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Fig. 9. Segmentation for Fig. 8.

Fig. 10. Third picture with textures—one from a metal net and one
from a carpet.

Fig. 11. Segmentation for Fig. 10.

it is 0.650, and for the group 3 it is 0.800. The final segmenta-
tions are shown in Figs. 7,9, and 11.

VII. CONCLUSIONS

A second-order discrete Gaussian random field is proposed to
model the texture. Based on the model, an approach which
combines the statistical parameter estimation with the hier-
archical segmentation scheme together is presented. The sta-
tistical method is used to analyze the spatial correlation of
the texture and the hierarchical segmentation scheme is used
to obtain the uniform region boundary. Only an approximate
boundary can be found simply because the estimation accu-
racy decreases with the window size.

One basic assumption in this correspondence is that the
numerical difference in the brightness function correspond to
the perceptual differences. It is to be expected that regions of
the image which appear similar would produce feature vectors
that are near each other. However, this is not always the case.
In addition to the fact that human perception of brightness is
logarithmic, we have the problem that features which can be
estimated mathematically may be difficult to perceive.
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On Edge Detection of X-Ray Images Using Fuzzy Sets
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Abstract—The effectiveness of the theory of fuzzy sets in detecting
different regional boundaries of X-ray images is demonstrated. The
algorithm includes a prior enhancement of the contrast among the
regions (having small change in gray levels) using the contrast intensifi-
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cation (INT) operation along with smoothing in the fuzzy property
plane before detecting its edges. The property plane is extracted from
the spatial domain using S, = and (1 - ) functions and the fuzzifiers.
Final edge detection is achieved using max or min operator. The sys-
tem performance for different parameter conditions is illustrated by
application to an image of a radiograph of the wrist.

Index Terms—Contrast intensification, edge detection, enhancement,
fuzzy set, image processing, S and = functions, X-ray.

I. INTRODUCTION

The object of an edge detector is to detect the presence and
location of changes in gray levels in an image. The methods so
far developed for edge/contour detection of an image are cate-
gorized in two broad classes [ 1]-[5] namely, frequency-domain
methods and spatial-domain methods. The technique in the
first category is based on modification of Fourier transform of
an image by a high-pass filter. The spatial-domain techniques
on the other hand, are mostly based on the magnitude of dis-
crete gradient corresponding to a pixel which measures the dif-
ference in intensity levels among the pixels. The edges are
sharpened either by increasing the cutoff frequency of a high-
pass filter (in frequency domain) or by using different thresh-
old procedures (in spatial domain) [1], [2]. Because of the
simplicity and yet effectiveness, the spatial domain techniques
are mostly used in practical problems [2]-[5].

In X-ray processing problems, the appearance of an object
on an X-ray film is a two-dimensional projection of a three-
dimensional object. The film is therefore seen to contain a
number of regions having fairly distinct gray levels (caused by
variations of the transmission properties of tissue, cartilage,
bone and multiple layers of bone) within the object superim-
posed on the background level. For example, in a radiograph
of a hand and a wrist, these regions relate to small variations in
grey level corresponding to soft tissue, single bone, superim-
posed bones, and palmar and dorsal surfaces [6] which have
developed on the epiphysis of radius, ulna, phalanges, and

" metacarpal bones with the styloid process and other three-
dimensional effects of bones due to the erroneous placing of
the hand to be radiographed. The gray levels are minimum
for background and maximum for palmar and dorsal surfaces.
Since the change in gray level between these successive regions
is not great and edge detection techniques are found to be
effective only for significant contrast, it is necessary to en-
hance the contrast levels among the different regions of radio-
graph before detecting their regional boundaries.

The present work confines itself to demonstrating an appli-
cation of the theory of fuzzy sets in the field of biomedical
image processing for detecting contours of such regions on a
radiograph of a hand and wrist. This is a part of the investiga-
tions of the research project “Identification of Skeletal Matur-
ity and Adult Height from X-Ray,” under development in the
Digital Communication Section of the Electrical Engineering
Department, Imperial College, London.

Since a gray tone image possesses some ambiguity within the
pixels due to the possible multivalued levels of brightness, it
is justified to apply the concept and logic of the fuzzy sets
[71-[9] rather than ordinary set theory to an image processing
problem. Keeping this in mind, an image X can be considered
as an array of fuzzy singletons [7]-[9], each with a member-
ship function denoting the degree of membership of the single-
ton to X.

Fig. 1 presents the block diagram for detecting gray tone
edges of an X-ray image using a fuzzy algorithm. This algo-
rithm defines the edges in terms of the grade of membership
function of the pixels with respect to some intensity level.

The procedure involves a pre-enhancement of an image by
the stretching of its grey scale followed by a smoothing opera-
tion. These are done in block Ey. The smoothed image then
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Fig. 1. Block diagram of the edge detection model.

undergoes a transformation (in block E,) by Gy function
(alternate use of m and (1 - m) fuzzy functions) which results
in contrast intensified k (k > 3) regions of the X-ray image.
The final edge detection is done in the block E3 using “max”
or “min” operator within neighbors or any other gradient
technique [1], [2].

The technique used in the blocks E; and E, is based on
modification of pixels in the fuzzy property plane of an image.
This property plane is extracted from the spatial domain using
S, m and their complement [7], [9] membership functions
along with the fuzzifiers [9], [10]. The fuzzy contrast intensi-
fication (INT) operator is taken as a tool for enhancement in
the property domain. Intermediate smoother is used for bet-
ter primary enhancement.

The effectiveness of the algorithm with different values of
the system parameters is demonstrated on an image of a wrist.
The digital computer CDC 6400/6500/6600 was used as a pro-
cessing system.

II. Fuzzy SET AND MEMBERSHIP FUNCTION

A fuzzy set (4) with its finite number of supports x;, x,,
* ** X, in the universe of discourse U is defined as

A= {(ug (x), x)}

or, in union form

A=Uuwilx, i=1,2,-++n
i

(1a)

(1b)

where the membership function u 4 (x;) having positive value in
the interval (0, 1) denotes the degree to which an event x; may
be a member of 4. This characteristic function can be viewed
as a weighting coefficient which reflects the ambiguity (fuzzi-
ness) in A. A fuzzy singleton is a fuzzy set which has only one
supporting point. If uy(x;) = 0.5, x; is said to be the crossover
point in 4. The a-level set of A is defined as 4,, whose sup-
porting points have membership value between & and 1, 0 <
a< 1.

Similarly, the property p defined on an event x; is a function
p(x;) which can have values only in the interval (0, 1). A set
of these functions which assigns the degree of possessing some
property p by the event x; constitutes what is called a prop-
perty set (11).

A. Image Definition

With the concept of fuzzy set, an image X of M X N dimen-
sion and L levels can be considered as an array of fuzzy single-
tons, each with a value of membership function denoting the
degree of having brightness relative to some brightness level /,
1=0,1,2,---L~-1. In the notation of fuzzy set, we may
therefore write,

X= U U Pmn/Xmn (2)
m n

m=1,2,"' M, n=1’2,"',N

where pyn/Xmn, (0< p,u, < 1) represents the grade of pos-
sessing some property p,,, by the (m, n)th pixel intensity
Xmn. This fuzzy property p,,, may be defined in a number of
ways with respect to any brightness level depending on the
problems at hand. In the following sections we will define the
standard § and 7 fuzzy membership functions and their ap-
proximation in our problems.
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B. S and m Functions and Property Plane

Two standard functions which are found in many cases to be
convenient to represent the membership function of a fuzzy
set in the real problems are the S and 7 functions. These are
defined as [7], [9]

S(x;a,b,c)=0, x<a (3a)
_\2
=2(x “), a<x<b (3b)
c-a
x-c\?
=1-2 , b<x<c¢ (3¢)
c-a
=1, x=c¢ (3d)
with
atc
b= 2
and
b
n(x;b,c)=Sx;c-b,c-?,c for x<¢ (4a)

=1—S(x;c,c+%,c+b) for x=c¢ (4b)

In S(x; a, b, c), the parameter b is the crossover point, i.e.,
S(b;a, b,c)=0.5. In m(x; b, c), b is the bandwidth, i.e., the
separation between the crossover points of m function, and ¢
is the central point at which 7 = 1. Equations (3) and (4) de-
fine the membership or compatibility function corresponding
to fuzzy sets “x is large” and “x is ¢’ respectively.

Now in the case of the enhancement problem as discussed
in Section III, one is ultimately interested in enhancing the
contrast between successive adjacent regions (as needed for
edge detection) by choosing only the crossover points, as the
slope of the curves is not of interest. Therefore, we may
approximate the functions S and 7 by G(x,,,) defined as
[9], [10], [12].

Pran = Gtpn) = (1 + |5 = x,un|/Fg) T, (5)

Equation (5) represents in the interval [0, Xpax ], Xmax being
the maximum level in X, a membership function of S-type
(Gg) for X = xpax =L - 1 corresponding to (3) over the range
a<x<c. It represents, in the same interval, a m-type func-
tion (G) for ¥ = some arbitrary level I, 0 < I, < Xpax COITE-
sponding to (4) over the range ¢ - b <x <c¢+ b with /, cor-
responding to c.

The positive constants F, and Fy [independent of (m, n)]
are termed the exponential and denominational fuzzifiers,
respectively. They have the effect of altering the ambiguity
in the fuzzy property plane, and their values are determined
automatically from the crossover points in the enhancement
operation [12].

The function Gg represents, in the interval [0, xpa4 ], the
compatibility function corresponding to the fuzzy plane
“YXmn 18 Xmax” and its fuzzy p,,, value denotes the degree of
possessing maximum brightness level xp,, by the (m, n)th
pixel intensity x,,,. Similarly, G, represents in the same in-
terval, the compatibility function corresponding to the fuzzy
plane “x,,, is I,” and its p,,, value denotes the degree of
possessing some arbitrary level /. by the (m, n)th pixel.

The graphical representation of p,,, = Gz(xm,,) for differ-
ent pixel intensities x,,, ranging from zero to xp,x is shown
in Fig. 2. Here I, and [/, are the two crossover points, (I, = 1)
is the bandwidth, and I, = (I; +13)/2 = xax/2. The function
is symmetric if I, = 2I, or, alternatively, I, = 2l - Xmax-
Otherwise, the function is nonsymmetric. For a Gg function,
symmetry occurs when [, [= 5 in (3)] corresponds to X,y /2

Pmn 05 T
/
/
/
/
oL === , , Rz
o 4 {c {5 Lmax

Xmn
Fig. 2. « function for transforming x,,,,, t0 Pyyp.

(middle of the range). Symmetry of the curve about the cross-
over points is controlled by the values of F, and Fy.

Therefore, instead of using two sets of piecewise nonlinear
functions (3), (4) one can use (5) to represent S and 7 func-
tions where the position of crossover points, bandwidth, and
hence the symmetry of the curves are determined by the fuzzi-
fiers Fe and F .

Again, it is to be noted from (5) that for x,,, = 0 or 2%, Ppmn
has a finite positive value &, where

a=[1+ 2]
-l

So the p,,, plane becomes restricted in the interval (e, 1) in-
stead of (0, 1) resulting in an o-level property plane of image
X. This is shown in Fig. 2.

III. ENHANCEMENT OF CONTRAST AMONG SUCCESSIVE
REGIONS

A. Contrast Intensification and
Enhancement in Property Plane

The INT operator operating on a fuzzy set A generates
another fuzzy set A’ = INT(4), the membership function of
which is

B (x) = HINT) () = 2(Mg (X))?, O<py(x)<0.5 (6a)

=1-2(1- py(x))?, 0.5<puy(x)<I.
(6b)

This operation reduces the fuzziness of a set 4 by increasing
the values of uy(x) which are above 0.5 and decreasing those
which are below it. Let us now define operation (6) by a trans-
formation T'; of the membership function u(x).

In general, each p,,, in X (equation 2) may be modified to
Pmn to enhance the image X in the property domain by a
transformation function 7, where

Pmn = Tr(Pmn) = T)( Pmn), 0<pmn<0.5 (7a)
=Ty (Pmn), 0.5<p,,,<1 (7b)
r= 1’ 2’ e

The transformation function 7, is defined as successive appli-
cation of Ty by the recursive relationship

Ts(Pmn) = Tl{Ts—l(pmn)} (8)
s= l’ 2’ e

and Ty(Pp,y,,) represents the INT operator defined in (6).
The detail of the enhancement operation is reported in (12).
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Fig. 3. Gy function; alternate use of 7 and (1 - ) functions.

As r increases, the contrast between two/three consecutive
regions corresponding to Gg/G, will increase and in the limit-
ing case, as r => oo, it will produce a two-tone (binary) image.
For example, if we use the Gg function, the p'-values for the
regions 0-/;, and Il4-/, would become zero and unity, respec-
tively. Use of G,, on the other hand, would result in unity
property value for the region /4-I, and zero for the rest
(Fig. 2).

Thus, we see that by using suitable crossover points in S or
« function it is possible to achieve any degree of contrast en-
hancement between two or three successive regions of gray
levels in the p plane with an independent choice of r for T’
and T" operations.

B. Extension to Multiple Regions

Suppose we have more than three regions in the grey scale
to be isolated from one another. The above concept can
then be extended by the successive use of S or 7 functions
over the regions in question. Fig. 3 shows such an alternate
application of G, and its complement (1 - G,) to enhance the
contrast level among k regions Ax;, Ax,, -« Ax; -+ Axy
ranging from /g to /i in spatial domain.

Let loy, lop =+ +lci + Ik denote the k central intensity levels
of these regions, and Iy, 5 « -« I;, - - - l_y are the intensities of
the (k - 1) boundary levels between these regions. Then we use

Pmn=GwXmn) = Ga(Xmn; Iz = I, lc2),  Xmn <Ia (%9a)
= 1= Grlxmn; I3~ 13, Ic3), L, <xpp<I3
(9b)

=1-Gn(xXmn; lk-1 = lk-2s lc(k-l)),
Xmn = lk_.2 (90)
where

hitli,
Ax,‘=li_li_l;lci='—'—2"_, l=1,2,"',k.

(10)

Since the central intensity points are obtained from the adja-
cent crossover points (10), the problem of separating k regions
essentially reduces to the selection of (k — 1) crossover points
only. Again, in practice, each of the bandwidths Ax;, i=1, 2,
-+, k (although shown to be same in Fig. 3) is likely to be
different.

If, after extracting the fuzzy properties using (9), we apply
the T, operation [(6)-(8)], the resulting modified p,,, <<
would contain k separable regions with a value of p/, <<
0.5/>>0.5 corresponding to Ax;/Ax;4q,i=1,2, -« -

C. Inverse Membership Function

After the enhanced p;,,, domain is produced by Gy (x,,) =
T,(Pmn) transformation, we use

a<p,<lI 1)

=l !
Xmn = G5 (Pmn) £=Xmax ’

li=Xmax /2

to obtain the corresponding contrast intensified spatial domain
Xmn. Since the Gg!(p,p) yields a single valued (unlike G;)
Xmn domain whose dynamic range is determined by X and the
symmetry about the crossover point is determined by F, and
F4, the above transformation will generate a symmetrical
spatial domain of full dynamic range (0 to xpay). The re-
sulting image X' would have valued either x,,, >> Xmax/2 Or
<KXmax/2 corresponding to pjy,, >>0.5 and <<0.5 in the al-
ternate regions. The contrast (difference in grey level) between
any two consecutive regions of X' would therefore approach

*max-
D. Steps in the Processing Algorithm of Blocks E and E,

Steps in the processing algorithm encountered in blocks E,
and E, of Fig. 1 are listed below where steps 1, 2, and 3 corre-
spond to block E; and block E, comprises step 4.

la) Extract the fuzzy properties of the image using a non-
symmetric Gg function (with crossover point corresponding
to boundary level between the first two regions).

b) Apply the T, operator on the property plane to reduce
the levels of first region only.

c) Apply the Ggl function [with the same parameters as
in Gg of step la)] on the modified property plane to obtain
the modified spatial domain.

2a) Extract the fuzzy property of image of step 1c) using a
nonsymmetric Gg function (with crossover point correspond-
ing to boundary level between last two regions).

b) Apply the T, operation on the property plane to en-
hance the levels of last region only.

c) Apply the Gg‘ function [with the same parameters as
in Gg of step 2a)] on the modified property plane to obtain
the modified spatial domain.

3) Smooth the image of 2c) in spatial domain to retrieve
some pixel-intensities which have been greatly decreased/in-
creased near the threshold in the T,/T; operations of steps 1
and 2.

4a) Extract the fuzzy properties of this smoothed image us-
ing the Gy function.

b) Apply the T, operation on the property plane to en-
hance the contrast among successive regions.

c) Apply a symmetric Ggl function (with crossover point
corresponding to Xy ,x/2) on the modified property plane to
obtain the contrast-intensified successive regions in the spatial
domain. The pixels of this domain are isolated by possessing
gray levels either >>x,,,/2 or <<xpax/2 in the alternate
regions.

E. Implementation of Blocks E, and E,

The block diagram of the enhancement process correspond-
ing to step 1, 2, or 4 is shown in Fig. 4. The function G(x,,,,,)
as defined by (5) uses two fuzzifiers F, and F,; to extract the
fuzzy properties p,,, for the (m, n)th pixel x,,,,, of an M X N
input image X. The transformation function T,(p,,,) serves
the role of enhancement in the property plane using r succes-
sive applications of the fuzzy INT operator. This is explained
by (6)-(8). The enhanced p’' domain after being inversely
transformed by G-I( p;,,,,) produces the corresponding en-
hanced image X' in the spatial domain.
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Fig. 4. Block diagram of the enhancement operation.

For steps 1 and 2, the function G corresponds to nonsym-
metric Gg with different values of crossover points as deter-
mined by F, and Fz. The crossover point in step 1 was allowed
to fall at the boundary level of first two regions so that the
operator T, can reduce the levels of the first region. The levels
in other regions are unaffected. Similarly, the crossover point
in step 2 was made to correspond to the boundary level of the
last two regions so that the operator Ty can only enhance the
Levels of last region without changing the others. In both cases,
X was considered to be xpyax. The inverse function for these
steps was Ggl with the parameters the same as in the respec-
tive Gg. For step 4, we used Gy, T, (ie., both T, and T})
and Gg! (symmetric across Xmax/2, X = Xmax)- The crossover
points of these enhancement operations are chosen from the
histogram of the images.

The smoothing operation in step 3 is achieved simply by an
averaging technique within four neighbors such that the
smoothed (m, n)th pixel intensity becomes

Xmn=% 2 xi (G, 1) #(m, n), @))€ Q. (12)
(o

0, is a set of four neighboring coordinates which are on a circle
of radius 1 unit from the point (m, n). After the smoothing
operation, the sharp edges resulting from the application of
thresholds in 7' and T" operations in steps 1 and 2 get blurred.
This operation helps in getting back some parts of the picture
lost (by T' operation in step 1) near the edges and also in
selecting the final crossover points for the Gy function of
step 4.

Again, since the pj,,-values were obtained from the a-level
property plane, it would contain some region where py,, <o
due to the T'-operation. The algorithm thus includes a pro-
vision for constraining all the p;,,, < a values to « so that the
above inverse transformation will allow those corresponding
Xmn-values to have zero gray level.

IV. EDGE DETECTION

The edge detection using min or max operator [13] was
adopted in block E3 (Fig. 1) on the final enhanced spatial
domain of 4c) (Section III-D). If x},, denotes the edge in-
tensity corresponding to a pixel x,,,, then edges of the image
are defined as

Edges & Uu X (13a)
m n
where
' .

Xmn = 1 Xmn ~ mén {xii}l (13b)
or,

x;nn = |xXpmn - mé-x {xii}l (13¢)
or,

Xmn = max {xi} - min {xz}, GiEQ (13d)

Q is a set of N coordinates (i,j) which are on/within a circle
of radius R centered at the point (m, n). Equation (13c) as
compared with (13b) causes the boundary to be expanded by

Fig. 5. Input image.

one pixel. Equation (13d), on the other hand, results in a
boundary of two pixel width. It therefore appears from (13)
that the better the contrast enhancement between the regions,
the easier is the detection and the higher is the intensity of
contours x,,, among them.

V. EXPERIMENTAL RESULTS

Fig. 5 shows the radiograph of a part of the wrist containing
a radius (with epiphysis and metaphysis) and a part of two
small carpal bones taken from a boy in the age group of 10-12
years. The digitized version of the picture is represented by an
array of 128 X 145 (=M X N) dimension having 256 (=L)
gray levels. The histogram of the image is shown in Fig. 6.
It is seen from the histogram that the image contains 5 (= k)
regions approximating to 1) 50-80, 2) 80-100, 3) 100-135,
4) 135-165, and 5) 165-200. The first and the last regions
correspond to soft tissue, and palmar and dorsal surfaces,
respectively.

The first enhancement (step 1) has a crossover point of the
nonsymmetric Gg function between 83 and 84, F, =2, and
X = 255 corresponding to Fz = 414 and a= 0.38296 with r = 4.
Step 2 has a crossover point of 166.5 (between 166 and 167),
the same values of F,, and ¥ corresponding to Fg=213.6,
a=0.2078, and r = 4. After smoothing, the histogram is given
in Fig. 7(a).

To compare the effects of a crossover point on the detection
of palmar and dorsal surfaces, the values of Fg and « in step 2
above were changed to 223.3 and 0.21796 corresponding to a
threshold level of 162.5; other parameters were unchanged.
After smoothing, the changed histogram is as shown in Fig.
7(b). From Fig. 7(a) and (b) it is clear that the pixel intensi-
ties corresponding to the first region are reduced due to the
T4 operation in step 1, thus making an extension of the region
further down to the zero level. Similarly, the T4 operation in
step 2 causes region 5 to extend further up to a level of 255
by increasing the pixel intensities belonging to that region.
Since we are using the T" operation, we need not bother about
« in step 2. As an illustration of the smoothing operation, we
have presented the smoothed image (Fig. 8) corresponding to
Fig. 7(b).

In step 4, for Fig. 7(a) we have selected the values of /4, /5,
I3, and I4 in the Gy function to be 55.5, 103.5, 138.5, and
163.5, respectively. For F, = 2, the values of Fg correspond-
ing to Iy =79.5, 1, =121, and I3 =151 were 58, 42.25, and
30, respectively. For Fig. 7(b), l4 was changed to 159.5 (the
other /;’s remaining the same) with a corresponding change in
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Fig. 8. Smoothed image corresponding to Fig. 7(b).

Fig. 9. Enhanced image showing isolation of five regions corresponding to Fig. 7(b) with 7 = 4.,

Fg4 (=25.35) and I3 (= 149). T4 was used here as an enhance-
ment tool For the symmetrical inverse transformation GS s
we used x = 255 and Fg =300, F, =2 so that the crossover
point becomes X/2 and o= 0.2922. The five contrast intensi-
fied regions of Fig. 8 as obtained after the fourth step (output
of block E,) of the algorithm is shown in Fig. 9.

Having completed the enhancement with blocks E; and E,
we now consider edge detection in block E3. The edge detec-
tion using min operator and N = 4, i.e., four neighbors (13b)
is applied to images corresponding to Fig. 7(a) and (b), and the
results are demonstrated in Fig. 10(a) and (b). Fig. 10(a) as
compared to 10(b) is seen to lose some pixel intensities of
palmar and dorsal surfaces.

If Fig. 8 is processed in block E, (step 4) by r=2 or r=8,
and then edge detected as above with N =4, we obtain Fig.
11(a) and (b), respectively. This demonstrates the effect of
changing r in the INT operation. With changing r from 2 -~
4 -8 [Fig. 11(a) > 10(b) = 11(b)] the image tends to become
a two-tone (binary) and the detection of edges becomes better.
The image obtained (in step 4) with =8 was also edge de-

tected with N=5 (including the (m, n)th point in min opera-
tion), but the result did not show any significant difference
from Fig. 11(b). Fig. 12 shows the edges for r = 8 when (13¢)
(“max” operation) with N =4 is used. The edges of Fig. 12
as compared to 11(b) are seen to be shifted by one pixel and
it is the shift which makes the task of their interpretation
more simplified as compared to Fig. 11(b) [15].

VIII. CONCLUSION

The concept of the fuzzy set and its associated operations are
found to be applied successfully to the problems of gray tone
image processing. The problem of detecting different regional
contours of an X-ray film needs an initial enhancement of con-
trast among those regions before their detection. The use of
fuzzy S and 7 functions along with the successive use of con-
trast intensifier is found to be suitable in isolating those
regions in the property plane. The method is applicable for
the images having distinctive peaks in their histograms. The
crossover points and hence the placing of thresholds in en-
hancement operation are controlled by the fuzzifiers which
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Fig. 10. Edge detected output using (13b) and » = 4. (a) Correspond-
ing to Fig. 7(a), (b) corresponding to Fig. 7(b).

(b)

Fig. 11. Edge detected output using (13b) corresponding to Fig. 7(b).
(@r=2,(b)r=8.
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Fig. 12. Edge detected output using (13¢) and r
Fig. 7(b).

8 corresponding to

play the role of creating different amounts of fuzziness in
property domain. The intermediate smoother helps both in
retrieving some pixel intensity lost by previous enhancement
operations and in selecting the crossover points for the follow-
ing final enhancement. Edge detection is done using min or
max operators within the neighboring pixels. The edge inten-
sity increases with the number of successive uses of the INT
operator.

Investigations were also reported [14], [15] in which the pre-
enhancement operation of block E; is replaced by the histo-
gram equalization technique [2] (a standard existing enhance-
ment operation for images like X-ray pictures and landscape
photographs that are taken under poor illumination). But
the contours of the resulting edge detected output image as
compared to the present algorithm were seen to contain more
spurious wiggles which, in turn, make the task of their descrip-
tion and interpretation more difficult.
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Optimal Quadtrees for Image Segments

WILLIAM I. GROSKY AND RAMESH JAIN

Abstract—Quadtrees are compact hierarchical representations of
images. In this paper, we define the efficiency of quadtrees in repre-
senting image segments and derive the relationship between the size of
the enclosing rectangle of an image segment and its optimal quadtree.
We show that if an image segment has an enclosing rectangle having
sides of lengths x and y, such that 2N-1 % max (x,y) < 2N, then
the optimal quadtree may be the one representing an image of size
2N x 2NV or 2V*1 x 2N*1_ 1t is shown that in some situations the
quadtree corresponding to the larger image has fewer nodes. Also,
some necessary conditions are derived to identify segments for which
the larger image size results in a quadtree which is no more expensive
than the quadtree for the smaller image size.

Index Terms—Blueprint, grid size, image translation, optimal quad-
tree, partial quadtree.

I. INTRODUCTION

Quadtrees are receiving increasing attention from researchers
in computer graphics, image processing, cartography, and re-
lated fields. The quadtree representation of a region is based
on successive subdivisions of the array into quadrants. A uni-
form quadrant of the image is represented by a leaf in the tree;
a nonuniform quadrant is represented by an internal node,
preparatory to its being further divided into its quadrants.
Thus, the entire array is represented by the root node, the four
quadrants by the four sons of the root node. This process is
iterated. The leaf nodes, being of uniform color, represent
those blocks for which no further subdivision is required. As
an example, the 8 X 8 region shown in Fig. 1 is represented by
the quadtree exhibited in Fig. 2; a white region is represented
by a white node O; and a black region is represented by a
black node ®. Note that the coordinate system we are using
has the origin at the northwest corner, and that the positive
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