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Abstract. Fffectiveness of various fuzzy thresholding technigues (based on
entropy of fuzzy sets, fuzzy peometrical properties, and fuzzy correlation) is
demonstrated on remotely sensed (IRS and SPOT) images. A new quantitative
index for image segmentation using the concept of homogeneity within regions
is defined. Results are compared with those of probabilistic thresholding and
fuzzy c-means and hard c-means clustering algorithms, both in terms of index
value (quantitatively) and structural details (qualitatively). Fuzzy set theoretic
algorithms are seen to be superior to their respective non-fuzzy counterparts
Among all the techniques, fuzzy correlation, followed by fuzzy entropy, performed
better for extracting the structures. Fuzzy geometry based thresholding algorithms
produced a single stable threshold for a wide range of membership variation.

1. Introduction

Segmentation is a process of partifioning an image space into some non-
overlapping meaningful homogeneous regions. The term ‘meaningful’ s problem
dependent. The success of an image analysis system depends on the quality of
segmentation. A large variety of methods for image segmentation is available in the
literature {Swain and Davis 1978, Rosenfeld and Kak 1982, Pal ef af. 1983, Deravi
and Pal 1983, Kapur ¢ al 1985, Trivedi and Bezdek 1986, Sahoo et al. 1988, Pal
and Pal 1993, Richards 1993, Gonzalez and Wood 1993). Segmentation of an image
can be done either by grey level thresholding or by clusiering of pixels into homogen-
eous classes. In thresholding one tries to get a set of thresholds {T,, 15, ..., T, } such
that all pixels with grey values in the range [T, T;, L. i=0, 1, 2, .., k: (irrespective of
their positions and neighbourhood information) constitute the ith region type. (T}
and T; ., are taken as minimum and maximum grey values of the image, respectively.)
Thresholds may be detecied based on histogram information or spatal information.
On the other hand, in clusiering homogeneous regions are formed by iterative
modification using original or derived features (computed over a neighbourhood).
Here the pixels with same grey value may be classified into diferent region types
depending on its position and neighbourhood information.

Remotely sensed images are normally poorly illuminated, highly dependent on
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the environmental conditions, and have very low spatial resolution. Most of the
times a scene contains too many objects (or regions), and these regions are ill-defined
because of both greyness and spatial ambiguities. Moreover, the grey value assigned
to a pixel is the average reflectance of different types of ground covers present in the
corresponding pixel area. Assigning unique class labels with certainty is thus a
problem for remotely sensed images. Fuzzy sel theory provides a way of handling
this problem by associating certainty factors with class labels.

The problem of segmenting remotely sensed images has been addressed by Cannon
et al. (1986), Laprade (1988), and Sahasrabudhe and Dasgupta (1992). Laprade
presented a split-and-merge technique using F-test and a mean predicate to test the
uniformity of regions, and applied it to aerial photographs. A two-stage fuzzy c-
means algorithm was applied on a Landsai-4 image with six bands to demonstrate
the feasibility of the methodology for segmentation by Cannon ef al. (1986). A method
of evaluating the suitability of valleys as threshold has been proposed by Sahasrabudhe
and Dasgupta { 1992), and applied to satellite image segmentation. Attempis are made
to find road like structures (Hu ef af. 1992, Zlotnick and Carnine (Jr) 1993, Barzohar
and Cooper 1993), and man-made object identification from remotel y sensed images
{Ton 1988, Mandal er al. 1994). Neural network based approaches have also been
developed for various land cover type classification (Decatur 1989, Benedikisson et al.
1990, Lee ef al. 1990, Baraldi and Parmiggiani 1995).

Mote that most of the approaches for segmentation of remote sensing images are
based on pixel classification. Grey level thresholding techniques, although computa-
tionally less expensive, did not get much attention. One of the reasons may be that
remote sensing images are usually multispeciral which makes classification-based
methods a natural choice. On the other hand, if thresholding-based techniques are
used, then the thresholded output on different bands needs to be again integrated
to arrive at a decision. One may note that in certain remote sensing applications the
image is available only in one band, for example, panchromatic images, for which
segmentation based on thresholding seems o be convenient and appropriate.

Furthermore, the methods available for image segmentation, like other processing
techniques, are problem dependent. When an image 5 segmented for visual inter-
pretation, it is ultimately up to the viewers to judge its quality for a specific applica-
tion. The process of evaluation of image quality therefore becomes a subjective one.

In the present investigation an attempt is made to demonstrate the effectiveness
of various fuzzy thresholding and clustering technigues along with quantitative
evaluation for segmentation of remotely sensed images. Comparison of these tech-
nigues with the respective non-fuzzy techniques s also made both qualitatively and
quantitatively. Five different thresholding techniques based on fuzzy and non-lfuzzy
{probabilistic) entropy, luzzy geomeiry and fuzzy correlation, and two clustering
{ both fuzzy and non-fuzzy) techniques are considered. The quantitative index is
based on the concept of homogeneity within a region. Results are demonsirated on
both IRS and SPOT satellite images. Some of the algorithms use only global
information of input images and the others use local information.

2. Probabilistic entropy based thresholding
In this section we describe entropy of an image, and a few thresholding algorithms.

2.1. Global entropy of an image
Based on the concept of Shannon ( 1948), entropy of an image (or its histogram)
can be defined as follows. Let F=[ fip.¢)l;, , be an image of size P Q. where



Segmentation of remotely sensed images 2271

Jip.g) 15 the grey value at (p, gk fip.gle G, =10, 1,....i ..., L= 1}, the set of grey
levels. Let n; be the frequency of occurrence of the grey level i (i G, ). Then
Zloln, —PKQ—H {say). The global entropy of the image is then expressed as
L-1
H= - % plog,p;p;= (1)
i=0
H is called global, as it depends only on the histogram of the image.

The concept of global entropy of an image can be viewed from a different angle
also. Instead of considering one probability distribution for the entire image, let us
consider two probability distributions, one for the object and the other for the
background. The sum of the individual entropy of the object and the background
gives the total entropy of the image.

If § is an assumed threshold (i.e. § is the boundary grey value between object
and background), then the probability distribution of the grey levels over the back-

eround portion of the image (assuming lower grey values correspond to background)
18

Po Py Ps 2)
B, PP, 2
and that of the object portion of the image is
Ps+1 Ptz -1
l-pPS 1=-PS ""1-P ()
where Py = E3_ p.
The entropy of the background portion of the image
el P
Hp,(S)= - Zﬂ Pslﬁgz (F.s) (4)
and that of the object portion is
L-1
Hy,(8)= Iag7 (5)
e i= ;l ko ]'H 'F-'-'i
The total entropy of the image is
HTGL{S}= HUBJ{S}+ HBQ{S} {6}

In order to segregate the object regions from the background, one needs io
maximize { Kapur et ol 1985) Hy, (5} which resulis in equiprobable grey levels in
each region; and thus maximizes the sum of homogeneities in grey levels within
object and background. Therefore, the value of § which maximizes H_ (5) gives the
threshold for object and background classification.

2.2, Higher order entropy of an image

In an image, pixel intensities are not independent of each other. This dependency
of pixel intensities can be incorporated by considering sequences of pixels for defining
image properties. Entropy of order v (r=1,2,3 ..} of an image was defined { Pal and
Pal 1989) based on the concept of sequence of pixels as follows.

Let p(5,) be the probability of occurrence of a sequence §, of grey levels of length
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r, where a sequence §; of length r is defined as a permutation of r grey levels. Let

1
) = e ; 5.
H » E.- piS; M og, piS;) (7)

where the summation is taken over all grey level sequences of length r. H'" is a
monotonic decreasing function of r and lim_,  H'"'= H, the entropy of the image.
For different values of r we get various orders of entropy.
Ifr=1, we get
L-1

Hl =~ Zpl'lﬂg'_’.lpl' {3}

i=0
where p, is the probability of occurrence of the grey level i. Note that equation (8}
is the same as equation (1) representing the ‘global entropy” of the image.
Forr=2

=1
H11r= _E _ZF{SI}IGE:P]{SJ {g}

= - ; E E f?.-j"i"g:}?u (10
2s

where §; is the sequence of grey level of length two and p;; is the probability of
co-occurrence of grey levels  and j. Thus, /' (second-order entropy of an image)
can be obtained from the co-occurrence matrix (as shown in figure 1) of an image.

H'™ takes into account the spatial distribution of grey levels. Therelore, two
images, with identical histograms but having diferent spatial distributions will have
the same H'"'! value, but different H'? values. Expressions for higher order entropies
for (r=2) can also be deduced in a similar manner. "', r= 2, 15 also called the local
entropy of order r of an image (Pal and Pal 1989).

22.1. Conditional entropy

Suppose an image has two distinct portions, the object X and the background
¥. Suppose the object consists of the grey levels {x;} and the background contains
the grey levels {y,}. The conditional entropy of the object X given the background
¥, ie the average amount of information that may be obtained from X, given that
one has viewed the background Y, is defined as

i(7)-- Z Zo(G)eer )

] 8 L-1
A B
5
D C
L-1

Figure 1. Four gquadrants of the co-occurrence matrix.
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Similarly, the conditional entropy of the background ¥, given the object X, is defined

as
o i PR = lo L (12}
(X - :-Zc;' :_:g.'rp(x i glp(.t,-) 2

i’

The pixel having grey level y;, in general, can be an mth order neighbour of the pixel
with grey level x;. Since the estimation of probahility of such an occurrence is very
difficult, we assume x; and y; to be grey levels of adjacent pixel.

The conditional entropy of an image is then defined as (Pal and Pal 1989)

=3 4(5) ()]

Step 1: Compuie the probabilities of occurrence of diferent grey values or sequences
{of order r, r=12) of grey values for each of the assumed thresholds (say,
5.85=1,23..,L=-2)

Step 2: Using the probability values compute the entropy {e.g global and local) of
the image.

Step 3: Vary § and select those 5% for which the entropy values give local maxima.
Each of these local maxima corresponds o a threshold. The global optimum
correspond s Lo object background separation.

Computational steps:

3. Fuzzy set theory based thresholding
A fuzzy subset 4 of the universe X is defined as a collection of ordered pairs

A={{p,x), x), ¥x E X} (14}

where pi (x), (0= g lx)= 1) denotes the degree of belonging of the element x to the
fuzzy set A. The support of a fuzzy set 4 is the crisp set that contains all the elements
of X that have a non-zero membership value in A.

Since the theory of fuzzy sets is a generalization of the classical set theory, it has
ereater flexibility to capture [aithfully the various aspects of incompleteness or
imperfection in information of a sitwation { Bezdek and Pal 1992). The flexibility of
fuzzy set theory is associated with the elasticity property of the concept of its
membership function. The grade of membership is a measure of the compatibility of
an ohbject with the imprecise concept represented by a fuzzy set. The higher the value
of membership, the lesser will be the amount (or extent) to which the concept
represented by a set needs to be stretched to fit an object.

Since the regions in an image are not always crisply defined {imprecision may
arise due to both greyness ambiguity and spatial ambiguity), it is natural and
appropriate to avoid committing ourselves to a specific hard decision for image
segmentation. Thus it is natural to consider the image segments to be fuzzy subsets
of the image (first suggested by Prewitt (1970)); the subsets being characterized by
the possibility (degree) to which each pixel belongs to them. Moreover (as mentioned
in §1), for remotely sensed images the pixel intensities do not reflect the land cover
types present in the corresponding area properly. Assigning unique class labels with
certainty is thus a problem for remotely sensed images. Hence, fuzzy set theoretic
approach will be more appropriate [or segmenting regions in remotel y sensed images
which are usually ill-defined.
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31, Fuzzy entropy of an image

An L level image F(Px () can be considered as an array of fuzzy singletons,
each having a membership value denoting its degree of possessing some property
{e.z. brightness, darkness, edginess, blurredness, texture, eic.). In the notation of fuzzy
sets one may therefore write { Pal and Majumder 1986)

F={pip.grp=12 .. Pg=12..0} (15)

where p.(p g) denotes the grade of possessing such a property g by the (g g)th
pixel. Membership can be defined based on global information, local information,
positional information and a combination thereof, depending on the problem.

Let us construct, say, a fuzzy subset bright image characterized by a membership
function u, using the standard S{i; @, b, ¢) function of Zadeh (1965) defined as

Lpli)y=0 il i=a

=2li=alfie=a)}? ifa=i=h
=]l=2i=cWe=—aR? ifb=si=¢ (16)
=1 il e=i

where pi(7), which is a function only of grey level, represents the degree of belonging
of the level i to the fuzzy bright image plane F. The crossover point is b=(a+ )2
(for which the membership value is 0.5) of the membership function p,. Similarly,
one can use Z-function to consiruct a dark image plane, where

Z=(1=Siiab, ) (17}

Several antempts have been made (Xie and Bedrosian 1988, Murthy and Pal 1992a, b)
to determine the appropriate membership function along with its band width and
bounds for image processing problems.

Fuzzy entropy of an image (having n= Px{ pixels) using logarithmic gain
function is ( Pal 1952)

1 n
H= > S (pelp q) (18)
=}

nln{2};
Here,
Sdprpgh=—pelpginfpelp gl — 1= pelpghi In {1 = pelp gy (19)

and pipp g) represents the membership for the (p, g)th pixel
Another definition of fuzzy entropy, given by Pal and Pal (1991) and Ghosh
(1993}, using exponential gain function is

| .
) o 2
" mf;{sn”!r{ﬁu q)-1} &)
with
S, (1 (P g = il p, glet#red 4 11 = gy (p, g )} eiriea) (21)

Mote that, these entropy measures, first of all, compute the fuzziness related to
individual pixel of the image and then make an average over all the pixels to get a
quantification of the amount of average ambiguity, the image possesses. Since their
compuiation depends only on the histogram , they may be called global uzzy entropy.



Segmentation of remotely sensed images 2275

3.1.1. Higher order fuzzy entropy

Pal and Pal (1992) also defined the rith order fuzzy (local) entropy H'", r=2 of
an image # (using both logarithmic and exponential gain functions) which provides
a measure of the average amount of difficulty (ambiguity) in making a decision on
any subset of r elements as regards (o its possession of an imprecise property. These
are as follows:

Out of the n pixels of the image F, consider a combination of r elements. Let
8¢ denote the ith such combination and p(Sf) denote the degree to which the

combination 87, as a whole, possesses the property p. There are (n) such combina-
3

tions. The entropy of order r of the image F is defined as (Pal and Pal 1992)

1)
Skl 3 LS { (SO + {1= p(S7) In {1 = p(S7)] (22)
i=1

F

with logarithmic gain function, and

(
HO = SN[ pST) el #) 4 {1— (ST 4] (23)

()

with exponential gain function.

H'" will give a measure of the average amount of difficulty in taking a decision
on any subset of size r with respect to the property p. Note that equations ( 18)}21)
correspond to a special case of '™ for r=1. B, r=2 is called higher order fuzey
entropy of the image.

Ll
o

3.1.2. Membership function and computation of second-order fuzzy entropy

For computing the higher order fuzzy entropy of an image, represented by a
fuzzy set, one needs to choose r pixels at a time and to assign a composite membership
value to them. Normally these r pixels are chosen as adjacent pixels. For the present
investigation, we have chosen r= 2

Let us consider a two-dimensional S-type membership function (figure 2) repres-
enting fuzzy bright image plane {(assuming higher grey values correspond to object
region). This assigns a composite membership value to a pair of adjacent pixels
as follows:

For a particular threshold §,

¢ (8 8) is the most ambiguous point, ie the boundary between object and
background. Therefore its membership value for the fuzzy bright image plane
is 05

* If one object pixel is lollowed by another object pixel (ie. the entries of
quadrant C), then its degree of belonging to object region is greater than 0.5
The membership value increases with increase in pixel intensity.

« For quadranis B and D where one object pixel is followed by one background
pixel or vice versa, the membership value is less than or equal to 0.5, depending
on the deviation from the boundary point (8, §).

¢ If one background pixel is followed by another background pixel (i.e. for the
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Figure 2. Two-dimensional S-type membership function. {30, 30) is the crossover point.

entries in A), then its degree of belonging to object region is less than 05, The
membership value decreases with decrease of pixel intensity.

Second-order fuzzy entropy (r=2) computed individually over the eniries in quad-
rants C, A, D and B of the co-occurrence mairix (figure 1) can be termed as object
entropy M3, background entropy Hi. transitional (object to background) H3y
entropy. and transitional (background to object) entropy Hi,. respectively.
Therefore, Hi+ HE gives the total within-class second-order local entropy and
Hoop, + Hmo: gives the total second-order transitional (conditional) entropy.

32, Fuzzy geometry of an image subset

Entropy, as defined in §3.1, may be used in representing greyness ambiguity in
an image, ie the indefiniteness in making a decision whether an individual pixel is
black or white, or a collection of pixels possesses an image property or not. There
is another kind of ambiguity in an image called spatial or geometrical ambiguity
{which refers to indefiniteness in the shape and geometry of regions within the image).
These can be represented by fuzzy geometrical properties. Some of them (Pal and
Rosenfeld 1988, Pal and Ghosh 1992a) which are used in this investigation are
described below.

Fuzzy geometrical properties:
Let g represent an image fuzzy subsel and g be piecewise constant (for digital
image). Then

Area: The area of p is

al p)= Z',u: (24)
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Perimeter: The perimeter of u is

L-1L-1

pl= % 3 |pli)= plf)]= &; (25)
i=0 j=0
where i) and p(/) are the membership values of two adjacent pixels having grey
value i and j respectively and ¢; is the frequency of occurrence of the grey value i
followed by j.

Compaciness: The compaciness of a fuzzy set p having area ol i) and perimeter p{ )
is defined as

o i)
P

comp/ pt)= (26)
Physacally, compactness means the fraction of maximum area (that can be encircled
by the perimeter) actually occupied by the fuzzy region (concept) represented by po
Of all possible fuzzy discs, compaciness 5 minimum for its crisp version.

Length: The length of p is

I{p)= max {Eu{p, rﬂ} (27)

]

Breadth: Similarly, the breadih of u is

B )= max {Ep{ﬁ, fj]'} (28]

The length (breadth) of an image fuzzy subset gives its longest expansion in the y
direction (x direction). If g is crisp, pip. g)=0 or 1; then length (breadth) is the
maximum number of pixels in a column {row).

Index of area coverage (IOAC): The index of area coverage of u is defined as

IOAC u)= o (29)
B o< big) 3

IOAC of a fuzzy image subset represents the fraction (which may be improper also)
of the maximum area (that can be covered by the length and breadth of the image)

actually occupied by the image. The I0AC i the minimum for the non-fuzzy case
of all possible fuzzy versions of a rectangle.

33, Fuzzy correlation

Let @ be a closed interval in R, Let p: Q—[0,1] and p: Q—[0,1] be two
continuous fuzzy membershi p functions. The correlation Clp . i ) between the fuzzy
membership functions p, and g, (defined on the same domain) was defined by
Murthy et @l (1985), and Pal and Ghosh ( 1992b). Cl g . jt,) basically gives a measure
of relation between the natures of p, and p,, ie with change of x what happens to
gy and g

Mow if the functions are discrete in nature (as applicable to a digital image), the
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expression for correlation takes the form ( Pal and Ghosh 1992b),

X1+X,xz’”! =0 ey X0

30
1 if X, + X,=0 (30)

Clyey sl = {

where X'\ = Z {2p (x)= 1 and X,=E {2p(x)-1}2

331 Correlation between two fuzzy representations { properties) of an image
Fuzzy correlation between two representations of an image characterized by p,
and u, is defined as {Pal and Ghosh 1992h)

Clye,ge,)=1- ZZ{;!l{jJ,q}— ol gh? (31

X+ X4
with X, =2 Z {2u(p.q)-1}* and X,=% E {2p,(p.g)— 1}* where p (p, g) and
il g denate lhe degree of possessing the pmpert} ity and g, respectively, by the
{p. g)th pixel.

Let pt; be the nearest two-tone version of ¢, such that

0 if0=p (x)=05
iylx)= i (32)
1  otherwise

Let py {or Fy) denote a fuzzy bright image plane of # having the crossover point
at 8, say, and be dependent only on grey level Then p, (or F) represents its closest
two-tone version thresholded at 8§ Then the fuzzy correlation between a fuzzy
representation of an image and iis nearest two-lone version 15 expressed as

4 5 L-1
Ol pea)=1- T ( Z L (A0} + Z i[1- _ul{f}]l.h{i}}) (33)
AN ES

i=gt1

with
-1
= Z [2p, ()= 1]2Adi)
i=0

and

L-1 L-1

= Z[z-"?m" 1 Phii)= Z.’:{i}=FxQ=mmtanl
=0 i=0

Here, hii) is the frequency of the ith grey level.

332 Correlation measure using local information

Higher order correlation using local information (obiained from co-occurrence
matrix) can also be defined (Pal and Ghosh 1992b) similarly as in higher order
entropy of an image ($3.1.2).

Correlation between any two properties of F computed over the entries in
individual quadranis A, C, B and D of the co-occurrence matrix (figure 1) can be
termed background correlation [C{ g, 1, )y . object correlation [Clp, ., ji;)n ], trans-
itional { background to object) correlation [Cl gy . ft2)gn ], and transitional {object to
background) [(1p,. i, )}y 5 ] correlation, respectively. They may be computed by using
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similar expressions with different ranges of i and j. For example,

| = - 4‘ s s . . s " : 1
oy palg=1 X, +X:|-;_-,J'=Zu{[ﬁl{!7f} 5l 1] iy} (34)
with
5 5
X, = Z Z 20,0 )= 121,
i=0 j=0
and

5 5
X,= ¥ F {[26:00.)- 1Pt}
i=0 j=0
where ¢, is the frequency of occurrences of the grey level i followed by j.

Similarly, for computing C{u,, pt;)n. § and j will range from S+ 1 to L= 1; for
Tl fa g | will range from O to § and § from S+ 1 to L= 1; and for Oy, i )om.
i will range from §+1 to L- 1 and j from 0 to &. '

Mote that Clpy, pa)g+ Cliy, 2)g gives the total within-class local correlation
and Clpy. fia)ag + Clity. g0 gives the total transitional (conditional) correlation.

From the properties of correlation we notice that if two functions p, and p, are
very close then Cip, pi;) is very high whereas, Ol , p;) is least when p, = 1-p,.
Since F is the nearest two-tone version of F ., C{F . F) gives a measure of closeness
of the two images F, and F. The principle of maximizing fuzzy correlation for image
segmentation is described in Pal and Ghosh (1992h).

Computational steps of fuzzy thresholding:

Given an L level image F of dimension P» @ with minimum and maximum grey
values i, and i ... respectively, the algorithm for its fuzzy segmentation (through
thresholding) into object and background may be described as follows:

Step 1: Construct the membership plane using the standard S(i a, b, ¢) [unction
{equations { 16)) as

mp.q)=pli)= Sliz ab, c) (35)
(called bright image plane if the object regions possess higher grey values)
or pip, q)= pli)=1- S(isa, b, c) (36)

(called dark image plane if the object regions possess lower grey values) with
crossover point b, and a band width Ab=hb-a=c-h.

Step 2: Compute the parameter J{#) representing either greyness ambiguil y or spatial
ambiguity (as designated by H'"', correlation, compactness and 10OAC, say) or
both (i.e. product of greyness and spatial ambiguities).

Step 3: Vary b between i, and i ., and select those b for which /{#) has local
minima or maxima depending on f{#). (Maxima correspond for the correlation
measure only. ) Among the local minima/maxima, let the global one havecrossover
point at §.

The level S, therefore, denotes the crossover point of the fuzzy image plane u,, which
has minimum greyness and/or geometrical ambiguity. The g, plane then can be
viewed as a fuzzy segmented version of the image F. For the purpose of non-fuzzy
segmentation, we can take § as the threshold (or boundary) for classifying or
segmenting an image into object and background. In case the image has multiple
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regions, there will be a set of local optima corresponding to them. Faster methods
of computation of the fuzzy parameters have been described by Pal and Ghosh
{1992a).

MNote that w=2Ab is the length of the window (such that [0, w]—[0, 1]} which
was shifted over the entire dynamic range. As w decreases, the u, plane tends to
have more intensified contrast around the crossover point, thus resulting in a decrease
of ambiguity in #. Asa result, the possibility of detecting some undesirable threshold s
(spurious minima) increases because of the smaller value of w. On the other hand,
an increase in w resulis in a higher value of fuzziness and thus leads towards the
possibility of losing some of the weak minima.

The criteria regarding the selection of membership function and the length of
window (i.e. w) have been reporied in Murthy and Pal (1992a), assuming continuons
functions for both histogram and membership function.

4. Segmentation by clustering

Clustering is a method of partitioning a given set of patterns into a number of
homogeneous groups (clusters) depending on the similarity in features. The number
of groups is normally pre-specified; but can also be varying. Inital clusters are
normally chosen randomly and gradually modified to obtain the final clusters (or
optimal cluster centres). A number of clustering algorithms (both non-fuzzy and
fuzzy) exists in the literature { Anderberg 1973, Bezdek 1981). In the present investi-
eation we used the hard and fuzzy c-means (HCM and FCM) techniques. Here we
briefly describe them.

4.1. Hard c-means algorithm

Let XY=1{x, 22, 0dpseenxy b 2y ERP, be a finite dataset in the p-dimensional
space; xy; is the jth feature of the data point x,. Let ¢ (2= = n) be the number of
clusters and F=(F. Vi ... ... F.). F;, eR * be the set of cluster centres (proto-
types). The dataset is then classified and cluster cenires are updated iteratively until
the classification in two successive stages remain unaltered; which can be measured
by the average diference between the partiions (prototypes) computed in two
successive stages. Il this average difference is less than a pre-defined small positive
value & (=0) then the process can be terminated and the clusters can be taken as
optimal. The classification strategy is as follows:

A data point k is assigned to class i if

dy = min (d,) {37)

l=ss¢

[
where df = Z{IH - v
i=1

1 m
and v; = "_;:Z[ {x;). n; is the number of data points assigned to the ith class.

4.2, Fuzzy c-means algorithm
Let X, ¢ and V be defined as above and U= [1, ], , be a fuzzy e-partition of X
The membership u,, represents the degree of belonging of the pattern x, to the ith
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class, where

O=u, =1, Zum =1L ¥k=1,2,....nand
i=1

0< Y up<n Vi=1,2,...¢ (38)
FCM finds U and V itaraii_vlely by minimizing
J U V)= Z:, kz:, WYl 2= Vil 3 (39)
where m= 1 and the inner product ilr;duée:d norm metric
|15 =lx,— V)T Alx,— V,)=dj (40)

where 4 is any pxp positive definite matrix (in the present study we used the
Euclidean norm, i.e. 4 is an identity matrix). Based on the necessary conditions for
a local minimum of J . cluster prototypes and memberships are computed as follows:

i {ul'k }mxk

=t l=i=¢ (41)
> ("
k=1
Let f,={i|l=i=c.d, =0} and
F={L2..¢-1,.

Iff, #®, u;, =0 Viel, and arbitrarly assign u; such that 3w, =1

iel;

F o ) =1

Il = u, = ( Z (—'k}"""_ “) =iz, lsk=n (42)
1 \di

To implement the FCM algorithm we initialize either U or }, and then FCM iterates

between (41) and (42) until U or ¥ or both stabilize.

4.2.1. Computational steps

Using the above-mentioned clustering techniques image pixels are labelled as
one of the region types in the image; thereby providing its segmentation. We used a
two-dimensional feature space with feature values as average and busyness | R osenfeld
and Kak 1982) of the concerned image pixel. The computational steps are
described below.

Step 1: Choose the number of classes and the initial values for the means (for FCM
an initial partition can also be chosen instead of means of the classes).

Step 2: Classify the samples by assigning them to the class corresponding to the
closest mean (or assign membership value for each class in the case of FCM).

Step 3: Recompute the means of the classes (weighted means for FCM).

Step 4: I the change in any of the means is more than some pre-assigned small
positive quantity (say, £=0) then STOP else go to Step 2.

Here, we briefly discuss the two [eatures, average and busyness { Rosenfeld and Kak
1982) used with FCM and HCM. Let us consider a 3 x 3 window centred at (i, j),
with grey levels as indicated in figure 3.
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Figure 3. Grey values over a 3% 3 window.

The average grey level & over the window centred at the (i, f)th position (grey
value a.) of the image is

1 )
a= E(kz““) (43)

=1
The busyness B over the window in figure 3 is
A =lay=aq| + |ag= ay |+ |ay = as| + |as = ag| + | = ag| + |y = ag).
A= o= ay| + |a, = ;| + |, = ag |+ |ag = ay| + |y = | + |6, =y and
A+ A,

busyness = B= 3

(44)

5. Quantitative measure

We have used several algorithms with diTerent parameters in this investigation.
Each of these gives rise fo a partition (segmentation) of the image space. We intend
to evaluate this segmentation results quantitatively using an index (say f).

Let n; be the number of pixels in the ih (i=1,2,..., ¢) region obtained by a
segmentation method. Let X';; be the grey value of jth pixel (j=1.....n;} in region i,
and X', the mean of n; grey values of ith region. Then f is defined as

1 =« : i F R N
rO I’ CED N W o AEB
- i=l1i=1 = d=1i=1
& : 1 n © iy =
Z%xn- Z{XU_X[}: Z Z{XU_XI'}_

=1 i =1 =1 =1

#

(45)

where, n is the size of the image and X is the mean grey value of the image.

MNote that the above measure is nothing but the ratio of the total variation and
within-class variation. This is widely used in feature selection and cluster analysis
{Fisher and Van Ness 1971, Richards 1993). Since the numerator is constant for an
image, the § value is dependent only on the denominator. The denominator decreases
with increase in homogeneity in the regions. Therefore, for a given image and ¢
value, the higher the homogeneity within the segmented regions, the higher would
be the f value. The value of § also increases with ¢. In an extreme case when there
is no partition (Le the entire image space is being considered as one class), we have
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¢=1and =1 On the other extreme, when the number of partitions is maximum,
i.e. ¢= L, the number of grey levels in the image, we have fi=m= .

6. Implementation and resulis

The algorithms, mentioned in the previous sections, with the quantitative measure
have been implemented on a number of remotely sensed images. We present here
results on two IRS-1A (band 4) images and one SPOT [ band 3) image. The IRS-1A
image was taken using the scanner LISS-II (Linear Imaging Sell Scanner) in the
wavelength range 0.77-086 um and it has a spatial resolution of 36.25mx 3625m
{ Thiruvengadachari et al. 1989). One of the images is covering an area around the
city of Calcutta (figure 4), whereas the other one is covering the city of Bombay
{figure 5). The SPOT images have a spatial resolution of 20.0m > 20.0m and the
wavelength ranges in 0.79-0.89 pym (Richards 1993), covering a portion of the city
of Calcutta (figure 6). All the three images are of size 512 % 512 pixels. Due to poor
illumination of these images, the actual object classes present in the input image are
not visible cleady. For this reason we have not included the original input images,
instead an enhanced version ( histogram equalized ) of the input images highlighting
the different object regions are shown in figures 4, 5 and 6, corresponding to Calcutta
(IRS), Bombay (IRS) and Calcutta (SPOT), for the convenience of readers. However,
the algorithms were implemented on the actual input images whose histograms are
shown in figures 7, 8 and 9, corresponding to these three images. As seen from the

-r.'.l.',].',l"

7 Y

Figure 4. Enhanced { Histogram equalized) Calcutta { IRS) image.
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Figure 5. Enhanced (Histogram equalized) Bombay {1 RS) image.

histogram (figure 7), a deep valley is present near the grey lkevel 23, closely surrounded
by two significant peaks at grey levels 21 and 33. Some weak valleys are also present
at levels 35,62, 65, 70, 72 and 76, but they are not apparent in figure 7. Corresponding
to the Bombay (IR S) image of figure 5, the histogram presented in figure 8, depicis
a valley at grey level 18, surrounded by two peaks at levels 11 and 25, The other
valleys at 37, 39, 64, 66 and 70 are not significant. For the Caleutta (SPOT) image
in figure 6 the histogram is shown in figure 9. There are three main peaks (two strong
at 18 and 29, and one weak at 22) with valleys, at 20 and 23. The other valleys,
which are not visible, are at levels 66, 70, 72, 76, 78, 80, 88, 90, 92, 95, 98 and 103

For implementing fuzzy c-means (FCM) and hard ¢-means (HCM) clustering
algorithms we have chosen the number of clusters ¢ =4, 5 and 6. Average (equation
{43)) and busyness (equation {44)), computed over a 3% 3 neighbourhood { Rosenfeld
and Kak 1982) incorporating local information, are used as features. For the FCM
fuzzifier m {in equation {39)) was taken as 2.

In tables 1-3, we present the thresholds obtained by fuzzy correlation, fuzzy
entropy and fuzzy geometry, respectively, for different window sizes (w=7,9, 11, 13,
15, 17, 19). The results corresponding to probabilistic entropy are shown in table 4.
The computed § values are also shown in the tables. As expected, the number of

thresholds (where T indicates global optima) decreases as w increases. Note that
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Figure 6. Enhanced {Histogram equalized) Calcutta (SPOT) image.

membership functions corresponding to w=9 and 11 satisly the criteria of bounds!
of Murthy and Pal (1992a).

To demonstrate the significance of the § value we provide segmented resulis
corresponding to the highest and lowest § values, obtained over all these methods,
for a fixed number of regions. Figures 10 and 11 depict such example images for
f=19949 and f=4357, respectively, when the number of regions, ¢, is five. For
the purpose of comparison we also show the results of FCM (figure 12 with
f=35880) and HCM (figure 13 with §=35.171) for ¢= 5. From these, the § value is
seen Lo reflect well the quality of segmentation. For example, the details of linear
structures like roads, airport runway, water canals are seen to be more prominent
in figure 10 (having higher f§ value) compared with others.

Let us now consider the segmented output (figure 14) corresponding to the best
§ value (= 4.790) when the number of regions, ¢, is four. Comparing the results of
figure 10 (when ¢= 5) we see that some of the roads, canals (linear structures) which
are visible in figure 10 are vanished in figure 14. Also it can be seen from figure 14
that the main city area consisting of dense concrete siructure is merged with the
sparse concrete structure class {habitation class) around the river.

" g : : : o
Bounds determine the range so that any membership function defined within the range
will provide similar segmented results.
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Table 1. Thresholds based on fuzzy correlation and [ values.
Kind of Window size
Serial no. information {w) Threshold values i value
1.1 global 7 194, 23, 31, 36, 39, 47 14.286
12 9 244, 31, 36, 47 9634
1.3 11 24%, 31, 37, 47 9.949
14 13 244, 32 38, 48 9612
1.5 15 244, 48 1.711
1.6 17 24, 49% 1.681
1.7 19 245 1. 466
1.8 local 7 19, 24%, 32 36,47 9.533
19 {within-class) 9 19, 24%, 32 37,48 9959
110 11 25+, 37, 48 4 486
1.11 13 25%, 37 3762
1.12 15 25%, 36 4011
1.13 17 25%, 36 4011
1.14 19 25%, 36 4011
1.15 local 7 19, 24, 36, 40, 48+ 5983
1.16 (transitional ) G 19, 24, 36, 48% 4 8094
117 11 24, 36, 48% 4.790
1.1% 13 24, 37, 48% 4358
1.1% 15 24%, 38 i
1.20 17 244, 38 iin
1.21 19 sy 1.900

tThe global maximum.
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Table 2. Thresholds based on fuzzy entropy and [f values.

Kind of Form of gain  Window size

Serial no. information  information (W) Threshold values i value
21 global logarithmic 7 19, 23, 311, 36,47 9793
22 o M, 31%, 37, 47 0049
23 11 M, 31%, 31. 47 0,049
24 13 24, 381, 48 3788
25 15 23, 49 1.639
26 17 23t 1.432
27 19

23 global exponential 7 19,23, 31%, 36,47 9.793
29 o 2, 31%, 37, 47 0,049
210 11 M, 31%, 37, 47 0,049
211 13 24, 38%, 48 3788
212 15 244, 49 1681
213 17 23t 1.432
214 19 -

215 local logarithmic 7 18, 24, 311, 36, 49 9473
216 {within-class) o 25 374, 48 4 486
217 11 25 3T, 47 4.531
218 13 26, 3% 4.146
219 15 26, 35t 4.2
220 17 26, 36t 4.146
221 19 26, 36T 4.146
222 local exponential T 18, 24, 311, 36,49 9473
223 {within-class) 9 25 374,48 4 486
224 11 25 3. 47 4.531
225 13 25, 36t 4011
226 15 26, 36t 4.146
227 17 25, 36t 4011
228 14 26, 36F 4.146
220 local logarithmic 7 19, 24, 37, 40, 49 4933
230 {transitional) 9 194, 24, 37, 49 4357
231 11 2, 37%, 49 4274
232 13 24, 38%, 48 3788
233 15 M, 31% 2081
234 17 23, 31% 2963
235 19 30 2173
236 local exponential 7 194, 24, 37, 40, 48 45045
237 {transitional) o 194, 24, 37, 40 4357
238 11 M 37, 47 4.358
239 13 24, 38%, 49 3764
240 15 245 1466
241 17 23, 31% 2963
242 19 T 2319

tThe global minimum.

Figures 15 and 16 show a comparison of object—background partition {i.e. ¢ =2)
as obtained by the thresholding with highest f§ (= 2422) value, and HCM,/FCM
{ f=2.198). Both visually and by § values the segmented version in figure 15 is seen
to be superior to that of figure 16.
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Table 3. Thresholds based on fuzzy geometry and § values.

Optimizing Window Threshold
Serial no. property size (w) values 1 value
il compact ness 7 2% 2422
32 a 32t 2422
33 11 2t 2422
i4 13 2t 2422
is 15 32t 2422
io 17 izt 2422
i7 19 it 2319
iR 1OAC i) it 2319
9 9 ot 2173
30 11 £l 2173
EN 13 it 2319
312 15 it 2319
313 17 it 2.319
ENE 19 it 2319

tThe global minimum.

Table 4. Thresholds based on probabilistic entropy and [ values.

Kind of Form of Threshold

Serial no. information grain function values fF value

4. global logarithmic 20, 26 1603

42 global exponential 19, 26, 34% 4.208

43 local logarithmic 20% 1.149
{within-class)

44 local logarithmic 19, 24+ 1.475
{ transitional )

45 local exponential 19, 35% 272
{within-class)

4.0 local exponential 19, 23%, 37 1579
{ transitional )

+The global maximum.

Figure 17 demonsirates the variation of maximum value of §, obtained over
different methods, for e=2, 3, 4, 5,6, 7. As expecied (mentioned in §3), the § value
increases with increase in ¢

Let us now consider figure 15, which has highest § value among those with
¢=2, for object—background classification. Here the threshold is seen to be 32,
distinguishing object region containing water body and city area from the back-
ground containing habitation, vegetation and open spaces. Interestingly, it is seen
from the correlation-based segmentation results (table 1) that the segmented images
with a threshold at or around 32 usually posses high § values. This indicates the
significance of the said threshold.

From tables 1 and 2 it is seen that the thresholds corresponding to global
correlation and global entropy measures for w=9 and 11 are almost identical. ( Note
that thresholds 24, 31, 37 and 47 correspond to the boundary between water body,
city area, habitation, vegetation and open spaces.) Similar is the case with transitional
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Figure 10. Segmented Calcutta (IRS) ima

oz with highest § (=9949) value and ¢= 5.

il

Figure 11. Segmented Calcutta (IRS) image with lowest [ {=4.357) value and ¢= 5.
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Figure 12 ":‘,L.mbm‘:d Calcutta (IRS) image using FCM when ¢ =5, = 5.880.

Figure 13. Segmented Calcutta (IRS) image using HCM when ¢= 5, i= 5171
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=4,

Figure 15. Segmented Calcutta (IRS) image with highest {7 {=2422) value and ¢ =
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Figure 16. Segmented Calcutta (IRS) image using FCM/HCM when ¢=2, fi= 2198,
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Figure 17.  Variation of maximum value of §f with the number of classes.

correlation (table 1) and transitional entropy measures (table 2). Further, the thresh-
olds obtained by two gain functions are seen to be almost similar for both global
and local entropy.

In the case of lOAC and Compactness (table 3), interestingly . only one threshold
in the range 30-32 is obtained irrespective of the window size. Although the method
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produced only one threshold, its importance s evident from figure 15 where it is
seen to clearly demarcate the silhouettes of the objects present in the input image.
This may be due to the incorporation of spatial ambiguities in the optimizing
function. Note that this important threshold is missing in all the cases in table 4.

From the previous discussion we therefore see that § values provide a good
guantitative index for measuring homogeneily in segmented regions. For a fixed ¢,
its values increases with the quality of segmentation. Fuzzy set theoretic approaches
are better than the probahilistic entropic methods. This may be due to the fact that
fuzzy approaches described here exploit the ambiguities {both in greyness and in
spatial domain) of the image in an effective way. Among the fuzzy techniques, fuzzy
eeometry based optimization (which basically optimizes the spatial ambiguities) is
seen Lo provide a single threshold, over a wide variation of window size; which is
able to segregate the basic structures in the image well Surprisingly, the global
information based fuzzy correlation and fuzzy entropy measures provided beiter
performance { higher § value) for exiracting the structures. Among the local informa-
tion based techniques, within-class fuzzy correlation based algorithms, showed an
upper edge. From all the results obtained by thresholding algorithms, it therefore
appears that fuzzy correlation and fuzzy entropy using global information (with
w=9 and 11} are the best optimizing criteria from the point of possessing f§ value
and detecting the structural details (figure 10).

Let us now consider the Bombay IRS image (figure 5). Figures 18 and 19 depict
the segmented images [or highest (= 18.308) and lowest { f=11.243) § values for
¢=3. For the purpose of comparison we also consider the results of FCM (figure 20

Figure 18. Segmented Bombay (IRS) image with highest (= 18.308) value and ¢=5.
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Figure 19. Segmented Bombay (IRS) image with lowest [T (= 11.243) value and ¢= 5.
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with fi=15815) and HCM (figure 21 with = 16.056) for ¢=35. Like the Calcutta
[RS image, the f§ value reflects the guality of segmentation. The details of linear
structures (railroads, airport runway, etc.) are seen to be more prominent in figure 18
(with highest f value) than others.

As in the case of the Calcutta IRS image, here also 10AC and Compactness
resulted in a single threshold for all the cases irrespective of w. However, the threshold
obtained by I0AC is diferent from that of Compaciness. Among the diferent
segmented regions for ¢ =2, IOAC has highest § value. Here the threshold at 19 is
seen to discriminate the water body well from the land.

Finally, we consider the Calcutita SPOT image (figure 6). Figures 22 and 23
depict the segmented version for highest { f#=9.375) and lowest (§= 6.467) values of
f# obtained over all the thresholding methods for ¢= 5. Comparing them with FCM
(figure 24, f=06.388) and HCM (figure 25, f=6.676) we see that the details of
structure in figure 22 are more prominent. This also strengthens the fact that § values
provide a good guantitative measure of image segmentation.

7. Conclusions and discussion

Fuzzy thresholding provides a useful segmentation technique for remote sensing
images. fi provides a good quantitative index for image segmentation. For a given
¢, the higher the value of fi, the better is the homogeneity within the segmentated
regions. The maximum value of § for a given ¢, increases with ¢

Among the various thresholding techniques, fuzzy correlation provided the best
performance, followed by fuzzy entropy as far as § value and the detection of various

Figure 21. Segmented Bombay (IRS) image using HCM when ¢ = 5, fI= 16056,
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Figure 22.

Figure 23. Segmented Calcutta ( SPOT) image with lowest ff {= 6467) value and ¢=35.
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Figure 25 Segmented Calcutta {SPOT) image using HCM when ¢= 3, = 6.670.
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land cover types are concerned. Note that membership functions corresponding o
w=9and 11 satisly the criteria of bounds of Murthy and Pal{1992a). Fuzzy geomeiry
based techniques which incorporate spatial ambiguities produced single and almost
stable thresholds irrespective of the window size. Overall, the study indicates that
fuzzy set theoretic techniques mostly have an upper edge over the non-fuzzy
techniques.

FCM provided superior performance to HCM. The time requirement of a thresh-

olding technique, on average, is seen to be of the order of $i5th of HCM and wth

of FCM. The possibility of producing betier resulis by thresholding as compared
with clustering methods is not ruled out. For example, the segmentation produced
in figure 10 is much better than those in figures 12 and 13 as far as the extraction of
both regions and structural details is concerned.
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