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Abstract: The problem of two-dimensional recursive digital filtering of large images by the sectioning (or
block-mode) technique has been considered. It has been stated that, if the impulse-response sequence of the
recursive digital filter dies down relatively sharply, by a suitable truncation, the available sectioning tech-
niques can be used to perform the filtering operation, as with nonrecursive filters. An analytical approach
is presented which formulates the upper bound on the norm of error resulting from the application of trun-
cation. This bound is found to be independent of the size of blocks. In addition, an expression for the com-
putation time is obtained, when a mixed radix two-dimensional FFT is used. Using these expressions, a
simple procedure for minimising the truncation error and computation time is suggested which determines
suitable values of the parameters involved. The effectiveness of the optimisation procedure developed here
has been examined for smoothing operation of an X-ray image on a CDC 6500 computer.

1 Introduction

The sectioning technique [1-3] is a valuable aid in computing
the convolution between two finite-area sequences in which
one sequence (usually the input) is of considerably larger size
than the other sequence (usually the impulse response).
Applying this technique to picture processing, the input
picture will be broken up into a number of blocks, each of
which is of a size comparable with that of the impulse res-
ponse. The FFT may then be employed to evaluate the circular
convolution between each input block and the impulse res-
ponse. There are basically two types of sectioning algorithms,
known as ‘select-save’ and ‘overlap-add’, which can be used to
eliminate the effect of wrap-around error inherent in the use
of circular convolution. These techniques provide an efficient
means of nonrecursive [finite impulse response (FIR)] digital
filtering operation. '

In some applications, need might arise to perform a recursive
[infinite impulse response (I[R)] filtering operation by an
FFT algorithm.

Under certain conditions, sectioning techniques would
seem to be capable of being used in such applications. As Helms
[4] suggested, in the one-dimensional case, if the impulse-
response sequence of a recursive digital filter dies down fairly
fast, with the aid of suitable truncation, the sectioning al-
gorithms can be applied to perform the filtering operation
within an acceptable accuracy.

Truncation necessarily produces error on the output ele-
ments, the magnitude of which is dependent on the degree of
truncation chosen. '

The aim of optimal sectioning is to determine the block
sizes and truncation sizes in order to

(@) reduce truncation error

(b) reduce computation time

(c) use less computer memory.

The requirement on computer memory is strictly dependent
on the type of computer used, but, in order to transfer the
entire row of input blocks into the memory from secondary
storage devices, the amount of the primary memory available
must be adequate. An investigation has been carried out by
Twogood, Ekstrom and Mitra [3] for when the amount of
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the primary memory is not sufficient to accommodate a com-
plete row of blocks.

The computation time, on the other hand, is dependent on
several parameters, such as picture size, block size, the size of
the impulse-response sequence (or truncation size if a recursive
filter is used), the radix of the FFT and the efficiency of the
FFT algorithm.

The problem of minimising the computation time for the
sectioning technique was extended to the two-dimensional
case by Hunt [1, 2]. He has given an expression for the
computation time Tcpy in terms of sectioning parameters.
This expression is shown to be incorrect, because it does not
include the needed rounding-up operations [3]. Moreover,
in contrast with the one-dimensional case, two-dimensional
filtering operations require substantial input/output (1/O)
time, owing to the large amount of data involved. Recently
Twogood, Ekstrom and Mitra [3] have considered a method
of minimisation which also incorporates the I/O requirements.

The problem of finding the conditions for minimum
computation time and truncation error in two-dimensional
recursive filtering operation by sectioning techniques gives
rise to contradictory results. That is, for a fixed block size,
the computation time is minimum when the impulse-response
sequence is severely truncated, and this consequently increases
the corresponding -error; conversely, the truncation error will
be minimum when the impulse-response sequence is only
slightly truncated, and this results in an increase in the compu-
tation time.

In this paper, we derive an expression for the upper bound
on the norm of the truncation error using matrix representation
of two-dimensional convolution. This bound is found to be
independent of the block size. Thus optimisation with respect
to truncation error can first be carried out without introducing
the block sizes into the calculations. This optimum value of
truncation size may then be used to obtain the relevant
suitable value of block size which makes the computation time
optimum.

In Section 2, a more general expression for computation
time is obtained when a mixed-radix FFT is used.

Section 3 is devoted to the formulation of an upper bound
on the norm of the truncation error based on matrix repre-
sentation of two-dimensional convolution [5]. Using these
formulations, a simple approach towards obtaining optimal
sectioning parameters is proposed. In Section 4, the imple-
mentation of two-dimensional recursive digital filtering by the
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sectioning technique for an X-ray image is examined on a large
scientific CDC 6500 computer. A procedure for determining
the optimal sectioning parameters based on the techniques
developed in this paper is given which leads to an optimum
result; this has been illustrated and compared with other
nonoptimum ones.

2 Computation time

Consider the following two-dimensional convolution:

k l
y(k, 1) = Z_O L, he=m,1—n)x(m,n) Q)

where {x(k, 1)}, {y(k, )} and {h(k, 1)} are the input, output
and impulse-response sequences, respectively.

Let us assume the input sequence to be of dimensions
Px Q, the truncated impulse response to be of dimensions
M x N and the blocks of input to be of dimensions D; x D,.
Then, using the select-save or overlap-add method [1, 3], the
acceptable part of the blocks which is processed in each
iteration of the sectioning algorithm is a subsection of size

Therefore the total number of blocks to be processed is
given by

P
Nblocks = [(Dl —M+ l)

Y

where the quantity in the square bracket must be rounded up
to the next integer above its value.

Then the total number of complex multiplications required
is

Niotat = Noiocks 2Nppr + Dy D,) (3)

where Ngpp is the number of complex multiplications to com-
pute the mixed-radix FFT of each block. The total time
required for processing to a first approximation (excluding the
time for index interchanging and additions) is

Teru = Wiotal 4)

where vy is a proportionality constant and is dependent on the
type of FFT algorithm and computer used; for instance, the
value of vy for the Singleton algorithm [6] on CDC 6500/6400
computers is approximately 25 us.

In most image processing problems, owing to the large
amount of data to be processed, the total /O time necessary
to fetch an input row of blocks from disc or tape and to store
the output row of blocks on another disc or tape, after pro-
cessing, constitutes a substantial part of the computational
time required for the filtering operation. There are basically
two timings which contribute to the total I/O time: access
time T,.. and the transfer rate per word Ty.qns [3]-

Owing to the complexity of the operating system in a
multijob environment, the access time is very difficult to
predict and virtually impossible to measure. Moreover, de-
pending on the type of the tape drivers used and their relevant
densities, a particular transfer rate can be produced. In a multi-
job environment, the user is not provided with a facility to
choose the disc unit, and so I/O transfer rates will vary wildly,
even with the same job running on two different occasions.

The CDC 6500 computer is a multijob computer running
under NOS operating system;$ hence, unlike the CDC 7600
[3], which executes only one job at a time, the I/O timings
cannot be included in the total real time.

§Imperial College Computer Centre: Private communication
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In order to find Np gy for the mixed-radix FFT in terms of
D, and D,, in Appendix 1, the FFT algorithm has been con-
sidered within the framework of matrix decomposition [7].
Since the two-dimensional FFT can be regarded as repeated
applications of a one-dimensional FFT along all the rows and
columns of the two-dimensional array, then without loss of
generality we may focus our attention on the decomposition
of a one-dimensional transform. The total number of com-
plex multiplication N,,,,; when using the mixed-radix one-
dimensional FFT is (Appendix 1)

m
Nmulti = N Z n,— _(m + 2)N+N/nm + ] (5)
i=1

i=

where it is assumed that N may be factorised into a number
m of prime numbers n; as

N=11n ©)

In the special case for N=p™, where p is an odd prime, the
total number of operations for performing the ith transform
step, excluding the number of operations for twiddle fac-
tors, is

_Nm—1) _ Ney—1)?

n; n;

N(n;—1)

which in this case becomes N(p —1)%/p: hence the total
number of operations (excluding the twiddle factors) will
be mN(p — 1)*/p. Singleton [6] has shown that the complex
transform of dimension p, for p odd, can be computed with
(p—1)* real multiplications, or equivalently (p — 1)?%/4
complex multiplications. With this modification, the total
number of complex multiplications given above will become
mN(p — 1)?/4p, which is the result given in Reference 6.

When N =2™, a case often used in practice, the elements
of the transform matrices T; are either 1 or — I: thus per-
forming T;x{ can be done without multiplications, and the
total number of multiplications in this case will be reduced to
the number of complex multiplications needed for the twiddle
factors only, i.e. mN/2, m = log, N. Thus

N
Nonutti = :IOg2N (7

The idea of matrix decomposition for a one-dimensional
transform may easily be applied to the two-dimensional case;
hence, for a two-dimensional FFT of size D, x D,, the total
number of complex multiplications is

Nerr = NumutiayD2 + Npuiei 0 Ds ®

where

b
D
Nmatiay = Di L du=(p+2Dy + 72 +1

ip

b

D, = Hdli

i=

—

and

c D
Nmuttiqy = Dy 3, dyy—(q+2)Dy + —= + 1
i=1 leq

q
D, = I_I1 da;
i=

dy; and d,; being prime numbers.
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For the radix-2 transform, we have

D,D
Nppr = == logs D, D, ©)

3 Upper bound on the norm of truncation error

As stated eatlier, sectioning techniques may be used to imple-
ment two-dimensional recursive digital filtering operation if
the impulse-response sequence is truncated to a proper degree.
In this regard, Helms [4] has proposed two different methods
in the one-dimensional case for determining the suitable
amount of truncation. The degree of truncation, according to
the Helms first method, can be obtained by inspecting the
impulse-response sequence (in the time domain) and choosing
the maximum number of contiguous values of the impulse-
response sequence which are not ‘very small’. A suitable
amount of this truncation may then be found by increasing
this value until further increases no longer produce significant
changes in the output. This method is impractical for various
reasons, First, whatis ‘very small’ and how should it be chosen?
Secondly how can one be assured that the suitable degree of
truncation chosen by this method is really suitable? It is not
clear how the overall effect of changes on the output can be
determined. If this suitable value is chosen according to the

effect which it has only on one output block, this does not
imply that it is also desirable for the other blocks. Again, if
this suitable value is selected based on the overall effect on
the whole output for each truncation degree, the computation
time required is several times greater than that of the filtering
operation itself,

Helms has also proposed another method when the filtering
operation is specified as a frequency response (i.e. an amplitude
response or a phase response or both). This method, which is
named the ‘four-Ts’ (i.e. transform-truncate-transform-test)
method, involves determining the appropriate truncation
degree by computing the amplitude and/or phase response
after the truncation and then comparing the result with the
predetermined amplitude and/or phase response at each
iteration of the algorithm until satisfactory agreement between
_the two frequency responses is achieved.

Again this method is impractical, first because the effect of
the input on the output is ignored, secondly it requires com-
puting a number of DFTs and IDFTs, and thirdly the block
size needs to be predetermined, whereas the optimum block
size is dependent on the truncation degree.

These problems, which play important roles in two-
dimensional filtering by sectioning techniques, have been
closely investigated in this Section. A method which circum-
vents all the above mentioned problems associated with the
Helms method is introduced, which without any difficulty
gives suitable values of truncation degree. '

In what follows, the formulation of the upper bound on
the norm of the truncation error is made using matrix repre-
sentation of ¢wo-dimensional convolution [8]. With this
formulation, the overall effect of the truncation error on the
output elements can be determined, and the choice of suitable
degree of truncation may then be made possible.

Let us consider the input to be a picture array of dimensions
P x Q, sectioned into nonoverlapping blocks of size K x L (K
and L should be greater than the order of the filter). Moreover,
it will be assumed that the picture size is increased (if necess-
ary) so that P and Q are exactly divisible by K and L by adding
an appropriate set of zeros at the extreme boundaries. Then
writing the convolution eqn. 1 in matrix form we have

Y = GX (10)

where X and Y are vectors of dimension PQ representing the
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input and output ordered lexicographically, and G is a lower
triangular block Toeplitz matrix of dimensions PQ x PQ.

Now let an array of size M x N contain all the elements of
the impulse-response array which may be considered to be of
significant magnitude, and let the impulse-response array be
truncated to a size (m, n), where M<m <K and N<n<L.
For this truncated impulse response, G can be defined as

G = (G;;) i=1,2,...,0/L
j=12,...,0/L
where
Gy i—j=0
Gij ={ G, i—j=1 (11)
0 otherwise

The block matrices G, and G,, which are of dimensions
PL x PL, may also be defined similarly, i.e.

Go = (Goy,j) i=1,2,...,PK
j=1,2,...,PK

where
So i—j=0
Goij =4 8 i—j =1
0 otherwise
and
G, = (Gy;j) i=1,2,...,PK
j=12,...,PK
where
So i—j=0
Gu,j ={ S i—j=1 (12)
0 otherwise

Here Sg, S;, S¢ and Sy are block Toeplitz matrices of dimen-
sions KL x KL. We shall now study the effect on the output
error of increasing (m, n) to(m +a,n + b), where @ and b are
preferably large numbers, anda <K —m, b <L —n. Then the
value of (m, n) is chosen such that the change of error due to
this transition is negligible and also in order to ensure that the
specified value is acceptable in that further transitions should
result in decreasing error.

Let the output vector resulting from (m, n) truncation of
the impulse response be Y™™ Then the error vector may be
defined as

em,n — Ym+a,n+b___Ym,n

— (Gm+a,n+b_Gm,n)XééX (13)

The bound on the error may be derived from the Euclidean
norm [9] of eqn. 13:

le™ ™1 < IGI x| (14)
where
IGI? = trace (G!G) (15)

If we further assume that the input sequence {x,-’,-} is bounded,
ie. |x; jI<B, the average error £ for each output element
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must satisty
BIGI
< -
T (16)

In Appendix 2, the norm of G is expressed in terms of the
elements of the truncated impulse-response sequence. Since
the upper bound given in expr. 16 is independent of the block
size, a simpler procedure for obtaining optimal sectioning
parameters is suggested.

4 Implementation and results

The optimal sectioning procedure can be organised in ac-
cordance with the following steps:

(i) Choose the initial values of m and n asm =M, n=N.
The bound on the norm of error for the transition to m + q,
n+ b is computed. If this error is less than § (the maximum
acceptable error for each output element) and the errors due
to the subsequent transitions are decreasing, the selected
values of m, n are acceptable. Otherwise, m, n will be sub-
stituted by m + a,n + b and then incremented by a, b and the
process will be repeated until the error is less than 8. The final
suitable values of m, n will then be placed as M, N in eqn. 2
for the next step.

(ii) Having determined the optimal values of truncation
degree, the optimisation procedure with respect to the block
size for minimum computation time is then carried out.

It must be mentioned that the optimisation procedure for
computation time presented here is based on minimising
Niotar rather than Tepy;, because the proportionality constant
v is dependent on the type of computer and the efficiency of
the algorithm for a particular radix. This means that different
radices could produce some variation in y and consequently in
Tepy-

The effectiveness of the optimisation technique developed
so far, when the lowpass filtering (smoothing) operation is
performed by the sectioning technique, has been examined
for an X-ray image of Fig. 1. This picture shows the radio-
graph of a part of the wrist containing the radius (with epi-
physis and metaphysis) and a part of two small carpal bones
taken from a boy in the 10—12 year age group. The digitised
version of the picture is represented by a two-dimensional
128 x 145 (=P x Q) array having 32 (=B + 1) grey levels.
The image, as seen from the histogram of Fig. 2, contains five
regions of pixel intensity. They are approximately:

(@) 61t010

(b) 10to 12

(c)12to 17

@) 17 to 21

(e) 21 to 25.

These regions relate to small variations in grey level, corres-
ponding to soft tissue, single bone, superimposed bones,
palmar and dorsal surfaces [10]. The first and the last regions
correspond to soft tissue, and palmar and dorsal surfaces,
respectively.

The smoothing operation is performed by a two-dimensional
recursive lowpass filter (see example 2 of Reference 11) with
the following transfer function:

S e e e e e

Fig. 1 Original input image
35007
2800
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.
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Fig.2  Histogram of original input image of Fig. 1

The optimisation procedure is first carried out for the trunc-
ation error, and gives (m, n) = (11, 11), which is the optimum
value for truncation of the impulse-response sequence; trunc-
ation values less than this lead to output pictures which have
lost some desired information. Different block sizes, namely
32x32,30x 30,..., 20 x 20, have been considered in order
to examine their effects on the computation time and also on
the quality of the smoothed image. The computation times for
different block sizes are tabulated in the third column of
Table | for several runs of the program on the CDC 6500

B

1.0 0.410191 0.594957] [1 ]

(1 z7' z7?] | 0.240013 —0.887865  0.423221| |w™!

0.560841 0453500  0.360962] |w?]

HiEz ', w™') = 00122 —

1.0 —0.500549 —0.138282] [1 ]

[1 z7' z72] |—0.690435 —0.195020  0.346731| |w™!

—0.043308 0342758 —0.093572 Lw‘2

L - .
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Fig. 3A  Smoothed image using 32 X 32-block impulse response
truncated to 11 X 11

Fig. 3B Smoothed image using 26 X 26-block impulse response

truncated to 11 X 11

computer. The theoretical results for the number of multi-
plications are then calculated using eqns. 2, 3 and 8 and
tabulated in the second column of the Table. The FFT al-
gorithm used here is Singleton’s algorithm [6]; therefore,
when calculating the number of multiplications, Nppr should
be computed in accordance with the necessary modifications.
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4

Fig. 3C Smoothed image using 20 X 20-block impulse response
truncated to 11 X 11

The measured timings are the total time for processing of
the image, including the time needed for computations and
also the time for index interchanging. Moreover, there are
other factors, such as the efficiency of the algorithm for a
particular radix [6], which can contribute to the total CPU
time. Nevertheless, the theoretical and experimental results
in Table 1 are shown to be in good agreement. Figs. 3a~c
demonstrate three such typical instances of the smoothed
images for block sizes 32 x 32, 26 x 26 and 20 x 20, res-
pectively. The corresponding changes in histogram are shown
in Figs. 4a—c. For a fixed truncated impulse response, the
variation of block size does not lead to a significant change
in the quality of the smoothed image. Small changes in grey
levels as seen from the histograms are mainly due to round-
off error in computation. Throughout this experiment we
considered a truncated impulse response of dimensions
11 x 11. A block size of dimensions 32 x 32 is found to pro-
vide optimum result with regard to computation time and
truncation error.

5 Conclusion

The implementation of two-dimensional recursive digital
filtering of a large image using the sectioning technique is
considered. In particular, the sectioning approach is investi-
gated within the context of the total computation time and
truncation error. Expressions are then derived which enable
us to determine the optimal sectioning parameters. Using
these expressions, the optimisation procedure can be carried
out for minimising the computation time, and also the trunc-
ation error, independently, because the bound on the norm of
incremental error due to the truncation of the impulse response
is found to be independent of the size of the sections. This
consequently results in a simpler and more efficient algorithm
for obtaining suitable values of sectioning parameters. The
effectiveness of this algorithm has been examined for the
smoothing operation of an X-ray image on the CDC 6500
computer for different block sizes and truncation degrees.
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Table 1: Number of computations N4, and computation time
Ttotai for different values of block sizes

(D,,D,) Ntotar (theoretical) Ttotal (€XPErimental)
s
(20, 20) 670800 66
(21, 21) 797328 102
(22, 22) 880880 101
(23, 23) 1451760 124
(24, 24) 517440 64
(25, 25) 616500 52
(26, 26) 798720 86
(27, 27) 532656 58
(28, 28) 604800 69
(30, 30) 530880 53
(32, 32) 134400 32
3500
$ 28001
[=
[ J
5
0 21004
s ]
k3
5 14004
o
;E, J
2 7004 l
-l_fYVVI'l=!!| L2 e S ll!""ll"'
8 12 16 20 2 28 32
pixel intensity
Fig. 4A  Histogram of Fig. 34
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Fig.4C  Histogram of Fig. 3C

(D,, D,) = (20, 20)

378

(M,N)= (11, 11)

The resultant smoothed images are then demonstrated. The
optimum result obtained from the application of the algorithm
developed here is shown to provide optimum computation
time and truncation error.

The two-dimensional recursive digital filter used for the
smoothing operation here is a lowpass filter for which the
impulse-response sequence dies down fairly quickly. Although
in most applications this is generally the case, if the filter
impulse-response sequence in the time domain contains a
large number of elements with significant magnitudes, the
filtering operation by means of sectioning will lose its validity. -
An alternative and more efficient implementation scheme for
such cases is developed in Reference 8.
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7 Appendixes

7.1 Appendix 1
The N-point DFT is defined as
N-1
X)) =L xOHWy a7
1=0
where
k,1 € [0,N—1]
and
—2nj
Wy = exp =+-1
N
Eqgn. 17 may be represented in matrix form:
X = Ax
where
X(0) x(0)
X=X x = [x(1) (18)
XWN—-1) x(N—1)
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and where 4 is an N x N matrix with elements

_ kl mod N
A1 = Wy

If NV can be factorised as
m
N = I_I ni
i=1
where n; are prime numbers, then using Sande’s version of

factorisation [12] we have

k= kphlm-1Mmez. M1 ThpmoyAmog... .0+

+kon, +k
27 1 (]9)
| = lln2n3 ooy +12n3n4 ...l’lm+...
+lpoy B+l
where
kl"l( (S [O,n'_ll i = 1,2, ,m
Substituting eqn. 19 into eqn. 17 we obtain
nm -1
X(k) = Y wmUm, ki ko, km)
lm=0
Ny o -1
Z wm-l(lm—l,klykh-‘-,km—l)"'
lm-|=0
n, -1
Y x(ws(, ky) (20)
=0

where
wi(l, k) = W;lu',k' = (1, ky)

iy, kr, kg) = Waliam B0 = Wb w

n,n,
= t,(ly, k)ri (2, ky)

wm(lm’k11k2> e
= tm(lm’km)rm—l(lm,kl: k’l’ R

where 1;(l;, k;) are the elements of the ith transform with
kernel Wy, and r;(l;+y, kv, ko, ..., k;) denotes the corres-
ponding twiddle factors with kernel Wy, . n;, |-

Using this factorisation and applying the matrix decompo-
sition [7] for A4 results in

A=PPy. . Py FuRpm-Tpm-1...R\T, (22)

where
P = diag(P,, Py, ..., P)

the P; being permutation matrices containing only zeros and
ones as their elements,
‘éi = dlag (RhRi: <. 7Ri)

the R; being diagonal matrices containing the twiddle factors
ri

Tl' = d]ag (Tii Tia LRI} Tl)
the T; being matrices containing only n; nonzero elements
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(¢;) in each row, and

F,, = diag(Fp, Fm, ..., Fm)
where F,, is the matrix denoting the mth transform with
kernel W,

Knowing that matrix factorisation will speed up the oper-
ations, let us see how many arithmetic operations we need to
accomplish the computations indicated by eqn. 22. The effect
of permutation matrices PyP, ...P, -, is equivalent to
interchaning rows, which can be done without any arithmetic
operations. Therefore we only need to count the operations
for R;T;. Let us put

and (23)
Fix = x® x & x©@
In general, F;xW =x0*D F.=diag(F;, Fi, ..., F;), i # 1.

Then, using the same technique as introduced by Kahaner
[7], for the transition x‘? - x*1) 'we count only the total
number of operations for multiplying the F; block by a
portion of x and then multiply this by the number of
blocks. It is easy to show that the number of blocks for the

i-1
ith (i > 1) transition is equal to :l'l n;. The number of blocks
=1
for the first step is one. The dimensions of each block for the
i-1 i -1
ith transition are N/:H ny X N/:H n; . On the other hand,
=1 =1

to multiply each row requires (r; — 1) complex multiplications;
therefore the number of complex multiplications for cach

i-1
block will be equal to (N/III n; ) (n; — 1), and the total number
I1=1

of multiplications for the_ ith transition is then equal to
N(n; —1). The final step F,, is free of twiddle factors, and
thus its number of multiplications will be reduced to

A = D)y = Dy —y ...ny = (1, — )N —N+ Nin,,

:km) :uw}\r,n(km“m-l"m-z P (PR T (O

)kM‘l)

Vet kyn v R))

(21)

because each block requires (1,,, — 1)(n,,, — 1) multiplications
and the number of blocks for the mth step is n
ny.

Furthermore, by considering the fact that r;_,(l;, k,,
ka,..., kj-1) =1 when [;=0mod (n,;), the total number of
multiplications may be reduced further by

m-1lman...

(ny =) +ny(ny — D+nmny(ng —1)+ ...

+tmn, oo (g —1) = N—1

Hence the total number of complex multiplications for the
decomposition of eqn. 22 is

N
Npwei =N Y ny—(m+ 2)N+'-2——-+ 1 (24)

i=1 m

7.2 Appendix 2
By considering the definition of G; ; in eqn. 1.1, eqn. 15 may
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be expressed as

) 0 . 0 ) Hy = H' P —H = B,;) i=1,2...,L
IGI? = Z||G0||2+ 7! 1G, 12 (25) i=1.2....L
where
p hp. q wheng = L—(j—1i) n+l<qg<n+b
b 0 otherwise
(28)
where | Form+ 1<p<m+a, we have
GO =G(§"+a»n+b—cg‘r" ﬂp=H1;l+b_H;=(7i,j) L= 1321- -3L
Gl =G]"l+a,ﬂ'0'b_Glnl,n /= 1323' >
Also where o
{hp’q q =1i—] 0<qg<n+b
N P . P . 7.,. =
1Gol? = e (MY & +(k—— 1) (M (26) "o otherwise
and
R R . H, = H»bP—H!™ = (5, ; i=1,2,...,
and similarly for |G, 2. Matrices S, and S, can be defined as P P P ®:1)
- - j=1,2,.
- ,n+b _gom, _ s s
So = Sg " 8o " = (Soi,;) where
i=1,2...,K 5 {h,,,q qg=L—(—i) 1<qg<n+b
i=12...,K B 0 otherwise
(29)
where Using these definitions, one can easily deduce that
E H p=i—j 0<p<m+a mea m+a
i 32 — _ T2 312 — N2
oni = |, otherwise ISoh? = p;, (K —p) IH,| IS, pgo p A,
(30)
and and similarly for §o and S} . In addition,
S1 — S;n+a,n+b_slm,n — (Sli,j) ) neb
i=1,2,...,K IH1? = X (L—aq)hj
q=n+1
i=12,...,K forO<p<m 31
- n+b )
where IH,I* = q;’”?hp,q
s A, p=K—(-i) 1<p<m+ta
1i,j
' 0 otherwise N nb
IHI? = L—q)h?
@7) HI? = &, Eah
form+1<p<m+a
and similarly for S and S;, where the constituent block W2 _"ib 2
matrices are H,,. Matrices H,, and H,, are of dimensions P % 4"p.q (32)
L x L and can be defined as for 0<p <m:
N ne b . _ Therefore eqn. 15 may be reduced to
H, = H"°—Hp = () i=12...,
. R m n+bd
=12 IGI? = ¥ ®@-p) ¥ @-ah},
p=0 g=n+l
where (33)
h whenq = i—j n+l1<qg<n+b mta n+b
T ! ’ + Y @-p) Y @k,
0 otherwise p=m+1 a=0
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