21-22 can be rewritten as 

H ( X / Y )  = C p ( x . J y j ) e ( ’ - p ( ” i I y j ) )  (23) 
x i o x  y j s y  

( x i ,  y j )  adjacent 

and 

( y j ,  x i )  adjacent 

The conditional entropy of the image can, therefore, be 
defined as 

= ( H ( X / Y )  + H(Y/X))/2 (25) 
when X and Y represent object and background, respec- 
tively, of an image. 

6 Application to image segmentation 

Based on the new definitions of entropy of an image, the 
following three algorithms for object-background classi- 
fication are proposed. 

6.1 Algorithm I 
Following the concept of Kapur et al. and making use of 
eqn. 19 we can find an expression for thresholding as 
follows. I f s  is an assumed threshold then s partitions the 
image into object (black) and background (white). Using 
eqn. 19, the global entropy of the object or the black 
portion of the image can be defined as 

where 
S 

P ,  C Pi 
i = O  

and 
L- 1 

C P i = ]  
i=O 

and the global entropy of the background or the white 
portion of the image as 

Thus the total global entropy of the image can be defined 
as 

H(TG)(S) = HlpG’(s) + Hg?(s) (28) 
Let 

max (H(TG)(s)} = HF)(k) ,  0 < k, s < L - 1. 
S 

Then the level k can be taken as a threshold for object- 
background classification of the image. 

The threshold so obtained will classify the object and 
background in such a way that the sum of information in 
background and object is maximised, i.e., the resulting 
distribution of grey level in object and background would 
be uniform in the best possible way. However, like the 
entropic measures used by Pun [3] and Kapur et al. [SI, 
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eqn. 28 is also a function of the grey level histogram of 
the image only. In other words, different images with 
identical histogram would result in same threshold level 
irrespective of the content of the image. 

6.2 Algorithm 2 
We are now going to describe another algorithm based 
on eqn. 20, which takes into account the spatial details of 
an image. Since such a method is dependent on the prob- 
ability of co-occurrence of pixel intensities, let us define 
first of all the co-occurrence matrix before proceeding 
further. 

Co-occurrence matrix: The co-occurrence matrix of the 
image F is an L x L dimensional matrix T = [tijILxL 
that gives an idea about the transition of intensities 
between adjacent pixels. In other words, tij, the ( i ,  j)th 
entry of the matrix gives the number of times the grey 
level j follows the grey level i in some particular fashion. 

The probability of co-occurrence pij of grey levels i 
and j can be written as 

obviously 0 d pij < 1. If s, 0 d s d L - 1, is a threshold, 
then s partitions the co-occurrence matrix into four 
quadrants, namely A, B, C and D (Fig. 4). 

O F - ’  

I I I 
L-1 

Fig. 4 Quadrants of co-occurrence matrix 

Let us define the following quantities: 
s s  

s L - 1  

P,=  C Pij, 
i=O j = s + l  

L - 1  L - 1  

Pc C 1 Pij 
i=s+ 1 j = s +  1 

and 

Normalising the probabilities within individual quadrant, 
such that the sum of the probabilities of each quadrant 
equals to one, we get the following cell probabilities for 
different quadrants. 

- Pij 
p.4 

tij 
s s  

for 0 d i < s, and 0 < J  < s. (30) 

Similarly, 

B - & =  tij 

PB Lil tij 
Pij - 

i = O  j = s + l  

f o r O < i < s , a n d s +  1 < j < L -  1 (31) 

i = s + l  j = s + l  

and 

i = s + l  j = O  

Now with the help of eqns. 20 and 30, the second order 
local entropy of the object can be defined as 

Similarly, the second order entropy of the background 
can be written as 

1 L - 1  L - 1  

2 i = s + l  j = s + l  
~ p ) ( s )  = - 1 p;e(’-pijC) (35) 

Hence the total second order local entropy of the object 
and the background can be written as 

H‘T)(S) = HY’(S) + H p ( s )  (36) 
The grey level corresponding to the maximum of H y ) ( s )  
gives the threshold for object-background classification. 

6.3 Algorithm 3 
This algorithm is based on the concept of conditional 
entropy (eqns. 23-25). Suppose s is an assumed threshold. 
Then pixels with grey level values ranging from 0 to s 
constitute the object while the remaining pixels with grey 
values lying between s + 1 to L - 1 correspond to the 
background. Let tij be an entry of the quadrant B (Fig. 4), 
then tij gives the number of transitions, such that i 
belongs to the object and J belongs to the background, 
and i and j are adjacent. Therefore, p$ as defined in eqn. 
31 gives the probability that grey level i a n d j  belong to 
the object and background, respectively, and they are 
adjacent. Thus, p t s  of eqn. 31 give the probabilities 
required by eqn. 23. Similarly, pCs  of eqn. 33 correspond 
to the probabilities of eqn. 24. 

Therefore 

H(object/background) = H(O/B)  
* 1 . - 1  

and 

H(background/object) = H(B/O) 
1 - 1  * 

Now the conditional entropy of the image is 

H(TC) = (H(O/B) + H(B/0))/2 (39) 

In order to get the threshold for object-background clas- 
sification H(TC) is maximised with respect to s. 
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7 Implementation and results 

The segmentation (object-background classification) 
algorithms described in Sections 3 and 6 are implemented 
on a set of four images with widely different types of his- 
togram. Figs. 5a, 6 4  7a and 8a represent the input images 
while Figs. 5b, 6b, 7b  and 8b represent the corresponding 
grey level histograms. The input images are produced on 
a line printer by over printing different character com- 
binations for different grey levels. The threshold levels 
produced by different methods are presented in Table 1. 

Fig. 5a represents the image of a biplane with two 
dominant modes in its grey level histogram (Fig. 5b). The 
segmented images produced by different methods are 

I IO 

Fig. 6 Lincoln image 
a Input 
b Histogram 
c Proposed algorithm 1 
d Proposed algorithm 2 
e Proposed algorithm 3 
f Algorithm of Pun 
g Algorithm of Kapur et al. 
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shown in Figs. 5c-9. From the results one can see that 
except for the conditional entropic method (eqn. 39), the 
propeller in front of the biplane is lost. In all but algo- 
rithm 3, some portion of the background became mixed 
up with the object, though the image has two dominant 
modes. The methods of Pun [3] and of Kapur [SI have 
produced comparable results to those of eqns. 28 and 36. 

Figs. 6a and b represent the input image of Abraham 
Lincoln and its grey level histogram, respectively. The 
histogram has a number of deep valleys. The thresholds 

produced by different methods are shown in Table 1 and 
the corresponding segmented images are shown in Figs. 
6c-9. In this case too, all the methods except the condi- 
tional entropic method (algorithm 3) have produced com- 
parable result. The best result is produced by algorithm 3 
(eqn. 39) which has clearly separated the object from the 
background. All other methods failed to discriminate 
between the beard and the background at the bottom 
left-hand corner of the image. 

To demonstrate the effectiveness of the algorithms for 
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Fig. 8 Blurred chromosome image 
a Input 
b Histogram 
c Proposed algorithm 1 
d Proposed algorithm 2 
e Proposed algorithm 3 
f Algorithm of Pun 
g Algorithm of Kapur et al. 
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Table 1. Thresholds for object-background classification 

Images Thresholds 
Proposed Proposed Proposed Algorithm Algorithm of 
algorithm 1 algorithm 2 algorithm 3 of Pun Kapur et al. 
(eqn. 28) (eqn. 36) (eqn. 39) (eqn. 7) (eqn. 10) 

Biplane 22 21 12 24 21 
(Fig. 5) 

Lincoln 15 16 9 16 15 
(Fig. 6) 

Chromosomes 19 10 17 27 20 
(Fig. 7) 

Blurred 32 31 41 32 33 
chromosome 

(Fig. 8) 

images with unimodal histogram, an image of a set of 
three chromosomes (Fig. 7 4  has been considered. Fig. 7 b  
depicts its grey level histogram. In this case we find that 
the proposed algorithms 1 (eqn. 28) and 3 (eqn. 39) give 
good results, while the second order local entropy 
(algorithm 2) gives rise to a thinned version of the 
chromosomes. The method of Kapur et al. (eqn. 10) is 
found to generate results comparable to that of algorithm 
I and 3. The worst result is produced by the method of 
Pun (eqn. 7 )  which could not extract one of the chromo- 
somes at all. 

The algorithms are also tested on an image of blurred 
chromosome (Fig. 8a) having a bimodal histogram (Fig. 
86). Here too, all the methods except the conditional 
entropic method (algorithm 3) have produced similar 
results. However, the best classification is done by Algo- 
rithm 3. This also conforms well to the recent work of 
Pal and Rosenfeld [14]. 

8 Conclusion 

A new definition of probabilistic entropy based on the 
exponential behaviour of information-gain is proposed 
along with its justification. Its properties are also found 
to include those of Shannon’s entropy. Based on this 
concept, various definitions of entropy (namely, global, 
local and conditional) for an image are introduced. The 
idea is also found to be extendable for defining non- 
probabilistic entropy of a fuzzy set. 

Three algorithms for object-background classification 
(as an example of application of the new concept) are 
proposed whereby it is found to be able to segment/ 
extract object from background. The results are com- 
pared with those of the existing entropic thresholding 
methods and are found to be superior for a wide class of 
images. 
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11 Appendix 

11 .1  Proof of P7 (Section 4.2) 
n n 

H = ~ p i e “ - P i )  0 < p i  Q 1 and 1 p i  = 1 
i =  1 i =  1 

- P l e ~ ’ - P ” + P 2 e ~ ’ - P 2 ~ +  ... + p  e ( l - P ” - l )  

) e ( P l + P 2 + . . . + P n - l )  

n -  1 - 

+ (1 - p1 - p 2  . . . - p n -  1 

a s p n =  1 - p l  - p 2  ... -pn-l  

pi, 1 Q i Q n and equating it to zero we get 
Now taking the partial derivative of H with respect to 

6 H  
- = O ,  i = l , 2  ,..., n - 1  
6Pi  

or 
(1 - pi)e(’-Pi) = (pl + p 2  + . . . + pn-l)e(~~+p2+., .+~n-l) .  

(40) 

xiexi = yeY. (41) 

f ( x )  = xex 0 < x < 1 (42) 

Writing 1 - pi = xi  and p1 + p 2  + . . . + p n -  = y we get 

Now define a function 
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Claim:f(x) is a bijection, i.e.f(x) maps x uniquely. Let x1 
and x2 be the two points in [0, 11 i.e. 0 d xl, x2 d 1. 
Thenf(x,) = xlexl andf(x2) = x2 exz. 

If x1 > x2 then exl > exz *f(xl) >f(x2) and if x1 < x2 
then exl < ex2 *f(x1) <f(x2) thus, f(xJ =f(x2) if, and 
only if, x1 = x2.  Therefore, f(x) = xex, 0 < x < 1 is a 
bijection. Using this fact and equation 41, one can write 

xi = y for i = 1, 2, ..., n - 1 
or 

1 - p i = p l + p 2 + . . . + p n - 1  f o r i = 1 , 2  ,..., n - 1  
Now taking summation on both sides over i = 1, 2, . . . , 
n - 1. 

We getxi (1 - pi) = x i  + ~2 + . . . + P .  - 1) 

or (n - 1) - (pl + p 2  + . . . + p n -  1 )  

= (n - l)(pl + p 2  + + p,-J  

or (n - 1) = n(pl + p 2  + ... + pn-J 

or n - 1 = n(l - p,) 

or n .  p ,  = 1 
1 

or p ,  = - 
n 

Similarly, expressing other p i ,  i = 1, 2, . . . , n - 1, in terms 
of the remaining probabilities one can prove the condi- 
tion of maximality of H as p i  = l/n for i = 1, 2, . . . , n. 

I 1 2 Claim : 

H = pel-" + (1 - p)eP 0 < p < 1 

monotonically increases in (0, 0.5) and monotonically 
decreases in (0.5, 1) and attains the maximum at p = 0.5. 

Proof: 

dH d 
- 

dP dP 
(pel-" + (1 - p)ep )  

- - e1-p - pe1-P - eP + (1 - p)eP 

= (1 - p)e ' -P  - p e p  

if p E (0,0.5) then (1 - p)e' -" > p e p  and if p E (0.5, 1) then 
(1 - p ) e l - P  < pep. Therefore, 

dH 
- > 0 if p E (0, 0.5) 

dH 
- < 0 if p E (0.5, 1) 

dP 

dP 
and 

dH 
- = 0 if p = 0.5 
dP 

Hence the proof. 

1 I .3 Proof of PI (Section 4.3)  
If pA(xi) = 0 or 1, then 

pA(xi)e{l  PA(^^)) + { 1 - pA(~i)}efl~(Xi) = 1 

Therefore, if pA(xi) = 0 or 1 for all i, then "(A) = 
(l/n) 1 1 = n/n = 1, the minimum value of "(A) for 
pA(xi) E [0, 13 (taking the result of Appendix 11.2 
into consideration). 

1 I .4 Proof of P2 (Section 4 .3 )  
Differentiating "(A) with respect to pA(xi) and equating 
to zero we get 

6H'(A) -- 
apA(xi) - O 

or 

+ { 1 - pA(xi)}e(flA(xi)) = O 

for i = 1,2, . . ., n. 
or 

{ 1 - pA(xi)}e('  PA(^^)) = pA(xi)ePA(xi) 

Using the fact that Ax) = xex is a bijection we can write 
that 

1 - pA(xi) = pA(xi) for i = 1, 2, . . . , n 

pA(xi) = + for i = 1, 2, . . . , n 
or 

Thus we see that "(A) attains the maximum value when 
all pA(xi) = 4 for i = 1,2, . . . , n. 

1 I .5 Proof of P3 (Section 4.3)  

where 

Cxi = {pa(xi)e(' - ~ ( ~ i ) )  + (1 - p A i  (x 1 
In order to prove P3 it is enough to show that Cxi mono- 
tonically increases for pA(xi) E [0, 0.5) monotonically 
decreases for pA(xi) E (0.5, 13 and attains the maximum 
value for pA(xi) = 0.5 

+ (1 - pA(xi))ePA(xi) 

= (1 - pA(xi))e{l-PA(Xi)) - pA(xi)ePA(Xi) 
If pA(xi) E [0, O S ) ,  then (1 - pA(xi))d1 - P A ( X i ) )  > pA(xi)ePA(xi); 
if pA(xi) E (0.5, 13 then (1 - p A I  (x.))e(l-PA(xi)l < 
pA(xi)ePA(Xi) and if pa(xi) = 0.5 then (1 - pA(xi))e(l - P A ( x i ) )  = 
pA(xi)ePA(Xi). Therefore, 

dCxi > 0 if pA(xi) E [0, 0.5) 
dpA(Xi) 

< 0 if pA(xi) E (0.5, 13 
= 0 if pA(xi) = 0.5. 

Hence the proof. 

1 1.6 Proof of P4 (Section 4.3)  . "  
i n  

Hence the proof. 
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