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promising tool for analyzing texture regions of image, in both spa-

tial (time) and spectral (frequency) domains. This characteristic of

the WT thus encourages one to use it for the extraction of con-

textual information of pixels in remote sensing images by wavelet

granulation (i.e., clump of similar information in WT domain) of

feature space. Many investigations on texture classification using

WT have already been reported [13]. The WT, in general, is catego-

rized as shift/time variant and shift invariant. In shift variant WT

[15], the filtered versions of each (sub)image are downsampled by

a factor of two and it results in a non-redundant analysis process.

Although shift variant WT is quite attractive for various applica-

tions, it does not maintain the indispensable property of textural

analysis, like time invariance and makes it insufficient for deal-

ing with such problem. The shift-invariant WT, on the other hand,

does not perform the downsampling operation of shift variant WT

and thus provides a shift invariant analysis in the exploration of

local/contextual information of pixels in an image.

In general, the process of wavelet granulation can be broadly

categorized as class-dependent (CD) and class-independent (CI).

WT is used in both cases for time–frequency representation of pat-

terns and generation of wavelet granulation of the feature space.

WT decomposes the original frequency band of an image into four

equal areas subbands with one-level of decomposition, thereby

producing wavelet granulation of feature space and characterizing

four wavelet granules along the axis. With this process of gran-

ulation, each feature of the pattern is described by four wavelet

granules over the whole space for one-level of WT decomposition,

and hence called CI method. However, this process of granulation

does not take care of the class belonging information of features

to different classes. This may lead to a degradation of performance

in pattern classification, particularly for data sets with highly over-

lapping classes. On the other hand, in CD granulation, each feature

explores its class belonging information to different classes. In this

process, features are described by the wavelet granules equal to

4 × L(number of classes) for one-level of WT decomposition, and

individual class information is restored by the generated wavelet

granules.

Rough set theory, as proposed by Pawlak [8] (henceforth it

will be abbreviated as PaRS), has been proven to be an effec-

tive tool for feature selection, uncertainty handling, knowledge

discovery and rule extraction from categorical data [16]. The the-

ory enables the discovery of data dependencies and performs the

reduction/selection of attributes contained in a data set using the

data alone, requiring no additional information. PaRS can be used

as an effective tool to deal with both vagueness and uncertainty in

data sets and to perform granular computation. PaRS based feature

selection not only retains the representational power of the data,

but also maintains its minimum redundancy [16]. However for the

numerical data, PaRS theory can be used with the discretisation

of data that results in the loss of information and introduction of

noise. To deal with this, neighborhood rough set (NRS) [17,18] is

found to be suitable that can deal with both numerical and categor-

ical data sets without discretisation. The advantage of NRS is that it

facilitates to gather the possible local information through neigh-

bor granules that is useful for a better discrimination of patterns,

particularly in class overlapping environment. Various synergistic

integrations of rough sets and other soft computing tools like fuzzy

sets and artificial neural networks with application specific merits

are described in [19,20].

In this article, we describe a rough-wavelet granular space using

CD wavelet granulation and NRS based feature selection. The model

provides a synergistic integration of the merits of both CD wavelet

granulation and the feature selection capability of the theory of

NRS using neighborhood information. The resulting output of this

judicious integration can be used as an input to any classifier for

pixel classification. To demonstrate the effectiveness of the pro-

posed rough-wavelet granular space based model, we have used

here different classifiers, such as k-nearest neighbor (k-NN) (k = 1,

2 and 3) classifier, maximum likelihood (ML) classifier [21] and

multi-layered perceptron (MLP) [22]. However, other classifiers

may also be used. We have demonstrated the potentiality of the

model with two real and one synthetic multispectral remote sens-

ing images having their spectral (band) values as input features.

The superiority of the proposed model to others is validated both

visually and quantitatively. Performance measures such as ˇ index

[23], Davies–Bouldin (DB) index [24] and computation time are

considered for real life remote sensing images. For the synthetic

noisy remote sensing images, percentage of overall classification

accuracy is computed.

Apart from demonstrating a way of integrating the merits of

rough sets and wavelet transform for handling overlapping classes,

the significance of the present work lies with the following two

operations: First, based on class dependency knowledge, wavelet

granulated feature space is generated in time–frequency plane

using the shift-invariant WT. Second, the neighborhood rough sets

are applied on these wavelet granulated features for computing the

approximate reducts that select a subset of features. The exper-

imental results with both synthetic and real life multispectral

remote sensing images revealed that the proposed model preserved

the homogeneity and structure of various regions of remote sens-

ing images and improved the classification accuracy in terms of

various quantitative measures. Different wavelets are used for the

present study. Comparison of results showed that the performance

of the proposed model is further improved with the biorthogo-

nal3.3 (bior3.3) wavelet.

The organization of the article is as follows. A brief description

of shift-invariant WT and image feature representation is made in

Section 2. Section 3 describes the proposed model for classification

with its characteristic features. Different indexes for performance

measurement are discussed in Section 4. Results and discussion are

included in Section 5. Finally, the concluding remarks are given in

Section 6.

2. Shift-invariant discrete wavelet transform and image

feature representation

The wavelet transform (WT) is primarily developed for the

analysis of non-stationary signals. The transform works on a dual

plane instead of working on a single plane (time or frequency).

The transform performs the decomposition of signal into a num-

ber of scales and each scale represents a particular coarseness

of that signal. The discrete WT (DWT) has become largely popu-

lar because of its computationally efficient implementation using

the Mallat algorithm [15]. Broadly, the DWT can be categorized as

shift/time/translation-variant (non-redundant) and shift-invariant

(redundant). Two-dimensional (2D) shift-variant DWT (SV-DWT)

(extension of one-dimensional SV-DWT) [15] is a separable filter

bank in row and column directions and it performs the one-level

decomposition of an image into four subimages in four equal areas

subbands, as shown in Fig. 1a. H and L in Fig. 1a denote the highpass

and lowpass filters, respectively. ↓2 denotes the downsampling

operation by a factor of 2. The approximate image LL is the low-

frequency component obtained by lowpass filtering of the input

in both row and column directions. The detail images LH, HL and

HH are the high-frequency components including horizontal, verti-

cal and diagonal information, respectively. For more levels of DWT

decomposition, the lower frequency component (LL) is recursively

processed. With this process, the SV-DWT with Q-level of decom-

position generates a total of 3Q + 1 subbands.

The SV-DWT is well-liked for several reasons. Among them, the

compression ability of the transform is better explored with no
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Fig. 1. Two-dimensional wavelet transform for one-level decomposition: (a) SV-DWT and (b) SI-DWT.

loss or redundancy of information between the levels. However,

the major drawback of SV-DWT is its variation in time (i.e., the

coefficients of a delayed information are not a time shifted version

of those of the original), which is particularly important in texture

analysis, e.g., land cover regions in remote sensing image. An appro-

priate solution to this problem is the shift-invariant DWT (SI-DWT),

where the decomposition is performed without downsampling

operation, and the filter coefficients (L and H) are upsampled (↑2)

by a factor of 2 for using them at next level of decomposition, as

shown in Fig. 1b. As a result, the SI-DWT provides a shift invari-

ant representation of the input. Similar to 2D SV-DWT, 2D SI-DWT

decomposes the original frequency band into four equal areas

subbands with one-level of decomposition and the corresponding

frequency partition is shown in Fig. 2. The sizes of the subimages

obtained by SV-DWT decrease with the increase of decomposition

levels, whereas their sizes remain same as the original using SI-

DWT. This redundant representation of SI-DWT is more demanding

in terms of both memory and time because the subimages obtained

by SV-DWT require inverse transformation to retain the size of

the input image, that is required for pixel-wise processing, as per-

formed in the present study of land cover classification of remote

sensing image.

2.1. Feature representation of multispectral image using SI-DWT

For multispectral remote sensing images we have used the

spectral (band) values as features. For example, in a four-band

Fig. 2. Two-dimensional WT and its spectral subspaces for one-level decomposition.
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remote sensing image, a pixel F in (x, y) coordinate is repre-

sented by four numeric features and can be expressed as F(x,

y) = [F1(x, y), F2(x, y), F3(x, y), F4(x, y)], where each of the fea-

tures (F1, . . ., F4) in (x, y) coordinate represents the spectral

values of four-band of images. Thus F is visualized as a point

in four-dimensional vector space. We perform the DWT decom-

position of these images up to the desired level (s) and the

corresponding subimages are obtained. Since the pixels of the

subimages at different levels represent the information of the

original pixels, we have used these pixel values to construct

the pattern vector. The subimages are then cascaded so that

the extracted features of the original multispectral image can be

obtained. Fig. 3 shows the cascading of subimages of a single

band image obtained by Q-level of DWT decomposition. The cas-

cading process can be extended for the subimages of multiband

images.

3. Proposed model for classification

The model has three steps of operation as illustrated in Fig. 4,

namely, wavelet based granule generation, rough set based fea-

ture selection using reducts, and classification based on the selected

features. These are described in Fig. 4.
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3.1. Class-dependent (CD) granule generation

For class-dependent (CD) wavelet granulation of the input pat-

tern of a multispectral remote sensing image, we have used the

shift-invariant discrete wavelet transform (SI-DWT) to character-

ize the feature values. With CD wavelet granulation, L × G number

of granules are used to characterize the feature values of each pat-

tern, where L = total number of classes and G = (3Q + 1) number of

frequency planes characterizing G number of granules, obtained

from Q level of WT decomposition. Each feature is thus represented

by L × G number of frequency planes or characterizing L × G wavelet

granules along the axis. The CD granulation explores the class

dependency of a pattern into different classes based on individ-

ual features and the granules thus provide an improved class-wise

representation of input patterns. The granules preserve the inter-

related class information to build an informative granular space

which is potentially useful for improved classification for the data

sets with overlapping classes.

The SI-DWT identifies both scale and space information of the

event simultaneously to build an informative granular space that

helps to enhance the classification performance. Based on the num-

ber of decomposition level(s), each of the input feature spaces of

a particular class is represented by the corresponding number of

equal areas frequency planes; thereby producing CD wavelet gran-

ules in time–frequency plane. A pictorial view of the generated CD

wavelet granules for a two-class data set with one-level WT decom-

position in two-dimensional (F1 and F2) feature space, is shown

in Fig. 5. On the other hand, for class-independent (CI) wavelet

granulation, each feature is represented by G = (3Q + 1) number of

frequency planes or characterized by G number of granules, obtain

from Q level of SI-DWT decomposition. Fig. 5 also shows the CI

wavelet granulation for a two-class data set in two-dimensional

feature space.

Moreover, the selection of decomposition level is a key factor for

the successful application of WT in the analysis of signals or images.

The decomposition level depends on the type of requirement and

it varies with the problem in hand. To have an objective evalua-

tion, we computed the average entropy, which provides a measure

of information of the image for each level. We found that the

average entropy value is not changing significantly after a certain

level of decomposition. For the present experiment, we stopped

the decomposition after second level, as the entropy measure was

not changing much after this level and thus we were not getting

much extra information, even though the cost of computation kept

increasing.

Various distinguishable characteristics like spatio-geometric

information and energy at different scales, which are normally

called the signature of the land covers in remote-sensing images,

are preserved with the DWT decomposition using orthogonal basis

[15,25] and further improved using biorthogonal bases [26]. Hence,

we have considered biorthogonal group of wavelet bases for the

present study. These bases are usually more desirable than orthog-

onal one because they can maintain linear phase characteristic with

finite number of impulse responses and the mother wavelets have

Fig. 5. Wavelet granule generation.
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high regularity [26]. It is observed from the experimental results

(with the present data sets) that among the biorthogonal (bior)

group of wavelets, bior2.2, bior2.4, bior3.1 and bior3.3 provided

better performance, and thus we have used these wavelets in the

present study.

In the wavelet granulation process, each feature value is rep-

resented by large number of subbands characterizing wavelet

granules along the axis and it results in the increase of feature

dimension. The increased dimension brings great difficulty in solv-

ing many tasks of pattern recognition, as in the present case of

land cover classification of remote sensing image. This motivates

for selecting a subset of relevant and non-redundant features. In

this regard, we have used the neighborhood rough set (NRS) [17,18]

based feature selection method in the second step of the proposed

model (Fig. 4). The advantage in the use of NRS is that it can deal

with both numerical and categorical data. NRS does not require any

discretisation of numerical data and is suitable for the proposed

wavelet granulation of features. Further, the neighboring concept

facilitates to gather the possible local information through neigh-

bor granules that provide a better class discrimination information.

Thus the combination of these two steps of operation can be a bet-

ter framework for the classification of patterns in overlapping class

environment. The proposed model thus takes the advantage of both

CD wavelet granulation using SI-DWT and NRS feature selection

methods.

3.2. Feature selection

This section presents some preliminaries relevant to feature

selection methods using rough sets (proposed by Pawlak) and

neighborhood rough sets (NRS). The details of these theories may

be referred to [8,17,18].

3.2.1. Rough sets (PaRS)

Pawlak’s rough set (PaRS) theory [8] deals with vague concepts

and creates approximate descriptions of objects for data analy-

sis. PaRS is based on the indiscernibility relation that describes

indistinguishable objects of the universe. It works with a pair of

precise concepts, called as lower and upper approximations. The

lower approximation is a description of the domain objects which

are known with certainty to belong to the subset of interest, and the

upper approximation is a description of the objects which possibly

as well as definitely belong to the subset. PaRS have been employed

to remove redundant conditional features, while retaining their

information content. It enables the discovery of data dependencies

and the selection of feature subset contained in a data set using the

data alone, requiring no additional information. The basic opera-

tion involved in PaRS is that it partitions the object space based on

a feature set using some equivalence relation. The partition spaces

thus generated are also known as granules. The generated granules

become the elemental building blocks for information granulation

process used for data analysis. A measure of significance is then

determined by evaluating the change in dependency when a feature

is removed from the set. The higher is the change in dependency,

the more significant is the feature. Based on this significance a

minimum element feature subset (reduct) is searched and located.

Many attempts have been made for finding a reduct of an infor-

mation system. The simplest solution for locating reducts is to

generate all possible subsets and retrieve those with a maximum

rough set dependency degree. However, this approach of finding

solution is highly expensive for large data sets. For such cases, often

one reduct instead of many is required to use for feature reduction.

In this regard, the QUICKREDUCT algorithm described by Chou-

choulas and Shen [27], is popularly used. The algorithm attempts

to calculate a reduct without exhaustively generating all possible

feature subsets. It starts with an empty set and adds one feature at a

Fig. 6. QUICKREDUCT algorithm for feature selection.

time that results in the increase of rough set dependency. The pro-

cess goes on until it produces the maximum possible dependency

value for a data set. The QUICKREDUCT algorithm is summarised

with pseudocode, as shown in Fig. 6.

In the present study, we have used QUICKREDUCT algorithm

for selecting features generated from the CD wavelet granulation.

The selected features are then used in a classifier for classifying the

input pattern, as in the third step of Fig. 4.

3.2.2. Neighborhood rough sets (NRS)

As mentioned above the information system is denoted by I = (U,

A), where U (the universal set) is a non-empty and finite set of sam-

ples {x1, x2, . . ., xn}; A = {C ∪ D}, where A is the finite set of features

{a1, a2, . . ., am}, C is the set of conditional features and D is the set

of decision features. Given an arbitrary xi ∈ U and B ⊆ C, the neigh-

borhood ˚B(xi) of xi with given ˚, in feature space B is defined as

[18]

˚B(xi) = {xi|xj ∈ U, �B(xi, xj) ≤ ˚} (1)

where � is a distance function.

˚B(xi) in Eq. (1) is the neighborhood information granule cen-

tered with sample xi. In the present study, we have used three

p-norm distances in Euclidean space. These are Manhattan distance

(p = 1), Euclidean distance (p = 2) and Chebychev distance (p = ∞).

The neighborhood granule generation is effected by two key fac-

tors such as the used distance function � and parameter ˚. The first

one determines the shape and second controls the size of neighbor-

hood granule. For example, with Euclidean distance the parameter

˚ acts as the radius of the circle region developed by � function.

Both these factors play important roles in neighborhood rough sets

(NRS) and can be considered as to control the granularity of data

analysis. The significance of features vary with the granularity lev-

els. Accordingly, the NRS based algorithm selects different feature

subsets with the change of � function and ˚ value. In the present

study, we have analyzed the effects of three p-norm distances for

a variation of ˚ values, and selected the best one based on the

performance with the present data sets. However, optimal param-

eters values can be obtained through an optimization technique,

e.g., genetic algorithm.

Thus each sample generates granules with a neighborhood rela-

tion. For a matric space 〈U, �〉, the set of neighborhood granules

{˚(xi) | xi ∈ U} forms an elemental granule system, that covers the

universal space rather than partitions it as in case of PaRS. A picto-

rial view of the process of granule generation (as an example) using

both PaRS and NRS is shown in Fig. 7.

Let X = {a, b, c, d, e, f} be the universal set of five elements

(Fig. 7). Partitioning and covering of set X for generating granules

are made as X1 = {{a, b}, {c, d}, {e, f}} and X2 = {{a, b}, {a, c, d}, {a,
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Covering by NRSPartition by PaRS

{{a,b},{c,d},{e,f}}

Universal set X={a,b,c,d,e,f}

{{a,b},{a,c,d},{a,b,e,f}}

Fig. 7. Example of granule generation using PaRS and NRS.

b, e, f}}, respectively. A partition of the set X is a division of X into

non-overlapping and non-empty “parts” or “blocks” or “cells” that

accommodate all the elements of X. Equivalently, a set X1 of non-

empty sets is a partitions of X if, the intersection of any two distinct

elements of X1 is empty. On the other hand, a covering of a set X

results into overlapping and non-empty “parts” that accommodate

all the elements of X. That means a set X2 of non-empty sets is a

covering of X if, the intersection of any two distinct elements of X2

is not necessarily empty. It is noted that the partition of space gen-

erated by PaRS can be obtained from NRS with covering principle,

while the other way round is not possible. Moreover, a neighbor-

hood granule degrades to an equivalent class for ˚ = 0. In this case,

the samples in the same neighborhood granule are equivalent to

each other and the neighborhood rough set model degenerates to

Pawlak’s rough set. Thus NRS can be treated as a generalized case

of PaRS.

The dependency degree of decision feature D on condition fea-

ture set B in a neighborhood information system 〈U, C ∪ D, N〉 with

distance function � and neighborhood size ˚, is defined as


B(D) =
|POSB(D)|

|U|
(2)

where |•| denotes the cardinality of a set. 
B(D) is the approxima-

tion ability of B to D. For POSB(D) ⊆ U, we have 0 ≤ 
B(D) ≤ 1 and

D depends completely on B, and the decision system is consistent

in terms of � and ˚. For 
B(D) = 1, D depends on B in the degree

of 
 . The dependency function measures the approximation power

of a condition feature set. Hence it can be used to determine the

significance of a subset of features (normally called as reduct). Sig-

nificance (SIG) of a subset of features is calculated with the change

of dependency, when a feature is removed from the set of consid-

ered conditional features.

Based on the significance of a feature(s), the subset of features

(reduct) is evaluated. Many sets of reducts can be obtained based

on the significance and any of them will work for the feature reduc-

tion task. In this regard Hu et al. [18] described a forward greedy

search (FGS) algorithm for feature selection using NRS. FGS algo-

rithm begins with an empty reduct. In each step, one feature is

added and the change in dependency (significance) is determined,

when a feature is removed from the set of considered conditional

features. The process is stopped when the significance of reduct is

less than a small value �. The algorithm is summarised with pseu-

docode, as shown in Fig. 8. In the present study, we have used the

forward greedy search algorithm for the selection of features in

the proposed rough-wavelet granulation based model for classifi-

cation.

After the features are selected, we use a classifier as in the third

step of Fig. 4 to classify the input pattern based on the selected

features.

4. Performance measurement indexes

For real life remote sensing image with partially labeled data set,

quantitative indexes like ˇ index [23] and Davies–Bouldin index

[24], as described next, are used for performance measurement of

classifiers. However, for classification of completely labeled syn-

thetic remote sensing images, percentage of accuracy (PA) is used

as a measure.

Fig. 8. Forward greedy search algorithm for feature seection using neighborhood

rough set.

4.1. ˇ index

The ˇ index has been defined by Pal et al. in [23], for assessment

of image segmentation quality. ˇ is defined as the ratio of the total

variation and within-class variation as

ˇ =

C∑

i=1

Mi∑

j=1

(xij − x̄)2

C∑

i=1

Mi∑

j=1

(xij − x̄i)
2

(3)

where x̄ is the mean grey value of the image pixels (pattern vector),

Mi is the number of pixels in the i th (i = 1, 2, . . ., C) class, xij is the

grey value of the jth pixel (j = 1, 2, . . ., Mi) in class i, and x̄i is the mean

of Mi grey values of the ith class. Since the numerator is constant

for a given image, ˇ value is dependent only on the denominator.

The denominator decreases with increase in homogeneity within

the class for a fixed number of classes (C). Thus for a given image

and given number of classes, the higher the homogeneity within

the classes and lower the homogeneity between classes, the higher

would be the ˇ value.

Further, in the present work we have evaluated the correspond-

ing percentage of gain of a classifier (b) compared to classifier (a)

obtained with respect to ˇ value using the following formula:

Gainb =
ˇ value of classifier b − ˇ value of classifier a

ˇ value of classifier a
× 100 (4)

4.2. Davies–Bouldin index

Davies–Bouldin (DB) index for cluster validation has been

defined in [24]. However, here we are using the index for validat-

ing our classification results on partially labeled data sets. The idea

behind DB index is that, for a good partition inter-cluster separa-

tion as well as intra-cluster homogeneity and compactness should

be high. The DB index is based on the evaluation of some measure

of dispersion Si within the ith cluster and the distance between the

prototypes of clusters i and j. The DB index is defined as

DB =
1

K

K∑

i=1

Ri,qt (5)

where K is the number of clusters/classes and

Ri,qt = max j,j /= i[(Si,q + Sj,q)/dij,t]. Si,q is the q th root of q th moment

of the points in cluster i with respect to their mean or centroid. dij,t

is the Minkowski distance of order t between the centroids that

characterize the extracted classes i and j. The smaller the DB value

the better is the partitioning [24]. The corresponding percentage
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Fig. 9. Original (a) IRS-1A (band-4) enhanced image and (b) SPOT (band-3) enhanced image.

of gain of a classifier over other obtained with respect to DB value

is also calculated similar to Eq. (4).

5. Results and discussion

For demonstrating the effectiveness of the proposed rough-

wavelet granulation based feature selection model, we have used

two real life multispectral (four-band) remote sensing images

obtained from IRS-1A and SPOT satellites. These images bear dif-

ferent characteristics like spatial resolution, number of bands, and

wavelengths, while they have similar land-cover classes. Along

with this, a synthetic multispectral (four-band) remote sensing

image is also used to validate our model.

5.1. Classification criteria

In the present investigation we have compared the performance

of the proposed model with different combinations of wavelet

granulation and rough feature selection methods. Five combina-

tions of classification models are considered as mentioned below.

Image patterns with its original feature representation are fed as

input to these models:

• Model 1: k-nearest neighbor (k-NN with k = 1) classifier,
• Model 2: Class-independent (CI) wavelet granulation + k-NN

(with k = 1) classifier,
• Model 3: Class-dependent (CD) wavelet granulation + k-NN (with

k = 1) classifier,
• Model 4: CD wavelet granulation + PaRS based feature selec-

tion + k-NN (with k = 1) classifier,
• Model 5: CD wavelet granulation + NRS based feature selec-

tion + k-NN (with k = 1) classifier.

The comparative analysis of models is also made with differ-

ent types of biorthogonal wavelets (e.g., bior2.2, bior2.4, bior3.1

and bior3.3) based granulations. Apart from the performance com-

parison with different quantitative measures for both real life

and synthetic remote sensing images, the efficacy of the pro-

posed model of rough-wavelet granulation and feature selection

is justified with the following types of analyses. However, the

experimental results with these analyses are provided only for IRS-

1A image, because similar trend of comparative performance is

observed for the remaining images:

• Variation of classification accuracy with different values of

parameter ˚ and distances used in NRS based feature selection

for optimal value selection,
• Performance comparison of the proposed model with other clas-

sifiers such as k-NN with k = 3 and 5, maximum likelihood (ML)

classifier and multi-layered perceptron (MLP).

5.2. Classification of images

5.2.1. IRS-1A image

In this section, we describe the performance comparison of dif-

ferent models with real life multispectral remote sensing images,

namely, IRS-1A and SPOT images. Here the classifiers are initially

trained with labeled data of six land cover types and then the said

trained classifiers are applied on the unlabeled image data to par-

tition into six regions.

The IRS-1A image (size 512 × 512) is obtained from Indian

Remote Sensing Satellite [5,23,28]. The image has spatial resolution

of 36.25 m × 36.25 m and wavelength range of 0.45–0.86 �m. The

whole spectrum range is separated into four spectral bands namely,

blue, green, red and near infrared corresponding to band-1, band-

2, band-3 and band-4 of wavelengths 0.45–0.52 �m, 0.52–0.59 �m,

0.62–0.68 �m and 0.77–0.86 �m, respectively. Since the image is of

poor illumination, we have presented the enhanced image (band-4)

in Fig. 9a for the convenience of visualizing the content of the image.

However, the algorithms are implemented on the original (poorly

illuminated) image. The image in Fig. 9a covers an area around the

city of Calcutta, India in the near infrared band having six major

land cover classes: pure water (PW), turbid water (TW), concrete

area (CA), habitation (HAB), vegetation (VEG) and open spaces (OS).

IRS-1A image is classified with five different models using k-

NN classifier (k = 1), and the performance comparison in terms of

ˇ and DB values, is depicted in Table 1. As expected, the ˇ value is

the highest and DB value is the lowest for the training set (Table 1)

compared to other models for both the images (IRS-1A and SPOT).

In the present experiment, we have compared the performance of

models with respect to five criteria, namely, (i) granulated and non-

granulated feature space, (ii) different wavelets based granulation,

(iii) class-dependent (CD) and class-independent (CI) wavelet gran-

ulation, (iv) wavelet and rough-wavelet granulated feature space,

and (v) Pawlak’s rough sets (PaRS) and neighborhood rough sets

(NRS) based feature selection.

As described in Section 3.2.2, performance comparison with the

NRS method of feature selection depends on the distance function

� and parameter ˚ of the neighborhood granules. In the present

study we analyzed the performance of model 5 for the variation of
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Table 1

Performance comparison of models using k-NN classifier (k = 1) for IRS-1A and SPOT images with different wavelets (p = 2, ˚ = 0.30).

Model Wavelet ˇ value DB value Tc (s)

IRS-1A SPOT IRS-1A SPOT

Training samples – 9.4434 9.3654 0.5432 1.4656

1 – 6.9971 6.8960 0.8005 2.8260 385.56

2 bior2.2 7.4001 7.2376 0.7914 2.6316 410.76

3 bior2.2 7.6911 7.5002 0.7631 2.5172 420.37

4 bior2.2 7.9083 7.8563 0.7434 2.3889 391.32

5 bior2.2 8.4113 8.2179 0.6913 2.3781 399.01

2 bior2.4 7.3435 7.1946 0.8001 2.7132 415.76

3 bior2.4 7.6812 7.4904 0.7732 2.6301 422.23

4 bior2.4 7.9176 7.7878 0.7556 2.4013 390.76

5 bior2.4 8.4383 8.2004 0.7040 2.3135 405.35

2 bior3.1 7.3981 7.2172 0.7984 2.6812 409.84

3 bior3.1 7.6733 7.4025 0.7642 2.5971 419.92

4 bior3.1 7.9122 7.8112 0.7485 2.4002 391.81

5 bior3.1 8.4001 8.2034 0.7003 2.3203 402.78

2 bior3.3 7.4026 7.2501 0.7523 2.6242 414.33

3 bior3.3 7.6997 7.5070 0.7225 2.5013 422.20

4 bior3.3 8.1001 7.8711 0.6838 2.3799 390.11

5 bior3.3 8.4567 8.2308 0.6485 2.3011 400.23

both these parameters. We plotted the ˇ values (Fig. 10) of model

5 (using k-NN classifier (k = 1)) for three p-norm distances for a

variation of ˚ values ([0,1]) in Euclidean space. These are Man-

hattan distance (p = 1), Euclidean distance (p = 2) and Chebychev

distance (p = ∞). It is observed from Fig. 10 that the ˇ value varies

with ˚ for all types of distances. With the increase of ˚ value the

ˇ value increases at first, reaches to a peak and then decreases.

Roughly for all the distances, the highest accuracy is obtained for

˚ = [0.20, 0.35] with maximum for Euclidean distance. Beyond 0.45,

the neighborhood rough set based model can not select the rele-

vant features capable of distinguishing patterns. The reason is that

with large neighborhood region, the granules accommodate more

neighbors, thereby increasing the possibility of possessing irrel-

evant and contradictory feature information. Further it was seen

that the numbers of selected features are different when ˚ takes

values in the interval [0.20,0.35], although these features are pro-

ducing similar classification performance. Hence it appears that the

value of ˚ may be varied in [0.20,0.35] to find the minimal subset

of features with similar classification performance. Accordingly, for

presenting the results for the remaining data sets, we have taken

p = 2 (Euclidean distance) and ˚ = 0.30.

In a comparative analysis from Table 1, it is observed that the

classifiers’ performance with IRS-1A image, measured in terms of

ˇ values is better for the models using granulated feature space.

For example, model 1 (without granulation) provides ˇ value of

Fig. 10. Variation of ˇ values of model 5 with the parameter ˚ for three distances.

6.9971, whereas with other models (with granulation) the values

are higher. This reflects the ability of better extraction of contextual

information in time–frequency plane using wavelet granulation of

feature space.

Performance comparison among different wavelets, biorthog-

onal3.3 (bior3.3) is seen to provide improved results compared to

bior2.2, bior2.4 and bior3.1, as shown in Table 1. Table 1 reveals that

the ˇ value for IRS-1A image, as an example, obtained by model

2 using bior3.3 wavelet is 7.4026, which is higher than the val-

ues 7.4001, 7.3435 and 7.3981 using bior2.2, bior2.4 and bior3.1

wavelets, respectively. Similar trend of improvement with other

models using bior3.3 wavelet is also observed from Table 1.

Performance analysis between CD and CI wavelet granulation

based models (Table 1), the ˇ value for model 3 (CD model) com-

pared to model 2 (CI model) is higher. For example, with bior3.3

wavelet, model 3 provides a ˇ value of 7.6997 whereas it is 7.4026

with model 2. Similarly, for other wavelets based granulation,

ˇ values with model 3 are higher than model 2 (Table 1). This

clearly indicates that CD granules efficiently explored the class-

wise dependency of features to classes and provided an improved

class discrimination information responsible for enhanced accu-

racy.

In another comparison of models with different granular fea-

ture space, it is observed that models 4 and 5 (with rough-wavelet

granulation) provided higher ˇ values than models 2 and 3 (with

wavelet granulation). For example, the ˇ values obtained by models

4 and 5 using bior3.3 are 8.1001 and 8.4567, respectively, are higher

than 7.6997 and 7.4016 obtained with models 2 and 3, respectively

(Table 1). This justifies the superiority of the rough-wavelet granu-

lation to wavelet granulation and it is true for all types of wavelets

used here.

In a comparison of models with NRS and PaRS, it is observed from

Table 1 that using bior3.3 wavelet, the ˇ value for the proposed

model 5 (8.4567), as an example, compared to model 4 (8.1001)

is higher. This is true for all the four wavelet-granulation based

models. This signifies that the NRS based feature selection method

restores better local information from neighborhood granules that

is helpful for improved performance. Thus comparing among the

five models of pattern classification with all possible aspects, the

proposed model (model 5) that explored and incorporated CD

rough-wavelet granular feature space with bior3.3 wavelet and NRS

based feature selection methods provided the best performance. As
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Table 2

Percentage of gain (Eq. (4)) obtained with respect to ˇ and DB values with IRS-1A and SPOT images (bior3.3 wavelet).

ˇ gain DB gain

IRS-1A SPOT IRS-1A SPOT

Model 5 over model 1 20.86 19.35 18.98 18.57

Model 5 over model 2 14.23 13.52 13.79 12.31

Model 5 over model 3 9.83 9.64 10.24 8.00

Model 5 over model 4 4.40 4.56 5.16 3.31

Table 3

Performance comparison of models with different classifiers for IRS-1A image (p = 2, ˚ = 0.30, bior3.3 wavelet).

Model k-NN (k = 3) k-NN (k = 5) ML MLP

ˇ DB ˇ DB ˇ DB ˇ DB

1 6.9910 0.8055 7.001 0.8032 7.0121 0.8002 7.1034 0.7984

2 7.4112 0.7514 7.4042 0.7489 7.4501 0.7501 7.5014 0.7300

3 7.6133 0.7200 7.6246 0.7302 7.5987 0.7132 7.7138 0.7001

4 7.9661 0.6788 7.9803 0.6912 7.9110 0.6802 8.0133 0.6619

5 8.4204 0.6411 8.4412 0.6501 8.4212 0.6431 8.5334 0.6305

a whole the gradation of performance of five models with any of

the wavelets can be established with the following ˇ relation:

ˇtraining > ˇproposed > ˇmodel4 > ˇmodel3 > ˇmodel2 > ˇmodel1 (6)

We also calculate the percentage of gain with respect to ˇ value

(Eq. (4)) obtained by the proposed model over others using bior3.3

wavelet, and the results are depicted in Table 2. It is found from

Table 2 that the proposed model obtained the gains of 20.86%,

14.23%, 9.83% and 4.40 over models 1, 2, 3 and 4, respectively, which

is highly appreciable. The superiority of the proposed model is also

validated with the DB index, as shown in Tables 1 and 2.

A comparative analysis with total computational time Tc (given

by the sum of the training and testing times), as required by dif-

ferent models using k-NN classifier (k = 1), is depicted in Table 1.

The Tc values for both the images (IRS-1A and SPOT) are same

because the number of training samples and pixel sizes (512 × 512)

Fig. 11. Classified IRS-1A images with (a) model 1 and (b) model 5 (proposed model).

Fig. 12. (Zoomed) Two selected regions of classified IRS-1A image with (a and c) model 1 and (b and d) model 5.
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Fig. 13. Classified SPOT images with (a) model 1 and (b) model 5 (proposed model).

of these images are identical. All the simulations are done in MAT-

LAB (Matrix Laboratory) environment in Pentium-IV machine with

3.19 GHz processor speed. It is seen for all the cases that the Tc val-

ues for wavelet granulated models (models 2, 3, 4 and 5) are higher

than those of the non-granulated model (model 1), with improved

performance. Interestingly, models 4 and 5 perform better and at

the same time take less computational time than models 2 and 3 for

all the cases. That means, the incorporation of the rough set theo-

retic feature selection step reduces the computation time. Further,

the Tc values for model 5 (with NRS based feature selection), as

expected, are little higher compared to model 4 (with PaRs based

feature selection) at the cost of improved performance. Similar is

the case between models 2 and 3, where CD granulation (model 3),

as expected, is taking more time than CI granulation (model 2) for

improved performance.

So far we have described the effectiveness of the proposed

rough-wavelet granulation and feature selection model using k-

NN (k = 1) classifier. The effectiveness of the same model is also

described using some other classifiers, e.g., k-NN (k = 3 and 5),

maximum likelihood (ML) classifier and multi-layered perceptron

(MLP). The comparative results of all models with these classifiers

are depicted in Table 3. The superiority of model 5 to others for

different sets of classifiers is evident. Also similar improvement in

performance of the models (using different classifiers) with granu-

lated over non-granulated, CD over CI, bior3.3 wavelet granulation

over other wavelet granulation and NRS based feature selection

over PaRS, is observed, as in the case of k-NN (k = 1) classifier.

In order to demonstrate the significance of granular computing

visually, let us consider Fig. 11a and b depicting the output corre-

sponding to model 1 (without granulation) and model 5 (with CD

granulation and NRS feature selection) using bior3.3 wavelet, say.

It is clear from the figures that the proposed model 5 performed

well in segregating different areas by properly classifying the land

covers. For example, the Bridge (Rabindra Setu) over the south part

of the river is more prominent in Fig. 11b, whereas it is not so in

Fig. 11a. A zoomed version of the said bridge region is shown in

Fig. 12a and b to have a better visualization. Similarly, the regions

such as Saltlake stadium and water bodies are more distinct and well

shaped with model 5, as shown in Fig. 12d (zoomed version). These

observations also justify the significance of the ˇ and DB indexes

in reflecting the performance of the models automatically without

visual intervention.

5.2.2. SPOT image

The SPOT image (size 512 × 512) shown in Fig. 9b (enhanced

image (band-3)) is obtained from SPOT satellite (Systeme Pour

d’Observation de la Terre) [23]. The image used here has been

acquired in the wavelength range of 0.50–0.89 �m. The whole spec-

Fig. 14. Synthetic image (band-4): (a) original and (b) noisy (� = 2).



5672 S.K. Meher, S.K. Pal / Applied Soft Computing 11 (2011) 5662–5673

Fig. 15. Classified synthetic image (for � = 2) by (a) model 1 and (b) model 5 (proposed model).

trum range is decomposed into three spectral bands namely, green

(band-1), red (band-2) and near infrared (band-3) of wavelengths

0.50–0.59 �m, 0.61–0.68 �m, and 0.79–0.89 �m, respectively. This

image has a higher spatial resolution of 20 m × 20 m as compared to

IRS-1A. We have considered in our experiment the same six classes

as in the case of IRS-1A image.

With SPOT image, the comparative results of five models using

k-NN classifier (k = 1) in terms of ˇ and DB values are shown in

Table 1, which revealed the supremacy of the proposed model

(model 5) and it is found to be most effective with CD granula-

tion using bior3.3 wavelet. The significance of model 5 is further

justified visually from Fig. 13 that illustrates the classified images

corresponding to models 1 and 5. It is seen that some of the regions

(e.g., Garden Reach Lake and Race Course) are well-structured and

proper-shaped in Fig. 13b compared to Fig. 13a. For example, the

shape and boundary of the Garden Reach Lake have come up much

prominently in Fig. 13b. Similarly, the Race Course in Fig. 13b con-

tains large grass region than in Fig. 13a.

5.2.3. Synthetic image

A four-band synthetic image (size 512 × 512) has been gener-

ated with six major land cover classes similar to the IRS-1A image.

Fig. 14a shows the synthesized image in the near infrared range

(band-4). All the five models are tested on the corrupted synthetic

image. The synthetic image is corrupted with Gaussian noise (zero

mean and standard deviation (�) = 1, 2, . . ., 6) in all four bands.

Fig. 14b, as an example, shows the noisy version of the original

image with � = 2.

50% of the entire data are used as training set and the rest are

considered as test set. Training set is selected randomly and an

equal percent of samples is collected from each of the classes. We

repeat these splitting sets for ten times and the final result is then

averaged over them. For performance comparison the percentage

of classification accuracy (PA) is calculated with respect to the orig-

inal image (Fig. 14a).

The performance of five models using k-NN classifier (k = 1) in

terms of percentage of accuracy (PA) for different � is shown in

Table 4 for 50% training set. The table revealed the superiority

of model 5 to others for all the noise levels. Since similar trend

of observation, as discussed in the case of IRS-1A image data, is

Table 4

Classification accuracies (PA) of models using k-NN classifier (k = 1) for synthetic

image with different � at 50% training set (p = 2, ˚ = 0.30).

Classification model PA

� = 1 � = 2 � = 3 � = 4

1 95.32 83.51 73.35 62.01

2 96.89 91.33 78.87 64.72

3 97.41 93.15 80.34 67.71

4 98.02 94.02 82.83 70.02

5 98.74 95.11 85.25 72.51

obtained with other measures for the synthetic remote sensing

image, we have not put those results here. Fig. 15 shows the result-

ing classified images obtained by models 1 and 5 for the noisy input

image with � = 2 (i.e., Fig. 14b). Superiority of model 5 to 1, as indi-

cated in Table 4, is further verified visually from Fig. 15. Here we

have shown the classified images obtained from these two models,

as an example, because one of them performed the worst and the

other performed the best.

6. Conclusions

In the present article, we described a rough-wavelet model for

land cover classification of multispectral remote sensing images.

The model formulates a class-dependent (CD) wavelet gran-

ulation of input feature space, where the generated granules

explore the dependency of features into different classes and

make it more suitable for improved class label estimation. For

the granulation process, we use shift-invariant wavelet, where the

time–frequency plane explores the local/contextual information

of pattern. Shift-invariant wavelet granulation provides transla-

tion invariant representation of features, which is an indispensable

property in textural analysis (e.g., land cover classification of

remote sensing images). The advantage of neighborhood rough

sets that deal with both numerical and categorical data with-

out any discretisation is also realized in the proposed model. The

neighboring concept facilitates to gather the local/contextual infor-

mation through neighbor granules that provide improved class

discrimination information. It may be mentioned here that wavelet
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granulation of feature space described in [29] for land cover classi-

fication, is similar to the method of class-independent granulation

used here.

With extensive experimental results on both types of real life

and synthetic multispectral remote sensing images, it is found that

the proposed synergistically integrated model performs well with

CD wavelet granulation using shift-invariant wavelet transform

and neighborhood rough sets. The performance of the models with

biorthogonal3.3 wavelet is further encouraging for the data sets

with highly overlapping classes. A critical value of the threshold

for various distances used in NRS, beyond which classification per-

formance falls drastically, is also determined. Inclusion of rough

set theoretic feature selection method not only increases the per-

formance, but also reduces the computational time required for

wavelet granules based classification.

Though the model is described here for multispectral remote

sensing image classification, it can be used for the analysis of other

spatio-temporal patterns wherever wavelet transform is effective.
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