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algorithm is shown to outperform the one-dimensional

(1D) Laplacianfaces, the 2D Eigenfaces and Fisherfaces

methods.

2. The 2D Laplacianfaces

In this section we first provide a detailed description

on the proposed 2D Laplacianfaces algorithm, and show

how it differs from the standard Laplacianfaces method

We then describe its utilization for feature extraction and

classification.

2.1. Idea and algorithm

Let X denote an n-dimensional unitary column vector.

A represents an image of m rows and n columns. In the

1D Laplacianfaces method, the sample image, A, has to be

transformed to form a vector of m × n dimensions prior to

training. Instead, in the new algorithm, the 2D Laplacian-

faces method, we project the image matrix directly onto the

vector X:

Y = AX. (1)

The obtained m-dimensional vector Y is called the pro-

jection feature vector, which is the horizontal projec-

tion of the image A. Given a set of training images

T = {A1, . . . , Ai, . . . , Aj , . . . , AN } the objective function of

the 2D Laplacianfaces method is defined as

Min
X

∑

ij

‖Yi − Yj‖
2Sij , (2)

where Yi is the projection feature vector corresponding to the

image Ai, ‖ · ‖ is the L2 norm and Sij is the similarity be-

tween the image Ai and Aj in the observation space and is de-

fined as

Sij =
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exp(−‖Ai − Aj‖
2/t) if xi is among the k

nearest neighbors of xj , or

xj is among the k nearest

neighbors of xi,

0 otherwise,

(3)

where k is the size of the local neighborhood, and t is the

window width determining the rate of decay of the simi-

larity function. As shown in Eq. (2) the objective function

imposes a heavy penalty if two arbitrary neighboring sam-

ples Ai and Aj in the original space are mapped far apart.

Minimizing this function ensures that if Ai and Aj are near

each other, their projection feature vectors Yi and Yj are

close to each other as well. Therefore, the locality of the

sample space can be maximally preserved when the original

data are transformed to the feature space through projec-

tions. By taking several algebraic steps, the 2D Laplacianfaces

method is formulated to minimize the following objective

function

Min
X

∑

ij

‖Yi − Yj‖
2Sij

=
∑

ij

‖AiX − AjX‖2Sij

=
∑

ij

[XT(Ai − Aj )
T(Ai − Aj )X]Sij

= XT





∑

i

AT
i Ai

∑

j

Sij −
∑

ij

AT
i SijAj



 X

= XTAT(D − S)AX

= XTATLAX, (4)

where AT = [AT
1 , . . . , AT

N ] and A = [A1, . . . , AN ]T take the

mathematical operations as the 1 × N and the N × 1 block

matrix, whose row and column consists of the image matrix

AT
i and Ai , i = 1, . . . , N , respectively. D is the N × N block

diagonal matrix, whose diagonal element is dii , dii =
∑

j Sij ,

which is the sum of the similarity values of all the sample

images to the ith image in the original space. S is the similarity

matrix, and L is called the Laplacian matrix. Both of these two

matrices are of N × N dimensions. The entry of the matrix D

indicates how important each point is. A constraint is imposed

as follows:

XTATDAX = 1. (5)

Hence, the 2D Laplacianfaces method is formulated as

Min
X

XTATLAX,

s.t. XTATDAX = 1. (6)

In Eq. (6), the matrix D provides a natural measure on the im-

portance of the training samples. In the original data space, the

outlier samples have fewer close neighbors than those in the

regions of high density of distribution. Some distortion of the

local geometry near around these outliers after transformation

is unlikely to have the significant impact on the result of classi-

fication. Hence, they are less important than those samples that

have more close neighbors in determining the optimal direc-

tions of projection. In Eq. (6), by using the constraint, we are

able to not only remove the arbitrary scaling factor of the pro-

jection vectors, but also take into consideration the importance

of each sample for optimization [1].

By applying the Lagrange multiplier method, we are able

to reduce Eq. (6) to a generalized eigen problem, as shown

in Eq. (7)

ATLAX = �ATDAX, (7)

where the matrices ATLA and ATDA are both of N × N

dimensions, and L and D are symmetric and positive semidefi-

nite. We can work out the optimal projection vector X by solv-

ing this equation. The eigenvectors associated with the first d

smallest eigenvalues will be utilized for feature extraction.
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2.2. Feature extraction

Let us denote the optimal projection vectors as X1, . . . , Xd .

For a given input image A, let Yi = AXi, i = 1, . . . , d. A set

of the projection feature vectors, Y1, . . . , Yd , can then be ob-

tained. Note that the features extracted in the 2D Laplacian-

faces method are vectors, while in the original algorithm they

are scalars. The projection vectors are used to form an m × d

matrix B =[Y1, . . . , Yd ] called the feature matrix of the sample

image A.

2.3. Classification

After obtaining the feature matrix of all the training images,

the one nearest neighbor classifier is then used for classifi-

cation. The distance between any two feature matrices Bi =

[Yi1, . . . , Yid ] and Bj = [Yj1, . . . , Yjd ] is defined by

d(Bi, Bj ) =

d
∑

p=1

‖Yip − Yjp‖. (8)

Suppose that the feature matrices are B1, . . . , BN and each of

these samples is assigned a class label C. Given an input testing

image B, if d(B, B1) = min d(B, Bj ) and B1 belongs to class

C, then B is classified as belonging to C.

3. Experimental results

In this section, we experimentally evaluate the proposed

2D Laplacianfaces method on two well-known face databases,

FERET and AR. The FERET database is employed to test the

performance of the face recognition algorithms when various

numbers of samples are selected for training, while the AR

database is used to assess its performance when the face im-

ages are taken with the variations of illuminations, facial ex-

pressions and time sessions. The experiments are performed on

a Pentium 4 2.6 GHz PC with 512 MB RAM memory under

Matlab 7.1 platform.

3.1. Results on FERET database

The FERET face image database is a result of the FERET

program that is sponsored by the US Department of Defense,

through the Defense Advanced Research Products Agency

Table 1

Top recognition rate (%) and number of components used

Method Number of training samples of each class

1 2 3 4 5 6

Eigenfaces 69.5 (64) 73.6 (77) 81.8 (78) 87.7 (55) 90.8 (48) 90.8 (72)

Fisherfaces – 75.3 (40) 83.6 (44) 89.3 (39) 92.2 (55) 92.7 (70)

Laplacianfaces 72.3 (66) 76.1 (45) 84.9 (50) 89.5 (42) 92.9 (60) 93.2 (60)

2D Eigenfaces 71.8 (2) 75.7 (2) 83.7 (3) 88.2 (4) 90.8 (3) 91.2 (3)

2D Fisherfaces – 77.5 (3) 84.5 (2) 90.6 (4) 92.4 (3) 92.6 (2)

2D Laplacianfaces 73.2 (2) 78.1 (3) 85.2 (3) 91.1 (2) 93.1 (2) 93.4 (2)

(DARPA) [9]. In our evaluation, we choose a subset of the

database that contains 1400 images collected from 200 indi-

viduals for examination. Specifically, seven facial images are

captured for each subject with varying facial expressions, poses

and illumination conditions. In the preprocessing stage, the im-

ages are histogram equalized, manually cropped and resized

from the size of 80 × 80 to 40 × 40, to further reduce the com-

putation and the memory costs of experiments. We perform

six tests with various numbers of samples for training. Hence,

in the kth test, we select the first k images of each individual

for training, and use the others for testing purpose. The top

recognition rates achieved in the six tests and the numbers of

the projection vectors used for classification are presented in

Table 1.

It can be observed that when we choose only one sample

from each class for training; the recognition rates of all the

six methods are about 70% on average. Of all the methods the

proposed 2D Laplacianfaces is consistently better than the rest

Also, we note that the Fisherfaces (1D and 2D) fail to construct

the within-class scatter matrix for feature extraction, as there

is only one sample in each class available for training. When

we increase the number of training samples from 1 to 6, the

recognition rate gets improved. When we choose six samples

for training and leave one sample for testing the recognition

rate reaches to its maximum of over 90% averagely. In all the

six tests, the proposed 2D Laplacianfaces outperforms the 2D

Eigenfaces and the 2D Fisherfaces, significantly and consis-

tently. On the other hand, we also note that all the 2D meth-

ods show better performance than the 1D methods in terms

of accuracy, which is consistent with the results obtained in

[4–8]. In Fig. 1, we show the average recognition rates of the

first 40 projection vectors used for classification. For each di-

mension, the curve depicts the mean average of the recogni-

tion rates achieved using the various numbers of samples for

training.

In Fig. 1, the 2D Laplacianfaces is consistently more accurate

than the 2D Fisherfaces and the 2D Eigenfaces methods. The

1D Laplacianfaces also outperforms the 1D Fisherfaces and the

1D Laplacianfaces. Here, we may note that for the 2D methods,

an optimal number of projection vectors have to be carefully

chosen in order to achieve the best result of classification. After

testing on the first several eigenvectors, we can hardly improve

the recognition rate by simply recruiting more projection vec-

tors for classification The reason why there is such performance

loss is that for 2D methods, the selected leading eigenvectors
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(with the largest eigen values for 2D Eigenfaces and 2D Fish-

erfaces, and the smallest eigen values for 2D Laplacianfaces)

are quite effective in explaining most of the discriminative

Fig. 1. Average recognition rate with varying dimension of projection vectors.

Table 2

Time and memory complexities

Method Complexity

Time (training) Time (testing) Memory

Eigenfaces/Fisherfaces O(m2n2L) O(MNL) O(m2n2)

Laplacianfaces O(m2n2L + mnN2) O(MNL) O(m2n2)

2D Eigenfaces/2D

Fisherfaces

O(n2L) O(mMNL) O(n2)

2D Laplacianfaces O(n2L + mnN2) O(mMNL) O(n2)

Table 3

Time and memory space used for training and testing

Method Average time (s) and memory cost

Time (training) Time (testing) Time (testing KDT) Time (total) Size of matrix

Laplacianfaces 977.22 4.86 0.14 977.36 1600 × 1600

2D Laplacianfaces 1.59 7.72 0.18 1.77 40 × 40

Fig. 2. Sample images for one subject of the AR database.

information of the training data; yet the remaining suboptimal

eigenvectors are far less informative and incapable of providing

further useful information for classification. The employment

of these vectors can only bring up more noises that reduce the

signal-to-noise ratio, which leads to the slight decreases of the

recognition rates.

In Table 2, we compare the computational and the memory

space complexities of the six methods. Here m and n is the

number of the rows and the columns of the image matrix. L, M

and N is the number of the projection vectors, the testing and

the training samples, respectively.

In Table 2, for the Eigenfaces and the Fisherfaces (1D and

2D), since we need to perform O(MN) tests when using the

nearest neighbor rule for classification and for each test it has

the time complexity of O(L) and O(mL), the testing time is

O(MNL) and O(mMNL) for the 1D and the 2D method, re-

spectively. The memory cost is determined by the size of the

matrices of the associated eigen equations, which is O(m2n2)

and O(n2) for the two types of methods The training time com-

plexity depends on both the size of the matrices in the eigen

equations and the number of the projection vectors that are re-

quired to be computed. For Eigenfaces and Fisherfaces (1D and

2D), this is O(m2n2L) and O(n2L), respectively. For the Lapla-

cianfaces method, an extra time cost to construct the similarity

matrix, i.e., O(mnN2), will be taken into account. Specifically,

for the 1D and the 2D Laplacianfaces, we present and compare

in Table 3 the CPU time for training and testing, and the size

of the matrices of the eigen equations.

In Table 3, while the 1D Laplacianfaces method takes av-

eragely 977.22 s for training, our proposed 2D Laplacianfaces

uses only 1.59 s Moreover, the size of the matrix is reduced

from 1600 × 1600 to 40 × 40, which significantly improves

the memory efficiency of the algorithm. We may also note

that the testing time of the 2D Laplacianfaces is 7.72, slightly
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higher than that of the 1D Laplacianfaces, 4.86 s. To improve

the testing efficiency of the algorithm, we can exploit the k-

dimensional tree (KDT) method [12] to accelerate the search-

ing process of the nearest neighbor classification. The KDT

method is a popular decision tree algorithm. It can recursively

partition the sample space into a number of the smaller subsets

for efficient pattern indexing and query. Given some input pat-

tern for matching, it transverses the tree structure while making

simple test at each branching node to discard a large portion

of the data, so as to speed up the searching process. The query

time complexity of the KDT algorithm is at worst O(MN) and

at best O(M log N), which is much lower than that of the sim-

ple kNN retrieval. In our experiment, by taking advantage of

the KDT algorithm [10], the testing time of the two methods is

reduced significantly from 4.86 to 0.14, and 7.72 to 0.18 s, re-

spectively, which makes 2D Laplacianfaces a practical choice

for real world applications

3.2. Results on AR database

The AR face database [11] consists of over 4000 face im-

ages of 126 individuals taken in two time sessions under the

variations of illuminations, facial expressions and occlusion

conditions. Each person has 26 images. In our experiment we

consider using a subset of 14 images of each person for train-

ing and testing. Fig. 2 shows the selected sample images of one

subject.

In Fig. 2, the images (a)–(g) and (n)–(t) are drawn from

the first and the second time sessions, respectively. For each

session the first four images (a)–(d) and (n)–(q) involve the

variation of facial expressions (neutral, smile, anger, scream)

while the images (e)–(g) and (r)–(t) are taken under different

lighting conditions (left light on, right light on, all sides light

on). The images are manually cropped and scaled down to

Table 4

Indices of training and testing images

Data set Experiment conditions

Illumination Expression Time

Training set {e, s} {a, n} {a, b, c, d, e, f, g}

Testing set {f, g, r, t} {b, c, d, o, p, q} {n, o, p, q, r, s, t}

Table 5

Performance of three algorithms using image based projection technique

Experiment Top recognition rate (%) Dimension Classification time (s)

Expression 2D Eigenfaces 95.4 10 5.547

2D Fisherfaces 95.6 10 5.281

2D Laplacianfaces 97.8 4 4.765

Time 2D Eigenfaces 65.2 22 42.42

2D Fisherfaces 68.6 14 28.75

2D Laplacianfaces 71.5 4 17.66

Illumination 2D Eigenfaces 80.2 27 12.375

2D Fisherfaces 91.4 9 3.765

2D Laplacianfaces 93.7 3 1.975

50 × 40 pixel to reduce the computation and the memory costs

of the experiment in the preprocessing stage. We design and

perform three experiments to examine the performance of 2D

Fig. 3. Recognition rate over dimensions of feature vectors (expressions).

Fig. 4. Recognition rate over dimensions of feature vectors (time).
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Fig. 5. Recognition rate over dimensions of feature vectors (illumination).

Eigenfaces, 2D Fisherfaces and 2D Laplacianfaces under the

variations of facial expressions, time sessions and illumination

conditions. The indices of the images of each person used in

the three tests are listed in Table 4.

Table 5 shows the top recognition rate, the number of the

dimensions of feature vectors used for classification and the

testing time of the three algorithms.

It can be seen that the proposed 2D Laplacianfaces method

outperforms the 2D Fisherfaces and the 2D Eigenfaces methods

in all the three tests. It improves the recognition rate by 2.4,

6.3, 3.5% over the 2D Eigenfaces, and 2.2, 2.9, 2.3% over the

2D Fisherfaces, respectively. It requires fewer dimensions of

projection vectors and time to achieve the top recognition rate

as shown in column 5 of Table 5. Further, in Figs. 3–5 we also

show the relationship between the accuracy rate of the three

algorithms and the dimension of the feature vectors used for

recognition.

In these figures we can observe that the 2D Laplacianfaces

method can explain most of the effective discriminative infor-

mation with only a small number of projection vectors, as op-

posed to the other two methods where more features have to

be provided to achieve the top recognition rate. The 2D Lapla-

cianfaces is also quite stable and consistent in outperforming

the 2D Eigenfaces and the 2D Fisherfaces methods with vari-

ous number of feature vectors, as indicated in the figures.

4. Conclusion

In this paper, we developed the two-dimensional (2D) Lapla-

cianfaces method and applied it to the face recognition prob-

lem. The proposed method has the following three properties:

First, it can maximally preserve the locality of the geometric

structure of the sample space to extract the most salient fea-

tures for classification. The learned local patterns of the training

data are suitable for the neighborhood based kNN queries in the

projected low-dimensional feature space. Experimental results

on the two well-known face image databases, FERET and AR,

indicate that the proposed 2D Laplacianfaces is more accurate

than the 2D Eigenfaces and the 2D Fisherfaces that rely on the

global information of the data space for analysis. Second, by

taking advantage of the image based projection technique, 2D

Laplacianfaces is computationally more efficient than the one-

dimensional (1D) Laplacianfaces for training. Both the training

time and the memory efficiency of the algorithm are improved

significantly. The recognition accuracy of the 2D Laplacian-

faces is also better than that of the 1D Laplacianfaces as the

size of the matrix is small, enabling the full optimization of the

objective function. Third, the utilization of the KDT algorithm

is quite effective in speeding up the kNN query process. By

adopting the KDT method, the 2D Laplacianfaces is improved

to be not only more efficient for training, but also as competi-

tively fast as other methods for query and classification.

Finally, it should be pointed out that the application of our

proposed 2D Laplacianfaces method is not limited to the face

recognition problem. It can also be potentially utilized to ad-

dress many other types of problems in pattern recognition, such

as palm and finger print recognition, gesture recognition, audio

and video clustering, gene microarray analysis, financial time-

series predictions, web document classification, etc., where the

analysis of the high dimensional data is required.
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