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Parallel System Design for
Time-Delay Neural Networks

David Zhang, Senior Member, IEEE, and Sankar K. Pal, Fellow, [EEE

Abstract—In this paper, we develop a parallel structure for the
time-delay neural network used in some speech recognition ap-
plications. The effectiveness of the design is illustrated by 1) ex-
tracting a window computing model from the time-delay neural
systems; 2) building its pipelined architecture with parallel or se-
rial processing stages; and 3) applying this parallel window com-
puting to some typical speech recognition systems. An analysis of
the complexity of the proposed design shows a greatly reduced
complexity while maintaining a high throughput rate.

Index Terms—Parallel computing, pipelined architecture, time-
delay neural networks, speech recognition.

[. INTRODUCTION

RTIFICIAL neural networks (ANN), as processors of

time-sequence patterns, have been successfully applied
to several speaker-dependent speech recognition problems
[1]-[14]. A variety of neural speech recognition algorithms
has been developed. Numerous studies have demonstrated the
effectiveness of multilayer systems with time-delay sequences
as inputs to these systems [15]-[18]. Typical examples are:
time-delay neural network (TDNN) proposed by Waibel and
Lang [19]-[21]; block-windowed neural network (BWNN) by
Sawai [22]; and dynamic programming neural network (DNN)
by Sakoe [23], [24].

Some features used in these neural speech recognition sys-
tems are incorporation of time delays, temporal integration, or
recurrent connections. Spectral inputs are applied to input nodes
sequentially, one frame at a time, and their corresponding input
matrix is formed [15], [16]. Since only short time delays are
used, these neural speech recognition systems can be integrated
into real time speech recognizer. However, these systems con-
cern, so far, mainly with algorithms; their behaviors and char-
acteristics are primarily investigated by simulation on general
purpose computers. The spatiotemporal computing parallelism
inhered in such neural speech recognition systems is little ex-
plored; thereby restricting its application domain to real life
problems.

In this paper, we describe a methodology for parallel
time-delay window computing by considering the features and
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characteristics of such neural speech recognition systems. A
model for time-delay window computing and its corresponding
architecture definition are described in Section II. Two kinds
of processing stages used in pipelined architecture and their
building elements are explained in Section III. In Section IV,
some mapping strategies from window computing model into
systolic array structures are defined. Three typical speech
recognition applications and their performance analysis by
parallel window computing are given in Sections V and VI,
respectively. A brief conclusion is included in Section VII.

II. WINDOW COMPUTING MODEL

A. Definition and Notation

Based on the neural systems with time-delay sequence input
of feature parameters for speech recognition [15]-[18], we can
develop a typical computing model composed of p + 2 layers,
which includes an input layer, p hidden layers, and an output
layer. Both the input layer and the hidden layers are character-
ized by time-delay sequence input matrix of speech parameters,
built by ms xns (s = 1,2, -+, p+1) memory elements, where
Mmpt1 = ¢ is the number of pattern classes. The output layer
consists in ¢ units. The relation between node x;; in Layer s
and node ¥ in Layer s + 1 can be defined as

w =f (Z > wowll iy iy + 9““”)

where k < i < k4+es—1landl < j < Il+rs—1; f
is a sigmoid function; w®D and F*D 1 < k < msy1 and
1 <1 < ngq1, are referred to as weight value and bias value,
respectively. Both values can be obtained from a small input
submatrix (called “window”), where the size is s x 75 (e5s < M
and s < n) in Layer s, to the node y,; in Layer s + 1. This
kind of time-delay window computing methodology is shown in
Fig. 1. Obviously, there will be m ;41 X 1541 windows formed
by the input matrix (ms X ns) in Layer s.

To implement such a time-delay window computing in (1),
we can use only an input window built by e¢; X 7, elements in
Layer s. Instead of moving such a window to the whole input
matrix, speech parameters in time-delay sequence are arranged
to pass through the window in pipeline. Thus, the expression in
(1) can be rewritten as

Yy = f (Z WMXT) =f (Z -XWIS)

M
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control unit not only gives each control sequence to the cor-
Layer s+1 responding processing stage, but also arranges the time-delay
Y speech input parameters of each frame as data flow input to
F\ the given computing window. Once the window is filled, the

time-delay sequence input submatrix obtained is processed. De-
pending on the nature of the time-delay speech inputs, two dif-

[ .\
e w——

ferent processing stages can be used in the architecture. These
X;; Layer s will be discussed in the next section.
X I1l. PIPELINED ARCHITECTURE PROCESSINGSTAGES
R A. Parallel Processing Stage

In the pipelined neural system, a parallel processing stage can
be defined in Fig. 3(a), where a window built by, x r, ele-
ments is utilized to receive the input data flow from its previous
. . o . . stage, andn,; neurons are used to send the output results to
WhgreX Is an input sub-matrix given by such a fixed Wmdowthe next stage in parallel. In other words, the input data flow
which can be represented as is passed through the window and transformed by this stage to
generate the corresponding output data flow. The widths of both

Fig. 1. Time-delay window computing model between layand layers + 1.

X1 i1 iz T data flows are defined as, andm, 1, respectively. A new fea-
X = Xa | _ | @z @22 0 o, (3) ture parameter obtained by each neuron in stagn be repre-
cented as
Xes Te,1 Leg2 o Tegr,
vits +1) = 1 (3 W) X7(s)) (5)

and W, is the corresponding weight matrix from the window

in Layers to nodeyy,; in Layers + 1, i.e., wheres — 1,2, p+13i = 1,2,---,mass; Wils) is the

) (kD) (kD) 7th weight matrix andX () is the input submatrix given by the
Wy Wit o Wi window in stages.
Wy = |wS? wls? Wl 4)
M= o B. Serial Processing Stage
w0 D In thi . . o .
ool .2 e s n this processing stage, a pipe with single parameter width

o ' . . is made by a chain of serial shifting elements [see Fig. 3(b)]. A
Itis evidentthatthere ar@ 4| x n, differentweight matrices window structure is designed to implement the transformation
from Layers to Layers + 1. Their sizes are equal to the size obetween stages. The — 1 line delays, each:, — ¢, shifting

the window in Layers. elements, are built to receive a serial stream of parameters and
o _ to form the required windoe; x 7, ), which are input ten;;
B. Pipelined Neural Architecture neurons. Thus, the totdk, x r,) + (m, — ;) (ry — 1) =

The time-delay window computing model discussed abowe.(7s — 1) + ¢, elements are needed in window structure. The
can be implemented by a pipelined neural architecture wit¢urons associated with the window are defined in (5) with their
p + 1 processing stages, each with its own control sequerg@nmon output
[see Fig. 2(a)]. In each processing stage, a fixed time-delay
computing window is built as a connection to next stage. y(s+1) = OR(yi(s + 1)) (6)
Loading an input submatrixX, to the window in a pipeline
mode and mapping the corresponding weight mati%,, wherei = 1,2,---,m,41;s = 0,1,---,p + 1. Note that
(k = 1,2,---,msy1; 1 = 1,2,--- ,ns41), the output result, the output of each neuron can, in turn, be obtained as, either
Yk, €an be obtained. Since all time-delay computing windowasingle outputy; (s + 1), or no output within a single clock in-
in the pipelined neural architecture are capable of working t&rval. The output order in a cycle igi(s + 1), -, ¥m,., (s +
the same time, the potential parallelism inhered in such neutdl *1,- - -, *e¢, — 1, wherem,,; + ¢, — 1 = m, and *%”" in-
speech recognition systems can be well explored. dicates no output. There are a totalaf,, (= n, — 7. + 1)

A basic time-delay neuron in the pipelined neural architegrocessing cycles for each given speech input maitixx n;.
ture is defined in Fig. 2(b). The time-delay inpufs; (« = .

1,2,---,e,), are undelayed or delayelt, (= S D; + A), © Building Elements

whereD is a delay unitand\ isitsincrementj = 1,2, - - -, t— There are three kinds of building elements, including
1;¢=1,2,---,r, — 1). The time-delay speech inputs;, will  window, synapse and summing element, which are used in
be multiplied by several weights, one for each delay and one toro different processing stages described before. A window
the undelayed input. element can be implemented by a regular shifting register and

Note that two types of operations, namely, control flow anthus the following discussion will be focused on the other
data flow, are used in this pipelined neural architecture. Mastaro building elements. Considering on-line backpropagation
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Fig. 2. (@) Pipelined neural speech recognition system with1 processing stages and (b) time-delay neuron structure in the pipelined neural system.
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Fig. 3. Two kinds of processing stages in (a) parallel and (b) serial.

(BP) learning, which has successfully applied to the neurall) Synapse ElementA synapse element is used to store
speech recognition systems, two processing phases, searchim)change weight values. It is mainly composed of a weight
and learning, are defined in the building elements. They camemory(W), two multipliers ( andI) and two selectorsg

be implemented by special feedforward and feedback pathad ¢), shown as in Fig. 4. A control clock, CLK, indicates
respectively. the phase of the element. CL¥ 0, means searching (or feed-



268 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 30, NO. 2, MAY 2000

Mutiplier

| S

v ZWS ZWX

Fig. 5. Summing building element structure.

—>| Mutiplier II [— processing (see Fig. 5). It consists of two amplifiers and one
multiplier. Two inputs (outputs)y  wx and>_ wé’ (6 andy),

are from (to) the current stage and the next stage, respectively.
¥ Xwx CLK Their input/output relations arg. wz/y and>_ wé’ /6. When

CLK = 0, the output of the element is represented as

X Input selector; @ : Output selector

Fig. 4. Synapse building element structure. y=1r (Z wx) (12)

forward) phase and CLK= 1, means learning (or feedback)@nd when CLK= 1, the output is

phase. In this element, there are two data inputar(dé) and

two outputs § wz and}_ wé), wherex/ > wx work in CLK b=yl —yw=yl—-y)f (Z w5’> . (13)
=0, andé/ > wé in CLK = 1. Multiplier I can generate a

common output 3) Connection NetworkThree kinds of building elements

8= aW ) can be easily implemented by the current VLSI technologies
o [13], [25], [26]. Using these simple building elements, a basic
where is the output of the input parameter selectowhich ~ connection network in stage can be designed as in Fig. 6,
is represented as where the size of the time-delay computing window is defined
asm, xr;. There are atotal of, X7, xm,41 Synapse elements
z CLK=0 andms,41 summing elements used in the network. Obviously,
&= { § CLK=1. ) the whole pipelined neural system can be implemented by cas-

cading such regular connection networks.
An output parameter selectak, can choose a correct output

result of the element, i.e., IV. SysToLIC ARRAY IMPLEMENTATION
A. Mapping Strategies
8= Z we CLK=0 (9) It is clear that the complexity of a computing window im-
Z wé CLK=1. plementation stems not from the complexity of its nodes but

rather from the multitude of ways in which a large collection of
Multiplier 11 is only designed to obtain the increment of théhese nodes can interact. Therefore, an important task is to build

weight value when CLK= 1 highly parallel, regular and modular systolic arrays (SAs) that
are attractive for VLSI techniques. Here we present different
A = nazx (10) mapping strategies from pipelined architecture to SA with im-

plementation efficiency as our goal.
1) Processing Mode MappingHere, we partition a
pelined neural system into some basic processing stages with
time-delay window, each capable of performing an independent
function. Often a processing stage represents a layer in the
neural networks. The processing stages are implemented using
a corresponding SA, which are then cascaded.
2) Computing Property MappingEach processing stage
W=W+A=W +nbx. (11) function is reduced to a recursive form which is implemented
by the corresponding pipeline matrix in terms of some systolic
2) Summing ElementThis element is built to obtain two-di- rules. In practice, this mapping changes parallelism in place to
rection accumulative results for both feedforward and feedbagérallelism in time.

wheren is a gain. Using the arithmetic mechanism attached B"
the element, the incremenh, can be added to the weight],
to generate a new weight value. In this way, when CGER, the
output of the element i3 wz; otherwise, the output i§_ wé.
Also, W is changed in terms of the following rule
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Fig. 6. Connection network with on-line learning in stage
3) Arithmetic Module Mapping:A basic operation in recur- ¥(() A

sive arithmetic is implemented by a computing element. Fore =1 %1 [P1%2 || Vs U >
ample, a node is divided into two parts: forming a weighted su
of NV inputs and passing the result through a nonlinearity. Tt yz(S) 1 Junk
weighted sum can easily be integrated by a two-dimensior W1 Y22 = Mars —O_P

(2-D) recursive matrix. To form the nonlinearity, a special el
ement is defined which may be cascaded with the recursive n
trix as a bound node of its output.

B. SA Structures: Computing Cell

Using the aforesaid mapping strategies two kinds of pr
cessing stages, in parallel and in serial, as obtained in Section
can be systematically implemented by the corresponding S. "
(see Figs. 7 and 8). In both arrays, the line delays built t Z

y,(s+1)

shifting elements are used to receive a data stream of parar Shift Register
ters and to construct the window required. There are a total
{ms(m; — 1)}/2 and{(2ms; — 2e5 — r;) (rs — 1)}/2 shifting
elements in parallel processing SA and in serial processing S#y,. 7.  Parallel data flow window computation.
respectively. The adder arrays are built as the accumulators to
compress the output results of the computing window. Obvfiesr CLK = 1. Note that each input (output) is transmitted by
ously, some regular shifting registers and adders can implement,; data except: (z’). When CLK = 0, the outputs of the
the line delays and adder arrays. cell in feedforward path are defined &:= zw + » andz’ =
Computing cells, defined in the both SAs, can be properly, otherwise, the output & = wé. At the same timeWV is
arranged to form each computing window in parallel or in seriahanged in terms of the rule in (11).
However, all of these computing cells have anidentical structurelt is evident that the SAs shown in Figs. 7, 8 are regular
with special feedforward and feedback paths. They are mainhterconnected arrays using a set of computing cells, each
composed of weight memoryi(;) (¢ = 1,2, --,m,41), adder performing some simple window computing, where the data
(4) and multiplier (). Three data inputs;, {#; } and{é;},and flows in a rhythmic fashion with only local interconnects
their outputsy’, {Z;} and{(;}, are defined in the computing between cells. They can provide a good medium to implement
cell, where{z; } and{Z;} are used for CLk=0; {6;} and{€?;}  the pipelined neural system in VLSI.
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Fig. 8. Serial data flow window computation. and simultaneously fed into the window in the next stage. It is
evident that there are.;, different weight matrices anal;
V. SPEECHRECOGNITION APPLICATIONS input data windows from stageto stages + 1, and their sizes

In this section, we provide the results of our study on thr are equal to the size of the window in stagd.e., m. x 7.
' P ; . y on Gi?sing this parallel window computing to implement the TDNN,
types of neural systems using the parallel time-delay Wmdoc\)/\rlllym. x . window elements, instead af,, x n, (generally
computing in the pipelined neural architecture. The neural SYyS- n“’ ) eI;ments are neede,d in stage s '

tems selected are motivated by speech recognition applicatig)ﬁs
and they have been widely used [15]-[24]. B. Block-Windowed Neural Network

A. Time-Delay Neural Network Block-windowed neural network (BWNN) is based on win-
Time-delay neural network (TDNN) is a neural system th owing each Iaye_r of the ne_ural network with overlaped Ioc_:al
|g1e-frequency windows. This neural system makes it possible

can take into account the “dynamic nature of speech.” It is us

) . . 0,.capture global features from the upper layers as well as pre-

to represent temporal relationships between successive acoustic "

: L . ! . . CIS€ local features from the lower layers. It is proved to be ro-

frames, while providing some invariance under time translatign o . .
. ust for speech sound variations in both frequency- and time-do-

[19]. It has been demonstrated that the TDNN computing can_. ;

ains among different speakers [22].

provide excellent discrimination ability among speech sounds. . :
Speech recognition performance obtained by using the TD NThe BWNN system is composed of an input layer, three

has often exceeded that of many conventional approaches [ i’den Iayr:e rls andhan output layer [22]. Excepting the O;J‘p”t
[21]. ayer, each layer has a, x n, (s = 1,2,3,4) matrix o

The basic TDNN system is composed of an input layer, pigemory elements and their relation between layers satisfies

hidden layers and an output layer [19]. Except the output layer,
each layer has am; x n; (s = 1,2,3) matrix of memory {
elements, where, = n1—r1+1,n3 = no—7ro+1andms = q.

The relation between the input layer and the 1st hidden laygheresn, = ¢ ande, = r,, i.e., the length and the width of
(and also between first and second hidden layers; see Fig. %hi§ submatrix in Layes are the same (see Fig. 10). It is clear

m5+1:m5_65+1

Ng41 = Ns — T +1 (15)

represented as that the TDNN structure is a special example of the BWNN if
s = M.
Y = [ (Z S miw +9(k)> (14)  The use of the pipelined neural system to implement the

BWNN involves four serial processing stages. Like the TDNN
wherel < ¢ < mgandl < j < I+ r,+ 1. The TDNN implementation, the last stage is the output stage without the
computing can be implemented by the pipelined system wittata window. Each input matrix in the other stages can form
three parallel processing stages. Exceptthe last stage withoutahen, x n, (s = 1,2,3) pipeline with the width of a single
data window, each input parameter matrix.(x n,) in the first parameter and passes through its windewx ), parameter
two stages is pipelined to pass through its windaew (x ), by parameter. An output result obtained from stageithin a
s = 1,2. When the window is filled by successive data flowsingle clock interval is sent to the window in stage 1 without
ms4+1 New values of the parameters can be, in parallel, obtainaay delay. This means that only an input window buileby
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the parallel outputs from the previous stage will be changed as
* rs+1 the serial inputs to this stage. It is composed of a four-element

Layer window, twoJ — 1 line delays and a processing element (PE),
s+1 shown in Fig. 12(a). The PE is designed by the standard dy-

;‘ namic programming algorithm [24]. Its initial condition is set at

(Ms+1 X ns+1) es+1 g11 = q11, implemented by the external control. Then, the data

> is processed with

// /\ \ 9ij = @iy + max(g; j_1,9i—1,j-1:9i—2,5—1)-  (18)

The PE shown in Fig. 12(b) implements this maximization

*/ Is problem. The PE consists of a tricomparator subnet for ex-
Layer tracting the maximum of three analog inputs [31] and an adder.

S Given an input parameteg,;, an output of the PEg;;, can
be obtained and fed into the window to generate the following
(ms X ns) + es new values. This process is continued until the total cumulating
> value,Z = g¢(I,J), is reached. Such a process is represented
- in Fig. 13.
Fig. 10. Relation between layers for BWNN. VI. STRUCTURE ANALYSIS

For a given neural system, both the structure design and ac-
cess time needed to solve the problem are two most important
performance measures [13], [25]-[30]. In this section, we will
analyze these measures for our pipelined neural architecture,
where parallel processing stage defined in Fig. 3(a) and serial
processing stage in Fig. 3(b) are referred to as type 1 and type
2, respectively. The way of selecting the property parameters for

Dynamic programming neural network (DNN) is proposefarallel time-delay window computing is also discussed in this
on the integration of multilayer neural network and dynamigection.

programming based matching. Researchers have used DNN ex-
tensively in speaker-independent word recognition, and provAad Structure Complexity

tha_t_it has excellerjt_ time normalization ability, flexible_l_earning We choose a typical TDNN computing for comparison with
facility, expandability to continuous speech recognition, ang;r methodology. In Section V, it has been shown that the par-
high tolerance to the spectral pattern variation [23]. allel time-delay window computing can implement TDNN and
‘The DNN can be implemented by the pipelined neural systefaatly reduce the memory elements in each layer of the neural
with three processing stages (see Fig. 11). An input pattefunyorks to a small number of window elements in the pro-

shifting elements and some line delays by.(— ¢s) (rs — 1)
shifting elements, i.e., the totah.,(r, — 1) 4+ ¢, window
elements, instead of.; x n, elements (in generat, < m,
andr, < n,), are needed in stage

C. Dynamic Programming Neural Network

@1, -+, %, -, 7, is defined as a warping function= i(j)  cessing stage. This is because only a limited window is con-
between input pattern timeand window elemenf, wherej = pected to its next stage and the parameters shifted out from the
1,2,---,J. Without an input matrix withl x .J memory ele- indow are discarded. Since the speech feature parameters are

ments [23], a window is built bg x .J window elements and 55 jied to each layer sequentially one frame at a time, this re-
neurons are used in the first stage. When the input patternsy,ction of memory elements is feasible.

andz; 1, pass through the window, the corresponding output Ngte that both memory element used in traditional TDNN
for each neuron can be represented as computing and window element in parallel window computing
have the same hardware complexity because they are based on
yij = flwjors +wjiwi_1) (16) a regular register. In this way, we can perform the traditional
TDNN computing by using the three kinds of building elements
wherew,, andw;; are weighs from two window elements togiven in Section lll. According to the basic TDNN definition
neuronj. [19], [20], it is assumed for the traditional computing that in
In the second stage, a window withx 1 window elements Layers(s =1,2.--,p+1), the number of window elements is
is used to receivg;; (j = 1,2, ---,.J), in parallel. Each neuron taken asn, x n, the number of synapse elementsiasx n, x
in the stage is used as a multiplier, i.e., ms41, and the number of summing elementsas, | X nsyi.
In the parallel window computing, the numbers of window
elements used in stagefor type 1 and type 2 (see Section Il1)
have been given as, x r, andm, (rs — 1) + ¢, respectively.

The third stage is built by a serial processing structure. Its inpmGIr measures for window elements can be defined as follows:

data, ¢;;. is arranged in a pipeline mode of a single param- D ms X Ts  Tg 19
eter likeg,y — -+ — ¢ij — -+ — gu. In other words, e L) T X ns (19)

Qi = flwivig) = wjysy. 17)
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Fig. 11. Pipelined neural architecture for DNN implementation.
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Stage ‘ ‘ %G 8ij-1 Sty 821
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Fig. 12. (a) Serial processing stage for DNN and (b) its PE structure.
and Itis evident that the measures of the entire system for three kinds
my(rs — 1) + e of building elements are their mean of over each stage

(20) As an example, the traditional TDNN computing for typical
speech recognition applications has been described in [19], [20]:

Similarly, the numbers of both synapse and summing elemems x n; = 16 x 15,7, = 3; ma X no = 8 x 13, 75 = 5;

used in stage for type 1 and type 2 can be obtained from SeGn; x ny = 3 x 9; ¢ = 3. Then, in order to implement the

Diype 2(s) = e X 1
E-2 &

tion lll. Thus, the measures for synapse element are basic TDNN, the measures of the first two type 1 processing
stages in the neural pipelined system dbg;,. 1 = Yiype 1 =
Vigpe 1(g) = e X Te X Matt _ T @1) 3 (5+3) =029andSy,c. = 5 (3+3) = 0.09.
Ms X Ns X M1 N This means that three building elements in parallel time-delay
window computing can be reduced by a factor of 3, 3, and 10,
and respectively.
y S Cs XMs XMst1 | Cs XTs (22) The results of the above analysis are summarized in Table I.
tupe 2 T X s X Mey1l Mg X N It indicates that the structure complexity for our parallel time-

Both the numbers of summing elements used in stdgetype delaywmdowgomputlngls much less than that of the traditional
TDNN computing.

1 and type 2 aren.41. Hence these two kinds of processing
stages have the same measure, i.e., B. Throughput Rate

Msi1 1 The neural speech recognition systems are well suited to

Stype 1(5) = Stype 2(5) = Mo 1T 1 - N1 (23) pipelining because of their multilayer networks as processors
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Fig. 13. Window process for DNN implementation.

TABLE |
COMPARISON BETWEEN TRADITIONAL TDNN COMPUTING AND PARALLEL
WINDOW COMPUTING IN STAGE $

C. Window Parameter

Computing window in the pipelined neural system is not only

an important component, but also an obvious feature which dif-

Tmfgmml Parallel Window Computing  fers from other neural systems. The window size has a direct
CDT';’P”@& Type I Type 2 relation to thg properties of the pipelined syste_m, s_uch as the
number of window elements?, and the computing timeJ.
Window | Etement# ms X g mgXrg mg(rg—1)+ e, The smaller the window, the fewer is the number of window el-
Element ; ements, and the longer is the computing time required.
Complexity 1 % "'—9—% In type 1, these two tradeoff properties for stagare
s m, Xn,
1 #
Synapse Element Mg Xng XMgyy | MgXrgXmg, e XrgXmgy { Qtype, L= X My, (25)
Element v, =n, — 7, +1.
Complexity 1 Is exr type 1 s s
ng m xXn,
Summing | Element# | moppxnei Mgy Moy We define their product as
Element ] ]
Complexity 1
My Moy E(TS) = Sltype 1 X \Iltype 1= (7’5 X ms) (715 —7s + 1) (26)

of time-delay sequence patterns. In the pipelined systéFﬂ maxim_ize the_E(rs)function,take derivative with respect to
embedding parallelism or concurrency, the throughput rafdndow sizer, i.e.,

can be fixed and it does not vary with the size of the problem

grows, i.e.,

T =0().

(24)

E/('I’s) = MsNs — 2ms7’s + ms. (27)

Let E'(rs) = 0. The optimal size of window for type 1 [see

Hence, a high throughput rate can be maintained in sutig- 14(a)] can be then selected as
pipelined neural systems, where the clock of the master con-

trol element is selected from the longest time delay among
processing stages.

n,+1

: (28)

Ts =
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Fig. 14. (a) Window parameter selection for (a) type 1 and (b) type 2.

Note that this optimal window size is not a function of the length [3]
of the window;m;. In the same way, the two tradeoff properties
in type 2 can be written as:

[4]
Qiype 2 = (15 — )ms + 75 (29) °
\Ijtype 2 = MsNs — (7‘5 - 1)m5 —Ts [6]
[71

wherer, = es, i.e., a square window is used. The size of the

window can be selected directly from the relatiip,,. » = [8]
W,pe 2 [S€€ Fig. 14(b)], which leads to

(9]

(rs = yms+7rs =msns — (rs — Lymy — 5. (30) 110]

Hence, the choice of the window size for type 2 is [11]

ms(ns + 2) 12l

Py = m (32) [13]

[14]

[15]

VII. CONCLUSIONS

In this paper, a novel parallel structure for time-delay[16]
neural networks are used in speech recognition applications g7
presented. The effectiveness of the design has been illustrated
by extracting a window computing model from the time-delay!1€]
neural systems, developing the corresponding pipelined archirg
tecture with parallel or serial processing stages and comparing
its performance with the traditional TDNN computing. Ap- [20]
plying this parallel window to a typical time-delay neural
network, it has been shown that the methodology can greatl1]
reduce the structure complexity while maintaining a high

throughput rate. [22]
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