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PsyCOP—A Psychologically Motivated
Connectionist System for Object Perception

Jayanta Basak and Sankar K. Pal, Feliow, IEEE

Abstract—A connectionist system has been designed for learn-
ing and simultaneous recognition of flat industrial objects (based
on the concepts of conventional and structured connectionist
computing) by integrating the psychological hypotheses with the
generalized Hough transform technique. The psychological facts
include the evidence of separation of two regions for identification
(“what it is”) and pose estimation (“where it is”). The system
uses the mechanism of selective attention for initial hypothe-
ses generation. A special two-stage training paradigm has been
developed for learning the structural relationships between the
features and objects and the importance values of the features
with respect to the objects. The performance of the system has
been demonstrated on real-life data both for single and mixed
(overlapped) instances of object categories. The robustness of
the system with respect to noise and false alarming has been
theoretically investigated.

1. INTRODUCTION

ECONGITION of objects in a scene is a very important

task in the field of computer vision. The word according
to Suetens et al. [1] refers to the task of finding and labeling
parts of a two-dimensional image of a scene that correspond
to the objects in the scene. In computational methodologies,
normally, some models for each object (i.e., some general
descriptions of each object) are established and then different
parts of the scene are labeled according to the knowledge
about the models [1], [2]. There exist various techniques
based on heuristic search [3], generalized Hough transform
[4], [5], relaxation labeling [6], association, and relational
graph matching [7], [8], etc. One variation of the template
matching scheme is generalized Hough transform [9], [10],
where the boundary points of an object are transformed to the
parameter space. In this technique the object can be found
even when some portion of the data is missing. Whatever
methodologies be used, they should be fast enough to handle
real-life data, or at least the methodology should be efficiently
implementable on a fast parallel machine. Moreover, the
technique should be able to learn the object models under
supervised or unsupervised mode.

Apart from computational methodologies, there exist var-
ious psychological studies in this field. The task of object
recognition involves two primary problems. First, one needs
to identify the object and the parts thereof which helps in
applying the previously gained knowledge, i.e., the model-
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base to encounter new objects. Second, track or locate the
objects properly. It has been mentioned in the computational
theories of Kosslyn et al. [11], [12] that these two high-level
tasks are processed in two different parts of the brain (the
identification part is processed in the occipito-temporal region,
while the localization part is processed in the occipito-parietal
region). The necessary behavioral experiment in support of this
separate processing zones has also been provided in literature
[13].

There are various studies on the selective attentional mech-
anism in the literature of psychology [14]-[17]. The theory
of selective attention states that different parts in a scene are
attended at different times depending on the visual cues present
in the scene. The mechanism involves the feedback through
top-down paths which gates the receptive field of lower level
neurons. The selective gating of the lower level signals takes
place with the help of attention director. There exist two
different theories of visual attention, namely, early and late
selection theories. In early selection theory {14], [15], attention
control occurs before recognition of an object (e.g., color,
length, etc., of an object). On the other hand, the late selection
theory [17] indicates that the attention control occurs after
recognition of an object (e.g., reading alphanumeric texts, etc.).
Bundsen [18] presented a unified theory of selective attention
mechanism where both early and late selection processes
occur.

Psychological studies reveal some properties of the cogni-
tive behavior of the animals, while artificial intelligence (AI)
formalisms try to extract out objects from digital images.
One way to take the advantages of psychological findings
and those of conventional algorithms is to use the connec-
tionist framework of computation. The connectionist models
(neural networks) have some basic advantages like robustness,
adaptivity/capability of generalization, and scope for massive
parallelism. Moreover, neural networks, believed to mimic
the biological nervous systems (although in a very naive
manner), provide a tempting computational paradigm in which
the psychological findings can plausibly be incorporated in a
better way.

Several connectionist models for object recognition have
been developed so far. Cognitron [19] was developed to
categorize input patterns by employing competitive learning
techniques. But it fails to recognize patterns suffering from
positional shift. To incorporate the property of position and
scale invariance, a multilayered model, namely, neocognitron
[20], was developed. The model uses two kinds of cells,
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namely, S and C cells arranged in alternate layers. S-cells
extract features at various stages, while C-cells ensure position
and scale invariance. Shift invariance is achieved by tolerating
the positional shift, a little, in each layer of C-cells, at a
time. The model was extended to incorporate the property of
selective attention [21] by using feedback pathways from the
output layer to the input layer.

. The power of neocognitron and its variation lies in the
fact that the models are capable of tolerating error due to
positional shift, scale change or deformation. But, the model
is not capable of recognizing more than one object simulta-
neously. Whenever a mixture of patterns is provided to the
network, it always recognizes one (most prominent one) of
them. Moreover, the model does not consider the structural
relationships between the features and the objects. The model
is also incapable of tolerating the rotational variance. Recently,
the model has been extended to segment and recognize cursive
scripts [22] with the help of a “search controller” which assists
to select a particular search area. A variation of the model has
also been used to achieve rotation invariant object recognition
[23].

Hinton [24], [25] used the idea of generalized Hough
transform and extended it to dynamic Hough transform model.
DHT deals with the problem of scale, position, and orientation
invariance by considering a reference frame for the object
and describing the features with respect to the object. Using
cooperative and competitive computation, the reference frames
of the object models were determined. In this model, the
relative importance values of the features were not considered.

Mozer [26] developed a word perception model using the
selective attentional mechanism for considering the relative
positions. It is able to learn and recognize multiple letters,
but it was applied only for word perception. Mozer [27]
incorporated the mechanism of selective attention and also
used the model to explain the phenomenon of neglect dyslexia
in psychological patients. The performance of the model,
however, is dependent on the orientation of the objects and
therefore it may be difficult to use this model for industrial
object recognition. Moreover, like neocognitron, no structural
relationship between the features and the objects was consid-
ered.

Zemel et al. [28], [29] have developed a connectionist model
using structural properties of the objects. Although the model
is capable of learning the structural relations between the
features and objects, it is not able to recognize multiple objects
simultaneously.

Feldman presented the principles of connectionist comput-
ing, principle of stable coalition formation and winner-take-all
network in [30]-{32]. Note that, the neural networks mainly
involve the study of emergence of activations of the cells and
weights of the links on the basis of mathematical modeling. On
the other hand, Al-based techniques mostly deal with inference
representation. For dealing with the recognition problem in
visual domain, representation of knowledge in spatial domain
has to be considered. This leads to the concept of structured
connectionist models to develop visual recognition system.
Sabbah [33] also used structured connectionist framework for
origami object recognition.
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Some of the connectionist models [19], {21] developed for
object recognition, as -discussed before, do not consider the
task of simultaneous recognition of more than one object.
Some of them consider the pose identification, but at the same
time uses multiple copies of the same entity at each location
[29], [28]. Some models [26], [27] consider pose identifica-
tion with the help of selective attention mechanism, but do
not consider the structural relationships between the features
and objects. Although the neurological findings indicate the
possibility of existence of two different channels for entity
and pose identification, the existing connectionist models do
not incorporate this fact in the strategy for recognition. The
objective of the present investigation is not to explain the
psychological behavior [11], [12] of cognition, but to develop
an efficient connectionist system for object recognition by
integrating cognitive findings with the generalized Hough
transform technique.

In the present investigation, a connectionist system for
object recognition has been developed considering the psy-
chological fact that the identification and pose estimation of
objects occur in two different regions of human brain. The sys-
tem is named as PsyCOP which stands for a Psychologically
motivated Connectionist system for Object Perception. The
principles of structured connectionist computing, as discussed
by Feldman [30]-[32], are used in implementation of the
model. The idea of incorporating spatial information in the
visual domain with a smaller number of neurons used in (31}
has been exploited in the design of connectionist architecture.
It has been found that separation of two channels for identifica-
tion and localization, in the design of the connectionist system,
leads to an architecture with reduced number of neurons. A
two-stage learning paradigm is also designed, which is, in
principle, the same as that presented in Basak et al. [34], [35].
The learning algorithm has some similarity with that presented
in adaptive resonance theory [36]. The robustness of the model
under noisy environment is also theoretically investigated.

II. STRATEGY FOR RECOGNITION

In the proposed methodology, objects are localized by
indicating their position and orientation. The position of an
object denotes the position of the object centroid, and the
orientation of the object is the orientation of the principal
axis of the object with respect to some standard reference
frame. The features are also attributed by the feature type,
feature position, and orientation. Here, we have used polygonal
approximations of two-dimensional (2-D) objects and the
comers are used as features. Note that many other features
could have been used; however, we have restricted to corner
features only. The position and orientation of a corner feature
is represented by the position of the corner and orientation of
the angular bisector of the corner with respect to some standard
reference frame. The reference frame is fixed for all features
detected in the scene and the model produces output showing
the position and orientation of an object with respect to the
same reference frame.

It is to be noted in this respect that we have considered
rigid objects only. For any rigid object, so far as the scale
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Fig. 1. F and O are the positions of the feature and object, respectively. The
corner has an angle AFB. FX is the angular bisector. The feature reference
frame is (FX,FY'), where FY is normal to FX. The principal axis of the
aobject is OP. (1,6, ¢) denotes the location of the object with respect to the
feature reference frame.

remains unchanged, the relative position and orientation of an
object with respect to a constituent feature remains unchanged.
This has been illustrated in Fig. 1. Therefore, if the values of
(r, 8, ¢) are stored for a particular feature-object combination,
then the corresponding feature would be able to predict the
position and orientation of the corresponding object in the
scene. This is very similar to the idea of generalized Hough
transform (GHT) technique [10], where each feature in the
image (it was edge pixels in the original work) gives vote to
the candidate objects to which it belongs specifying the object
locations. The objects (along with their locations) which get
cumulative votes greater than certain threshold are considered
to be present in the scene.

Even if we consider rigid objects with fixed scale, GHT
has a couple of disadvantages. First of all, the peak selection
process has to be accurate. A high value of threshold may re-
sult in removal of peaks due to genuine objects and a low value
of threshold may cause some spurious peaks to remain, More-
over, the required threshold to properly segment the peaks
may be different in different regions in the accumulator space.
Second, the size of the accumulator space drastically increases
with the increase in the number of objects in the model-base.
Moreover, the importance of different features with respect
to the objects are not considered in GHT. Using connectionist
framework of computation, such kind of problems can be dealt
with in a better way. The design of such a connectionist system
is also motivated by the psychological findings.

In the proposed system, two different channels (block di-
agram is shown in Fig. 2) have been used to represent the
object identities and their locations. “An entity or an object has
appeared at a particular location™: this can be represented in the
form of a coupling between two nodes, one representing the
object identity and the other representing the location. Let us
call the cells used to represent the “what it is” part as A-cells,
and the cells used to represent the “where it is” as B-cells.
In designing the actual system, modifiers and pi-connection
between the links have been used which is discussed in the
Appendix.

The model employes the technique of iterative hypotheses
verification [37]. The input layer of the network consists of a

s
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Fig. 2. Block diagram of PsyCOP. The decision network determines the
location and identity of an object while the control network controls the
selective attention mechanism.

set of neurons to represent the entire set of features that can
appear in the objects to be recognized. For example, if we
consider the corners as the features of the polygonal objects,
then the entire range of the angles of the comners are divided
into a number of slots, and each slot represents a particular
feature. The relative locations of the objects with respect to
the constituent features (7,8, ¢ values) are stored in the links.

Whenever a set of features and their positions are specified
to the system, each feature instantiates a set of possible
candidate objects and their respective locations depending on
the (r, 8, ¢) values stored in the links. All these activations are
represented in the form of stable coalitions where an activated
B-cell representing the location gets connected through an
activated link to an A-cell representing the entity (either
feature or object). The activations corresponding to the object
instantiations are grouped by the system to produce initial
hypotheses.

After the formation of the initial hypotheses of the object
categories, the iterative process of verification takes place
when each candidate coalition feeds back its activation to
the feature level. If the feature activation is less than the
feedback activation, then the activation level of the candidate
object category is decreased. On the other hand, if the feature
activation level is greater than the feedback then the activation
level of the candidate object category is increased. The system
stabilizes when a match between the input and the feedback
activation is achieved. Let us now describe the architecture of
the system in detail.

III. STRUCTURE OF THE MODEL

The system consists of three different layers, namely, input
layer, output layer, and hidden layer (Fig. 2). The input layer
corresponds to the features, the output layer corresponds to
the objects, and the hidden layer corresponds to the feature-
object associations. The activation of an A-cell in each layer
is either one or zero representing if the corresponding entity
is present or absent, whereas the activation level of a B-cell
represents the confidence about the presence of some entity
at the corresponding location. The A-cells are arranged in
linear arrays representing the maximum possible number of
features in the input layer, the maximum possible number of
objects that the system can learn in the output layer, and the
maximum possible number of feature-object associations that
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Fig. 3. Connections between the A and B cells of the input, hidden and
output layers. “I” represents a feature from which the input nodes are
activated.

have occurred in the hidden layer. The B-cells are arranged in
the form of a three-dimensional (3-D) array (i.e., columns of
B-cells are arranged over 2-D grid), where each cell specifies
a particular position and orientation of an entity (feature or
object or feature-object association).

The network has three different types of links (Fig. 3). Type
1 links connect the A-cells of one layer with the A-cells of
another layer. Type 2 links connect the B-cells of one layer
to the B-cells of another layer. The A-cells and the B-cells
of the same layer are connected by the type 3 links. For
example, the hidden layer A-cells representing the feature-
object associations are connected by type 3 links with the
hidden layer B-cells.

The type 3 links help in the formation of couplings between
A and B cells. If a B-cell is activated, then the activated A-
cells that can be accessed from that B-cell through type 3 links
represent the entities present at the location corresponding to
the B-cell. Similarly, if an A-cell is activated, the activated
B-cells that can be accessed through type 3 links represent
the locations where the entity corresponding to the A-cell
is present. But there will be false alarming in the output
whenever more than one object is present in the scene. For
example, let two objects O1 and O2 be present in the scene at
P1(z1, y1, &1)! and P2(z2, yo, &2), tespectively. In that case
the A-cell corresponding to O1 would be connected to both
the B-cells corresponding to P1 and P2. Similarly, the A-cell
for O2 would be connected to both the B-cells corresponding
to P1 and P2. As a result, the network would infer that O1
is present at P1 and P2, and O2 is also present at both the
locations. Consequently there will be a confusion in the output.

To prevent such a situation, type 3 links are selectively
stimulated by using modifiers. An A-cell will be able to access
B-cells through only those type 3 links which are stimulated by
the modifiers. The type 3 links are modified by the conjunction
of type 1 and type 2 links coming from the lower layer. A and
B cells in each layer also get activated by the conjunctive or
pi-connection from the lower layers.

The type 1 links, emanating from the input layer A-cells, and
the type 2 links, emanating from the input layer B-cells, get
conjunctively connected to form the type 12 links (note that
the conjunctive or pi-connection between type 1 and type 2
links will be denoted by type 12 links). The type 12 links then
branch out and enter the hidden layer A-cells and hidden layer
B-cells as input, and connect to the hidden layer type 3 links

1The symbol £ is used to represent angle of orientation.
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as modifiers. Another branch of the type 12 link emanating
from the input layer goes to modify the type 12 link emanating
from the hidden layer. Similarly, the hidden layer type 12 links
branch out to the output layer A-cells, B-cells, and output layer
type 3 links.

Between the hidden and the output layer, there are two
kinds of type 12 links. The bottom-up type 12 links carry
the activation values of the hidden nodes to the output nodes,
while the top-down type 12 links carry the activation values
of the output nodes down to the hidden nodes. Type 1 links
between hidden and output layer store the relative importance
of the feature-object associations, while the type 2 links have
some fixed weights. The type 1 links from the input layer to
the hidden layer store the transformational offsets (r, #, and
¢ values), whereas the type 2 links between input and hidden
layer have some information regarding physical offsets. The
details have been discussed in the next section.

Corresponding to each input A-cell (representing a fea-
ture), the hidden layer contains a number of hidden A-cells
(which is equal to the number of objects to which the feature
belongs, and each hidden A-cell represents a feature-object
pair). Whenever the feature set corresponding to an object
is mapped onto the input layer, each input coalition tries to
activate hidden cells depending on (r, 8, ¢) values stored in
the links. As a result, hidden B-cells are activated within a
cluster. To map the feature set onto input layer and to form
the cluster of activations, a sequential scanning mechanism is
employed which has much similarity to the selective attention
mechanism described in the literature of psychology. The
selective attention mechanism is realized with the help of a
special network, namely, attention control network (ACN).
The attention control network is coupled with the type 2 links
from the input layer B-cells to the hidden layer B-cells. ACN
also uses the mechanism of modifiers to selectively stimulate
the type 2 links emanating from the zone of attention. The
detailed mechanism of selective attention will be discussed in
the next section.

IV. OBJECT RECOGNITION MECHANISM

Let us now describe the overall process of recognition with
the proposed network. The features (e.g., corners) extracted
from the graylevel image are mapped onto the input layer
sequentially with the help of attention control network (ACN).
When the image (containing the input features) is scanned, the
features in the zone of attention activate the input A-cells and
the B-cells depending on the type, position, and orientation
of the features. It is to be mentioned here that the feature
extraction process should take care of the fact that at most
one feature can appear in a region equal to the input grid size.
The size of the zone of attention depends on the sparseness of
the features. It is chosen to be greater than or approximately
equal to the input grid size.

The input A-cells have special type of transfer functions
which produce maximum output (unity) for certain range of
input activation and zero for rest of the input. Note that the

- activation level of A-cells represent the presence or absence

of some entity and not the confidence level about its presence.
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The input B-cells have two parts: one of them holds the
activation value representing the confidence about the presence
of a feature and the other has a special type of transfer function
(radial basis function [38] tuned at certain orientation). One
of the B-cells at the input grid location of a feature gets
maximally activated depending on the orientation of that
feature. A local competition mechanism within a column of
B-cells helps the maximally activated cell to become winner
and others lose their activation.

The type 3 links and the conjunctive connections of type 1
and type 2 links, connected to the input A and B cells, also
get stimulated (guided by the ACN). As a result the activated
A and B cells form coalitions through the stimulated type 3
links and also become able to send activation to the hidden
layer through the stimulated type 12 links.

Although the A and B cells get selectively activated from
the input, the connecting type 3 and conjunctive type 12 links
seem to remain stimulated which may cause formation of false
coalitions. To prevent this, the links have a special property
where if either of the cells of a stimulated link remains inactive
for sometime, the link loses the signal carrying capability
unless it is further stimulated by some signal. The time over
which the stimulated links lose their signal carrying capability
is set in such a way that the link gets deactivated before
the attention control network switches to the next zone of
attention. (Let us term this property as attenuable LTM).

The hidden layer A and B cells corresponding to a feature
are activated from the input coalition through the stimulated
type 12 links. The locations of the hidden B-cells to be acti-
vated from an input coalition depends on the transformational
offsets stored in the type 1 links and the physical offsets stored
in the type 2 links between input and hidden layer. Whenever
a hidden B-cell is activated, it competes with the other B-cells
connected to the same A-cell, and the winner represents the
approximate position of the feature-object pair. Once a hidden
B-cell establishes itself as the winner for an input activation,
it gets biased to that conjunctive connection coming from the
input layer (biased connection) and do not take patt in the
competition process with other hidden B-cells so long as the
scanning of the input image is not complete. The principle of
biased connection is explained in Fig. 4. Due to the property
of attenuable LTM, the links connected to hidden cells other
than the winner get deactivated.

In this process of scanning the image, the features are
mapped onto input layer and . feature-object pairs and cor-
responding locations are activated in the hidden layer. Each
input coalition tries to activate a hidden B-cell at a location
corresponding to the object, and since the input coalitions
are formed sequentially in the scanning process, a cluster of
activations is formed in the hidden layer B-cells corresponding
to an object.

Once the scanning of the image is over, the hidden layer
A and B cells conjunctively send their activation values to
the output layer through bottom-up links. Each output B-cell
is connected to a group of hidden B-cells in proximity (as
shown in Figs. 5 and 6). Let us term this group of cells as
the purview of an output cell. Each output node collects the
activation values from its purview in the hidden layer through
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Fig. 4. A network for biased connection of the links to the node Bh. Each
link inhibits the other links with the help of inhibitory modifiers. The inhibitory
modifiers are in turn stimulated from the output of the node. Let, initially, link
1 carry the activation signal (link 1 has been stimulated by some other means).
In that case the node gets activated and stimulates the interlink connections
also. Since link 1 carries activation, it can inhibit the other links through the
inhibitory modifiers. On the other hand, the other links cannot inhibit link 1,
since they are not carrying any signal. As a result, the other links (except link
1) cannot carry signal to node Bh, unless link 1 is deactivated by some other
means. In other words, the node Bh gets biased to the link 1.

the bottom-up links. Each output node (B-cell) has a negative
self-feedback associated with it. As soon as an output B-cell
gets activated, it sends back its activation value down to the
hidden layer through the top-down links. Once the hidden B-
cells receive feedback activation, the nodes which are activated
from the same input pair start competing between themselves.
We call this as selective competition process which has been
explained in Fig. 7. (Note that the hidden B-cells compete
within certain neighborhood during the scanning process of the
image. In the settling process, however, the B-cells compete
selectively, and this is not confined within neighborhoods.)
The hidden A-cell coupled with the winner hidden B-cell
(in the selective competition process), corresponding to an
input coalition, represents the most likely object to which the
corresponding feature belongs. The winner B-cell computes
the difference between input activation (since there is biased
connection, as mentioned before, the hidden B-cell cannot
receive activation from any other input coalition) and the
feedback activation and send the difference (we call this as
differential support) to the output node through bottom-up
link. Here, we like to mention once again that we are not
considering the activation values of the A-cells, because the
A-cells only modulate the signals by zero or unity, and the
actual confidence about the presence of an entity is represented
by the activation level of the corresponding B-cell.

In the output layer, B-cells having overlapped purview are
activated due to the presence of a cluster in the hidden layer.
The output B-cells compete within a small neighborhood and
the winner represents the exact location of the object. Each
hidden node gets biased to an output node from which it
is getting maximum feedback (this happens with the same
principle as the input bias). The differential activation is
sent to the output node to which the hidden node is biased.
Each output node receives differential support and negative
feedback, and it updates its activation value. The same process
repeats and the activation values of the output nodes stabilize
when the differential support and negative self-feedback be-
come equal. After stability, the activation levels of the output
B-cells represent the confidence about the presence of the
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Fig. 5. Connections from the input layer B-cells to the hidden layer B-cells
and from hidden layer B-cells to the output layer B-cells. Links from an input
B-cell connect to the hidden B-cells over a cone.

corresponding objects (determined by the activated A-cells
coupled with them) at that locations.

Now let us discuss in detail about the instantiation of
hidden nodes (transformation embedding), competition within
neighborhood, selective attention, and finally the dynamic
behavior of the network.

A. Instantiation of Hidden Nodes

Type 1 links store the actual values of positional and
orientational offsets (r, 8, ¢) between features (represented
by input A-cells) and objects to which the features belong
(represented by feature-object combinations, corresponding to
hidden layer A-cells). Type 2 links between the input layer and
the hidden layer have fixed weights and the weights decrease
with the increase of physical offsets between the locations of
input B-cells and hidden B-cells. Each type 1 and type 2 link
can be viewed as a composition of three links, one to represent
7, one to correspond 4, and the other to correspond ¢. Let us
denote the weights of the type 1 and type 2 links from input
to hidden layer by W1 and W2, respectively. The values of
W2 are mathematically given as

€x

Wor = — 2
e$+63+ei

@

where “*” stands for r, 8 or ¢, and (€., €g, €4) represents the
physical offsets.

Let the ¢th input A-cell and jth B-cell conjunctively
activate the kth hidden A-cell and /th hidden B-cell. Then

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 6, NOVEMBER 1995

Bo

-
11T

—1
——1
—1

AL
T
LTIT

peut 4
-

11
Ll

Fig. 6. The relative position of an object with respect to its constituent
features. For each input node, at least one hidden node is activated. The
hidden node activations are collected at the output layer B,.

Fig. 7. The connections for selective competition. The cells B2, B4, and
B5 compete among themselves because only those particular internode links
are stimulated by modifiers.

the activation received by the hidden B-cell (ubh) is given as

ubhl = (Wl:‘k . W2;l + Wlfk
W28+ W1E, - W2d)za; - ob )

where za and xb are the activation values of the input A and
B cells, respectively (the activation received by hidden kth
A-cell is equal to ubh). It is clear from (2) that the activation
of the hidden layer B-cell would be maximum for which the
stored transformations in W1 links perfectly match with the
physical offsets represented by W2. In other words, this kind
of activation helps the network to form a cluster of activations
in the hidden layer B-cells at a particular location when an
object is present at that location. The transformation values
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are also incorporated in other networks [29]. The way it has
been incorporated here, however, is different from that used
in [29].

The type 2 links carry activations from the input to the
hidden layer over a cone, where the weights of the links
decrease as the distance between the hidden nodes and the
input node increase. If a hidden node has the same location as
that of the input node, then according to the equation one of the
weights would become infinitely large. To have a finite set of
weights in such cases the hidden layer position and orientation
can always be defined in such a way that there exists a
minimum deviation by (|Az/2|, |Ay/2|, |A¢/2|) from the
input layer.

B. Selective Attention

As described before, selective attention is a pseudo-parailel
mechanism where different parts of an object are attended
sequentially to get an idea about the object. This technique
has been used in the proposed model. Features mapped onto
the input layer are scanned sequentially to activate the proper
hidden nodes.

In the scanning process each time a particular zone is
attended. During scanning, features appearing in the zone of
attention are mapped onto input layer, and input coalitions
activate the hidden nodes. The size of the zone of attention
approximately depends on the sparseness of the features. The
zone of attention should be such that more than one feature
belonging to the same object does not appear simultaneously.
Whenever more than one feature belonging to the same object
appears simultaneously, they would be mapped into the same
location in the hidden layer. Since each hidden B-cell can take
care of only one feature, there will be a collision. Each B-cell
in the hidden layer is provided with a mechanism for collision
detection which, in turn, helps in controlling the size of the
zone of attention.

1) Attention Control Network: The attention control net-
work (ACN) is coupled with the links from the input layer
B-cells to the hidden layer B-cells. A link would be able
to carry activation from the input layer to the hidden layer
only when it is stimulated by the ACN. It is to be noted
here that the mechanism of attention is applied only in the
phase of initialization of the network. Once the network is
initialized, the network is able to update the states of the
nodes simultaneously.

The size of the zone of attention has a default value.
- Whenever a conflict arises in any hidden B-cell, it informs the
ACN, and the ACN reduces the size of the zone of attention.
The process of reducing the size of the attention zone is
stopped whenever the signal from the hidden layer indicates
that there exists no conflict. The size of the attention zone
gradually increases as the ACN shifts the zone of attention.

2) Conflict Detection: Each hidden B-cell is able to detect
a conflict whenever it arises between more than one nonzero
signal coming from the input layer. To detect a conflict
situation and consequently to inform ACN, each hidden node
has a separate part, namely, conflict detector (CD). The CD
functions in the following way.
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Let u = [uy, ug,-- -, u;) be the input vector to a particular
B-cell. If there exists no conflict then

for all i, 7.

U;U; = 0,

In other words
max{u;u;} = 0.

1#]

The conflict detector of each hidden B-cell has a transfer
function given as

vl = f(max{uiu;} - ¢) €)
i£j

where f(-) is a step function which is given as

1 ifz>0
0 otherwise.

fz) =

A small positive constant € is used for noise tolerance (e
may also be chosen as zero). The ACN takes the outputs from
CD’s of all hidden B-cells and detects the maximum signal.
If the maximum signal is nonzero, then it infers that a conflict
exists at some hidden B-cell, and consequently it reduces the
size of the attentional zone.

C. Competition over a Local Neighborhood

The output B-cells have local competition. This is necessary
because each output B-cell is connected to a group of hidden
B-cells (purview of the output B-cell). The cells are arranged
in such a way that two different groups of hidden B-cells
may or may not have overlap between them. If there is
an overlap, confusion would arise regarding the location of
objects. For example, let the hidden layer consist of two
neighboring groups G; and G,. In that case, some B-cells
from G; and G2 can be activated due to the presentation of
the feature set corresponding to a single object. The output
layer will collect activation values from the groups G and
G (say output B-cells O, and O,) and, as a result, indicate
that the object is present at two neighboring locations. If there
were a group (say G3) having overlap with both G; and G
such that most of the activated hidden B-cells fall into Gj3,
then the activation of the output B-cell (say Os) collecting
activations from G3 would be higher than those of O; and
O;. If there exists competition between O, O, and Oj3, then
O3 would indicate the actual position of the object and there
would be no confusion. Moreover, if an object consists of
a large number of features, then the number of hidden cells
required to represent the feature-object associations would be
large. If there were no overlapping groups, then output cells
would be widely separated and imprecision may arise.

The local competition can take place in several ways. Two
examples are presented in Fig. 8. In the first case, each group
has overlap with eight other groups (the figure shows only
four spatially separated groups). Each output cell competes
with eight neighboring output nodes in its local neighborhood.
In the second example, each group of hidden nodes has overlap
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Fig. 8. (a) Overlap of the purview of one output node with those of its eight

neighbors in (X, Y, @) space (only four are shown here). (b) Connection of
an output node with its eight neighbors in (X, Y, &) space (only four are
shown here). (c) Overlap of the purview of one output node with those of its
26 neighbors in (X, Y, 8) space (only eight are shown here). (d) Connection
of an output node with its 26 neighbors in (X, Y, 8) space (only eight are
shown here).

with 26 neighboring groups (only eight spatially separated
groups are shown in the figure). In this case, the output cell
competes with the neighboring 26 nodes. The overlapping
between the groups of hidden B-cells can even be larger at
the cost of larger number of output cells.

D. Dynamic Behavior of the System

Let us now describe the dynamic behavior of the system.
In the initialization process, each activated coalition of input
A- and B-cells activates a number of A- and B-cells in the
hidden layer. Note that, the activation values of A-cells in
any layer represent presence or absence of the corresponding
entities, and therefore, the activation levels of A-cells are
either one or zero. On the other hand, the activation values
of the B-cells represent the confidence about the presence of
the corresponding entities. In the consequent discussion, we
will be considering the updating of the activation values of
the B-cells only. The output layer B-cells, in the initialization
process, receive activation from the hidden B-cells over the
corresponding purview. In the settling process, the. output
B-cells send their activation values back to the hidden layer B-
cells. After receiving the top-down feedback, the hidden layer
B-cells connected to the same input B-cell selectively compete
with each other. After competition, for each input B-cell
there exists one winner-take-all (WTA) hidden B-cell. Each
WTA hidden B-cell computes the difference of the activation
signal coming from the input layer and the top-down feedback
received from the output layer. The difference of the activation
values (differential support) is propagated to the output B-cell.
Each output B-cell has negative self-feedback and updates its
state depending on the differential activation value received
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from the hidden layer and the self-feedback. Before going to
mathematical formulation of network dynamics, let us briefly
discuss about the properties of the cells.

1) Properties of the Cells: The input—output function of a
hidden or output A-cell is formulated as

v= f(m?xui - e)

where v is the output of an A-cell, u; is the ith input, ¢ is
a small threshold, and f(-) is a step transfer function. Each
input A-cell has a transfer function which produce maximum
output for certain range of input. Mathematically

1 forzi<z<zy
0 otherwise.

flz)=

The actual range of values (z1, z2) will be discussed in
Section VL

Each input B-cell has two parts. One of them holds the
activation value and has a linear transfer function. The other
part has a radial basis function [38] which produces maximum
output for certain orientations. Each hidden layer B-cell has
four parts. One of them detects if there exists any collision.
One of them competes within a local neighborhood to repre-
sent the proper position of the hidden node activated by an
input node as mentioned in Section IV-A. One part of each B-
cell holds the activation value propagated from the input layer.
The other part selectively competes with the other B-cells to
determine which particular cell would support the output cells
in the settling process. The response of collision detector part
(v1) of the B-cells is already discussed. The portions which
enable hidden B-cells to compete within local neighborhoods
in the initialization process, have simple linear gain, i.e.,

v2 = u;

where u; is input received from the input coalition to which the
hidden node is biased. The portions which compete selectively
with other B-cells have also similar linear gain, i.e.,

v3=fb

where fb is the feedback received from output layer. The
portion which holds the activation received from input layer
has exactly the same gain as v2.In the output layer, each B-
cell possesses two different parts, one of them represents the
confidence about the presence of an entity at the corresponding
location, which can be mathematically expressed as

vol =g (Z u,-)

where g(-) is an S-function [34] (in the output layer linear gain
is not used). u is the input received from hidden layer over
a purview. The second portion of each output B-cell locally
competes with other cells which has exactly the same gain as
vol.
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The notations used here to represent output of different cells
will not be used any further. In the subsequent discussion, we
will be considering the updating of the activation values of that
portions of output B-cells only which represent the confidence
about the presence of an entity (i.e., vol). The notations used
to represent the activation values, however, would be different
and clarified in due context.

2) STM Eguations: Let us now mathematically describe
the dynamical behavior of the network. Before going into the
details of the dynamics, let us clarify some symbols used here.
As mentioned before, W1 and W2 represent the weights of
the type 1 and type 2 links between input and hidden layer. w1
and w2 denote the weights of the type 1 and type 2 bottom-
up links, respectively, and 21 and 22 denote the weights of
the type 1 and type 2 top-down links, respectively, between
hidden and output layer. The hidden layer A-cells are denoted
by an ordered pair (z,k) where ¢ and k denote the input and
output A-cells to which it is connected. Let the (¢, k)th hidden
A-cell and (j,])th hidden B-cell be conjunctively connected
to the kth output A-cell and ith output B-cell, i.e., (j, !)th
hidden B-cell is within the purview of the /th output B-cell and
connected to jth input B-cell. The updating of the activation
level of an output B-cell can be written as

di;b?o—l = ZW1ik - w2ji - ekl — W, - (vby)? C))
where ubo total activation received by an output B-cell. The
summation is taken over the purview of the output cell (1)
and only for those links which are selectively stimulated. vd;
is the output of /th output B-cell (note that this is the same
as vol) which is given as

vb; = g(uboy).
The differential support e;;x; can be written as

(hbijrt — fbijrr)
€ijkl = if fbijkt > fbijerr forall K kAl #1

0 otherwise
(5)
where fb is the feedback support given as
Fijrr = 21g; - 2245 - vby - vag, ©)

hb;;xi represents the activation value received by the hidden
B-cell from the input layer in the transformed space due to
the activation of ith input A-cell and jth input B-cell (2).
Note that (5) shows that differential support is computed only
at that node which receives maximum feedback for a given
1, J. The convergence of the network dynamics can be proved
in a similar way as presented in [34] and [35].

V. LEARNING PROCESS

The weights of the type 1 links between input and hidden
layer and the type 1 bottom-up and top-down links between
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hidden and output layer are learned under supervised mode.
(Note that the weights of type 2 links are fixed and are not up-
dated.) The updating of the weights takes place at two different
levels. The weights from the input to the hidden layer represent
the transformational offsets from the feature reference frame
to the object reference frame, and the weights from the hidden
layer to the output layer represent the likeliness of appearances
of particular feature-object combinations. The two stages of
learning are being discussed below.

The learning methodology can be structured as follows:

Step 1: Present the features (i.e., activate A-cells) and their
locations (i.e., activate B-cells) at the input layer. Present the
corresponding object with its location at the output layer. It
is to be noted here that during the learning process only one
object can be present at a time.

Step 2: Check if the required transformation values from
the feature reference frame to the object reference frame
already exist in the links from the input layer to the hidden
layer. If the transformation value for a feature-object pair
exists then the corresponding hidden B-cell would be activated
within the purview of the output B-cell. Otherwise there will
be no such activated hidden B-cell for that pair.

If any such activated hidden B-cell does not exist then:

A) Check if there exists any bottom-up and top-down
link between that particular feature-object association
(corresponding activated hidden A-cell) and the object
(the desired activated output A-cell).

If it exists then:

i) update the weights of the bottom-up and top-down
type 1 links (i.e., update w1 and 21) considering that
the feature-object association is absent at that instant,
i.e., decrease the corresponding weights.

ii) activate a hidden B-cell within the purview of the
output B-cell such that hidden B-cell is nearest to
the center of the purview.

iii) learn transformation values in the links from the
input to the hidden layer.

If the corresponding bottom-up and top-down links do not

exist (i.e., either the object is a new one or the corresponding

feature did not appear in the object in the previous trials)
then:

i) allocate a hidden A-cell for that feature-object associ-
ation and activate a hidden B-cell within the purview
of the output node such that the hidden B-cell is
nearest to the center of the purview.

ii) create bottom-up and top-down type 1 links between
the hidden A-cell and the output A-cell.

iii) initialize the weight of the bottom-up type 1 link to

a certain small value and the weight of the top-down
type 1 link to unity.

If the transformation exists then:

A) Check if the activated hidden B-cell is at the center
of the purview of the output B-cell, and adjust the
weights of the type 1 links from input layer to the hidden
layer (i.e., the transformational values) depending on the
desired position of the hidden B-cell (i.e., center of the
purview) and the actual position of the hidden B-cell.
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Fig. 9. Diagram of gating channels of the node Ah. A number of links are
connected between the nodes Ai and Ah. The links going to the same channel
only have equal weights. The links within a loop represent the links going
to the same channel.

B) Update the weights of the bottom-up and top-down type
1 links between the hidden layer and the output layer.

Step 3: Copy the weights of the bottom-up and top-down
type 1 links between the other type 1 links connected with the
same hidden and output A-cells.

Step 4: Copy the weights of the type 1 links from input
layer to the hidden layer between other type 1 links within the
same group with same gating channel (gating channel is being
discussed subsequently).

A. Weights from Input to Hidden Layer

The average transformational offset from the feature ref-
erence frame to the object reference frame are adaptively
captured by learning the weights from input to the hidden
layer. Note that, the type 2 links store informations about
physical offsets (e, €4, €4) as described in (1). An object
may have multiple instances of the same feature located at
different places. In other words, there should be provision to
store multiple instances of transformational offsets between an
input A-cell and a hidden A-cell. To encounter this problem,
each hidden A-cell has more than one gating channel (Fig. 9)
and to each gating channel a group of type 1 links is connected.
During learning, the transformational weights (W1) are copied
between the type 1 links only if they are in the same group.
The weights of the links in two different groups are not copied
although they connect the same input and hidden A-cells. As
a result, even if multiple instances of the same feature exist
in a particular object, the different transformational offsets are
stored in the different groups of the type 1 links and they
“would not affect each other.

Let ith A-cell and jth B-cell in the input layer are activated,
and correspondingly kth A-cell and /th B-cell should desirably
be activated in the output layer. In that case, W1 is updated
in such a way that (4, k)th hidden A-cell and a B-cell at the
same position of th output B-cell get activated. Let us denote
the hidden B-cell with the same notation, i.e., [. In that case,
updating of the weight of type 1 link from input to hidden
layer is given as

dW13,

7t Q)

where * stands for r, 8, or ¢. « is agility factor whose value
decreases with the number of presentations [34]. €. represents
the physical offset between the position of input B-cell and
the desired position of output B-cell. With this learning rule

= a,'k((:‘* - Wl:k
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(7), an iterative averaging of the offsets between the locations
of features and objects under different presentations is per-
formed. In such kind of learning, however, question may arise
regarding how to measure e, locally. In the supervised process
of training, the corresponding offsets between the features and
objects can be supplied to the network.

Another technique may be used to learn W1 values using
gradient descent technique. The activation value received by
a hidden layer B-cell is given by (2)

ubh;; = (Wlfk'W2§z+W1fk-W2§l+W1‘fk-W2fl)~:cai-xbj

and the output of hidden B-cell is same as the input received
by it, i.e., hbj; = ubh;;. The error at the lth cell is given by

E = %(tkz - hbj[)Q.
The éhange in W1 can be given as
OF,;

Aot 8
AW}, "8W1’;k (8)

After algebraic computation this becomes
AW = n(ta — hbj))W2jza;zb; ')

where ubh is the total input to the hidden layer B-cell and *
stands for r, 6, or ¢, and 7 is the rate of learning.

We have used the first technique, i.e., iterative averaging
of the transformational offsets in our implementation. Once
the transformation values are learned for a feature-object
combination, they are copied over the other type 1 links
(corresponding to the same feature-object combination) which
are conjunctively connected to other type 2 links. This kind of
copying the weights to other links has been introduced in [39].

B. Weights from Hidden to Output Layer

In the second part of training, the feature importance values
with respect to the objects are learned. In this process, some
asymptotic measures are considered, and they are used for
the learning. The weights of the top-down links (z1) are
asymptotically equated to the likeliness of appearance of a
feature with respect to the objects. The weights of the bottom-
up links (w1) are asymptotically equated to a normalized value
of the product of appearances of the features with respect to
the objects and objects with respect to the features. The details
of the reasons for choosing such measures are provided in
{34] and [35]. For any arbitrary kth object and ith feature, the
asymptotic measures can be written as

21xi = p(filox) (10)
and
~_ p(filok)plok|fi)
ik = Y p(fion)p(odl )’ an

The constant v is used to incorporate Weber’s law [40]
which is necessary due to the following reason. If two objects
are such that the feature set of one object is a proper subset of
another and transformational values are the same then Weber’s
law prevents the larger object to get more activation than the
smaller one when the feature set of the smaller one is presented
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to the network. The normalization is performed to ensure the
total input received by an output B-cell is less than or equal
to unity. The updating of wl can be formulated as

dwl;, o Wlik
7 = (ai(SklZlki + ay, (;I;))maimbjtkl
- (ai.'L'ai.’Ebj + aitkl)wlik. (12)

In this equation it is considered that the (z, k)th hidden A-
cell and (3, {)th hidden B-cell are conjunctively connected to
the kth A-cell and Ith B-cell in the output layer. The activation
values originally received by the hidden B-cells are considered
to be exactly the same as the input B-cells in the transformed
space. Note that, in (12), no subscript j and [ have been used
in the left side which indicates that the weights are copied
over all positions. ¢y is the desired output of the kth object at
the Ith location in the B-cells. §;; is given as

s = trr — varvb;
H T g (ubor)

Here the activation of the A-cell is not considered in' the
denominator since the activation of the A-cell is unity if the
object is present. In the learning process, if it is found that the
A-cell corresponding to kth object is absent then it is allocated
and necessary connections are made. Similarly, in the hidden
layer, corresponding to the new feature-object pairs, A-cells
are allocated. The weights from the hidden layer to the output
layer are set to a small value. Therefore, after the first part of
learning, hidden B-cells within the purview of the kth object
would receive some activations and therefore it will be always
active.

The updating of the top-down links are given as

dz1;
dt
a is the agility factor of the nodes which provides an approx-

imate measure of how long the node has been active during
the training phase. The updating of «;is given as

13)

= aﬁtkl(zaizbj ~ 21g;). (14)

d_dO% — —(ai)Qmaizbj.
Here, it is to be noted that agility factors are attributes of
the A-cells only and it is updated by the activation of the
corresponding B-cells. The B-cell activations are received by
the A-cells through stimulated type 3 links. The updating of
oy is given as

15)

daj o

~dt£ = _(ak)ztk[.

The details of the derivation of the learning rules have been

discussed in [34], [35]. In the second stage of learning also,

the weights of the type 1 links are copied over other type 1
links representing the same feature-object combinations.

(16)

VI. IMPLEMENTATION OF THE NETWORK

The effectiveness of the network has been demonstrated in
learning and simultaneous recognition of multiple fiat indus-
trial objects (possibly occluded). The objects are presented
with their identity, position and orientation. The position is
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specified by the coordinates of the centroid of the object. The
orientation means the orientation of the of the principal axis
of the object.

A. Representation of the Features

Different characteristic features/primitives like lines, edges,
corners, holes, etc. can be used for the description of objects.
In the present investigation, only corners are considered as the
characteristic features. The significant interrelations among the
corners can also be taken into consideration (Since the network
learns the transformations from the feature reference frame to
the object reference frame, the interrelations are not used in
this work).

The silhouette images (512 x 512) of the objects are con-
sidered here. The image has been segmented using graylevel
thresholding. The threshold was selected to be 90 (maximum
gray value in the image was 255). The image has been
smoothed by applying growing and shrinking operations on
it. The boundaries of the objects are detected by checking the
4-neighborhood. The comer or break points on the boundary
have been detected by using the divide and conquer strategy
as developed by Han ez. al. [41] (note that, the corners could
have been detected by any other suitable algorithm).

Whenever a corner is detected, it is supposed to have a cer-
tain curvature or cornerity value and a direction. The curvature
value depends on the angle of the corner. Depending on the
cornerity value a corner is encoded into a particular feature.
The cornerity value at a certain break point is measured as
the angle between the two lines joining the two neighboring
break points on either sides along the boundary. For example,
let X be a break point where the cornerity value is to be
measured. Let Y and Z be the breakpoints first encountered
when the boundary is scanned clockwise and anticlockwise,
respectively, starting from X. In that case the cornerity value at
X is the angle between the lines XY and XZ, and the direction
of the comner is the direction of the bisector of the angle YXZ.

B. Encoding of the Features

The input image (512 x 512) is spatially divided into 64 x 64
grids so that each grid contains 8 x 8 pixels. In each grid
location at most a single feature is allowed to be present. The
actual grid size depends on the nature of the image. In each
grid location a number of input nodes is present. Each input
node represents a particular encoded feature at that particular
location. First, let us consider the way of encoding the features.
The entire range of cornerity values is divided into a number
of slots. Each slot is considered to be a separate feature. The
corners are divided into slots of nine degrees so that there will
be 40 different input features. In the present scheme all the
corners within a slot will be treated as the same feature. The
slots of corners are

(0—9)(9 - 18)---(342 — 351)(351 — 360)
i.e., a feature can be written as

o = {1 if 1 = |angle/9]
t 0 otherwise
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Fig. 10. The actual grid size for B-cells of the network. By, By, Bo are
the input, hidden, and output layers, respectively.

where angle denotes the angle of the corner. ¢; represents if
the corresponding feature is present. If c; is unity then za;
(activation level of ith.input A-cell) is unity (we consider that
the ith feature is mapped to ith input A-cell).

C. Representation of Locations

The 512 x 512 image is divided into 64 x 64 x 60 grids and
each grid is mapped to an input B-cell. Thus each input B-cell
has a tolerance of 8 x 8 pixels and six degrees in orientation.
The hidden layer also has 64 x 64 x 60 grids to represent
the input-output association. The output layer is divided into
16x 16 x 15 grids. Each grid location contains one output node,
and in the junction of six neighboring output nodes another
node is placed. As a result, each output node has a tolerance
of 32 x 32 pixels spatially and 24 degrees in orientation. Each
output node is connected to a group of 64 hidden nodes. This
indicates that the network is able to accommodate at most 64
feature-object associations for any output node. In other words,
the network is able to learn and recognize those objects which
have less than 64 features. The input, hidden, and output grids
of B-cells have been presented in Fig. 10.

D. Training and Testing

Four different objects (as shown in Figs. 11-15) have been
considered. During the training phase of the system, each
object has been presented to the network in different positions
and orientations. In the present case four different instances
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TABLE I
QUTPUTS OF THE SYSTEM AFTER 300 ITERATIONS

output | X Y é

1.0 [256.0 [288.0 ] 72.0
00 | - | - | -
0.0
0.0
00 | -
1.0 | 256.0
00 | -
00 | -
1.0 2880
1.0 | 2080
00 | -
00 | -
1.0 | 2400
0.0 | -
10 | 256.0
00 | -
00 | -
1.0 224.0
00 | -
1.0 | 2080

case | object

—

1
(Fig.11)

2
(Fig.12)

256.0

264.0
60.0

224.0
240.0

3
(Fig.13)

176.0 | 36.0

4
(Fig.14)

352.0 [ 24.0

5 192.0 | 336.0

(Fig.15)

ol el cofro| =llun]co|on] =] ||

272.0 [ 12.0

of each object have been presented. The value of v has been
taken as 0.15. The time step for each learning trial has been
selected as 0.05. After every 200 iterations the nodes have
been flushed, i.e., the agility factors (Section V-B) of all the
nodes were set to unity after every 200 trials. This causes the
network to revive the learning capability for new situations.
After 3000 trials the weights were found to change their value
by less than 0.0005, and the training phase was terminated.
After 3000 trials the network was found to consist of 288 type
1 links from the hidden layer to the output layer.

In the recognition process the time step was considered
as 0.1. The self-feedback was 0.05. Figs. 11-15 show the
results for single and multiple objects for a different number
of iterations. Table I shows the results of the five different
instances of the objects (both single and mixed or overlapped)
after 300 iterations. Case 1 and 2 correspond to the single
instances of objects presented in Figs. 11 and 12. Cases 3,
4, and 5 correspond to the overlapped instances presented in
Figs. 13-15. In Table I, (X,Y) represent the position, and
represents the orientation of the objects.

E. Number of Nodes

In the input layer, 40 A-cells are used to represent the
40 slots of comers (features). The output layer has four A-
cells to represent the output objects. The number of A-cells
in the hidden layer depends on the type of objects presented.
If there exists sufficient overlap between the patterns of the
objects then the number of hidden nodes will decrease. It was
found [42] that the number of hidden nodes is approximately
proportional to m + n where m is the number of objects and
n is the number of features, for a sufficiently large number
of objects. The input layer contains a B-cell in each grid
location, i.e., 64 x 64 x 60 B-cells or approximarely 2!® B-
cells. The hidden layer also contains a B-cell in each grid
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Fig. 11. (a) Image of a hammer. (b) Feature map of the image. (c) Activations in the output layer (B-cells) after initialization process. (d) Activations in
the output layer (B-cells) after 50 iterations. (e) Activations in the output layer (B-cells) after 300 iterations.

and the total number of B-cells in hidden layer is also 2'® Fig. 8(a). The number of B-cells in the output layer is therefore
approximately. The output layer uses the structure shown in 16 x 16 x 15+ 15 x 15 x 14 i.e., 213 approximately. The total
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Fig. 12.

number of cells is therefore 2'° approximately, i.e., 5 x 10°
approximately.

VII. ROBUSTNESS OF THE SCHEME

A. Noise Tolerance and Stability

The connectionist system presented here can take care of
the noise present in the image level. Due to the presence of
noise, a corner can change its curvature value from one slot
to another, and as a result, the output of the corresponding
object may degrade. It is intuitive that if a feature exhibits its
variation during the training phase, then the network should
be able to capture the variations without much affecting the
output in the recognition process.

To mathematically model the noise redundancy, a feature
is considered to have a distribution around its mean value. A
feature (at any instant) can be represented as 6(c — ¢;) in the
analog domain where c; is the mean value of the ith feature.
The function 6(-) is the Dirac-delta function (note that the
noise redundancy should ideally be treated in discrete domain,
but for the sake of simplicity, we have considered it in the
analog domain).

Here, the value of the feature should not be confused with
the confidence value of the feature. The feature value indicates
which particular slot has been fired. The features (e.g., corners
in the present model) are encoded in such a way that if the
angle of the corner changes the feature value will change. The
shift is dependent on the amount of change in angle.

The learning algorithms are designed in such a way [34]
that the weights of the top-down links pick up the distribution
of the features. The weights of the top-down link for the ith
feature? can be represented as

21i(c, =, y, £) = pi(c). a”n

221 values pick up the feature value c, position (z, y), and orientation .
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(a) Image of a spamner. (b) Activations in the output layer (B-cells) after 300 iterations.

The second subscript in 21 is omitted to represent any
arbitrary object. Since according to the learning rules, the
weights of the bottom-up links are proportional to that of the
top-down links (11), the distribution of the weights of the
bottom-up links can be represented as

wl;(c) = wipi(c). (18)

The output under stability is given as

W30 = Z/WIi(TiCi - Zlio) dc (19)

where o is used as the output (instead of the symbol vb). vb
is the actual output where each output B-cell has a nonlinear
transfer function. For the sake of simplicity we have assumed
it to be linear, and a different notation is used (output of the
corresponding A-cell is considered as unity). Here we consider
that the activated hidden nodes are within the purview of the
output cell (i.e., w2 and 22 are unity for all features). The
transformational matrix is represented as 7; (obtained with
the help of W1).C; represents the ith feature along with
its coordinates (z,y,£).> Since we are not considéring the
effect of positional and orientational variance, T;C; can be
represented as (or replaced by)

T:C; = 8(c — ci).

By algebraic manipulation, the output can be written as

;“’i /65(0 — ¢;)pi(c) de
ws + Zwi/cpf(c) de .

Considering the nonoverlapping distribution for each fea-
ture, a Gaussian distribution for the weights of the top-down

o=

(20)

3The integration is performed to represent that the feature values are
distributed in analog domain.
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Fig. 13. (a) Image of a hammer and a spanner overlapping each other. (b) Feature map of the image. (c) Activations in the output layer (B-cells) after
300 iterations. Note that the activation values have been thresholded. The threshold is selected as 0.3.

links corresponding to each feature, p;(c) can be written as

1 (c—c;)? )
pi(c) = Toro. exp ( 307 Q1)
where o is the variance of the feature value around the mean
¢; for the ith feature under noisy environment.

Under a noiseless, ideal situation the feature values are
expected to be the same as their mean values, i.e., the ith
feature for a particular object will have the feature value c;.
Therefore, under noiseless condition the output of the desired
object would be

(22)

If the value of w, is small enough compared to the total
weights of the bottom-up links coming to a particular object
then the output becomes

0=V2.

Since the transfer function of each neuron is such that the
output saturates and cannot go beyond unity, the output under
noiseless condition will ideally saturate to unity.

Let the object be such that the features do not coincide with
the mean values, and let the ith feature in the transformed
space be given as

T,'C,' = (5(0 —C; — AC). (23)

In that case, from (20) the output of the desired object would
be

@4

wy A62
o=v2]|1- Zw,- (l—exp(—2ag>)
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Fig. 14. (a) Image of a hammer and a plier overlapping each other. (b) Activations in the output layer (B-cells) after 300 iterations. Note that the activation

values have been thresholded. The threshold is selected as 0.3.

(@
Fig. 15. (a) Image of a spanner and a knife overlapping each other. (b) Activations in the output layer (B-cells) after 300 iterations. Note that the activation
values have been thresholded. The threshold is selected as 0.3.

Here, the effect of w, has been neglected. Since the output
saturates at unity, the effect of the shift will be perceived at
the output depending on the shift in c. In this mathematical
treatment, however, the confidence of a feature at any point
has been modeled using Dirac-delta function which is not true
in real life. Therefore, the noise degradation may not be so
smooth as presented here. ‘ ,

The mathematical treatment basically reveals the fact that
the noise degradation depends on the distribution of the
feature during the learning process. If the feature suffers wide
variation in the learning process (i.e., large o), then the
variation of that feature in the recognition process (i.e., Ac)
does not cause much degradation in the output. In other words,
no single instance of the feature is given great importance in
the recognition process. On the other hand, if the feature does
not suffer much deviation (i.e., small o.) in the learning trials,

®)

then in the recognition process if the feature suffers deviation
(i.e., large Ac) then the output will be deteriorated.

B. Crosstalk and False Alarming

It was mentioned before that the links are stimulated by the
modifiers attached to them. The modifiers will stimulate or
deactivate certain links only when the signal coming through
the modifier link is sufficiently high i.e., greater than certain
threshold (). Let a particular combination of A- and B-cells be
active in the input layer (say Ail and Bil) and the type 12 link
from the coalition of Ail and Bil stimulate the links connected
to the coalition of Ahl, Bhl in the hidden layer. Since the
signals carried by the modifier links are sufficiently high over
a neighborhood centered around Bh1, the links emanating from
the coalitions of Ahl and the neighborhood cells of Bhl would
also be stimulated. Therefore, even if the competition takes
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place over a neighborhood of Bhl, and only Bhl wins, the
links from the neighborhood of Bhl remain stimulated. If the
feature is such that it instantiates another feature-object pair in
the neighborhood of Bh1 then a false coalition may be formed.
To prevent such crosstalk, the links are provided with a
special attenuable LTM (ALTM). Initially all the links are
not capable of carrying activations. If the links are modified
by some stimulating modifier and the cells connected to
the links are active then only the links retain their signal
carrying capability. If the links are not modified or do not
have any active cells connected to them then they lose their
capability of carrying the activations. Mathematically, the
decaying property is given as
dw w
dt = 1w 25
The time constant 7,, can be selected depending on the rate
of change of the zone of attention controlled by the ACN.

VIII. CONCLUSIONS AND DISCUSSION

- A scheme for polygonal object recognition using the prin-
ciples of connectionist computation has been presented here.
Several concepts motivated by the psychological findings have
been used here. The main contribution of the work is the
introduction of the concept of separating the networks for
identification and pose estimation (locating) of the objects.
This very fact helps in reducing the total number of neurons
to a great extent as compared to the other models [28], [29].
Nonetheless, there is not much gain as far as the number of
links is concerned.

The model also uses the theory of selective attention for the
initial hypotheses formation. The attentional mechanism used
here is early selection process. This pseudoparallel mechanism,
used in the initial hypotheses formation, basically helps in the
simultaneous recognition of multiple objects (both single and
overlap instances).

The learning rules are able to quantify the relative impor-
tance values of the features with respect to objects. The system
is also designed to learn the transformation values from the
features to the objects and is proved to be tolerant of variations
in feature values.

The analysis of robustness of the model shows a graceful
degradation in its performance when a feature suffers noise in
its value, position or orientation. The experimental results also
support the fact that even under occlusion or variation of the
features in their position, orientation or value, the system is
able to recognize the objects present in the scene.

The system has been tested on polygonal objects using only
corner features. The general 2-D shapes are not considered
here. The system can possibly be extended to accept arbi-
trary shapes if suitable feature representation scheme can be
devised.

The scale invariance can be incorporated in this model.
With each feature a scale value can be associated depending
on the distances of the other features from that particular
feature. Whenever a feature activates a hidden node, the scale
value propagates through the links and helps in activating
the proper hidden node. The scale invariance can also be
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Fig. 16. (a) A stimulating modifier of the link connecting the nodes A and

B, (b) A deactivating or inhibitory modifier of the link connecting the nodes
A and B.
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Fig. 17. The sigma-pi connection between two links emanating from the
nodes Al and B1. The link branches out to two other nodes A2 and B2.

efficiently achieved if a hierarchical model is used where the
input features instantiate subparts and the subparts activate
the objects in turn.

APPENDIX

Two special type of connections are used to build the
structured connectionist model. These are:

A: modifier of the links, and

B: sigma-pi connections of the links.

The concept of modifier of the links has been presented
in [31]. Two types of modifiers, namely, stimulating and
inhibitory modifiers, have been used in the present network
[as shown in Fig. 16(a)]. The link emanating from node C
stimulates [in Fig. 16(a)] or deactivates [in Fig. 16(b)] the link
connecting the nodes A and B. In the first case, A is able to
send a signal to B (or otherwise, i.e., B sends to A) only when
the connecting link is stimulated by some positive signal from
C through the modifier. In the second case, A is not able to
send any signal to B (and also B is not able to send to A) so
long as the connecting link is deactivated or inhibited by some
positive signal from C through the inhibitory modifier, even if
the connecting link is stimulated by some other modifier.’

The concept of pi-connection was introduced in [39]. In
this case, a node receives the product of more than one signal.
For example, a node is connected to a group of links hav-
ing weights (wi1,-++,Wim), -+, (Wn1, -+, Wnm) such that
every n-tuple of links have pi-connection. The links are
connected to nodes which hold activation values given as
(Z11,° -, Z1m)s (Tl -1 Tnm). In that case the total
input received by the node (u) will be

n m
U= Z H W;ijTiz-

i=1j3=1
Fig. 17 shows a typical case that we have used in the
proposed model. Here, the links emanating from two nodes
A1 and B1 get conjunctively or pi-connected and then branch
out to two other nodes A2 and B2. The conjunctive connection
also gets stimulated by another signal through the modifier.
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The nodes A2 and B2 receives the weighted product of the
outputs of Al and Bl when the conjunctive connection is
stimulated. The sigma-pi and the modifier connections play
important roles in separating the two channels to represent the
“what it is” and “where it is.”
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