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1, INTRODUCTION

The notion of a Hilbert module over a function algebra was introduced recently
by R. G. Douglas (ef. {3]). In this paper we study a class of finite dimensional Hilbert
modules over the algebra of bounded analytic functions on a domain 2 C C™. The
class of modules we study here have been investigated in a series of papers [1], [7], [8],
{9], and [10]. Our main objective is to determine when these modules are contractive,
and among the contractive modules, which ones are completely contractive, Recent
examples of contractive modules over A(D®) due to Parrot and over A(B?) cf. [8] and
[9]) which are not completely contractive ave in this class.

We show that each tangent vector v € T, 2 gives rise to a certain two dimensional
module over the algebra f72(£2). Further, these modules are contractive if and only
if they are completely contractive. This is an immediate consequence of the distance
decreasing property of the Carathéodory metric. Subsequently, we introduce the
notion of a matricial tangent vector, that is an element of T, 2@ M, and show that
each matricial tangent vector gives rise to & module of dimension 2n. However, while
the Carathéodory metric on the Th(AM; ) is just the operator norm, the analogue of
the Carathéodary metric on the matricial tangent space To(Mi)1 ® M. is smaller than
the usual operator norm (see. Example 2.1). For this reason, contractive modules are
not necessarily completely cantractive. ;

It turns out that the module determined by s matricial tangent vector V' =
= (Vi,...,Vin) at w € 2 is coniractive if and only if, the induced hnear map
p i H2(R2Y — My, p(f) = Ffw)(V) is a contraction. There is a norm on €™
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(10, Proposition 3.1] such that the set {Vf(w) : f € H®(2), ||fllec < 1} is a unit
ball with respect to this norm. Thus, the contractivity of the module is equiva-
lent to the contractivity of p : C™ — M,. Similarly, the complste contractivity
of such a module is equivalent to contractivity of pi¥) : H2 () @& Mg — Mpy,
p*}FY = DF(w)(V) for all k. There is a norm on €™ [10, Proposition 3.1] such
that the set {DF(w) : F € H*(2) ® My, ||F|lee € 1} € €™ is a unit ball with
respect to this norm. Thus, complete contractivity of the module is equivalent to
contractivity of g5} : €™F 4 M,,; for all k. An explicit description. of these norims
was a question raised by Paulsen [loc. <it.]. As & comsequence of our duality lemma
this norm is explicitly defined for a domain 2 € €™ In the particulat case when 2
is a product domain £ x f2a, for example, the norm is

(Emsgﬁ,w‘E'(Mh “ . “ap]

on T3 52 @ M.

In Section 2, we provide a functorial frame work for deabing with distance decreas-
ing norms and introduce the notion of a pullback and pushforward of 2 given norm
with respect fo a fixed family of linear maps, which obey & universal norm decreasing
property with respect to that family. Indesd, the usual Carahéodory and Kobayashi
norms are the classical prototypes of these constructions. These consttuetions enable
us to define norms on matricial (ec)tangent vectors (see Sections 2.1 and 2.3}, The
pullback and the pushforward norms are dual notions, as we esiablish in our duakity
Lemma 2.1.

The isgue of when eontractive modules of our class are completely contractive
now gets formulated as follows,

For a mairicial tangent vector V € T,,f7 ® Mn, we defire the injeetive tensor
product norm

(1.2 @ Mn,Ca,u) (€™, Cau )M, Il - Jlos)

as pullback norm. The contractivity of the Hilbert madule determined by V is equiv-
alent to Cy (V) < 1 {see Theorem 2.2).

The unit ball (Mg ); with respect to operator norm is a homogeneous domain and
has a transitive family of bi-holomorphic automorphisms acting on it. Thus, putting
the operator norm on the mafrix tangent space at the origin uniquely determines a.
nonm on the matrix tangent bundle of (A;);, by requiring these antomorphisms to
be isometries. Let us call this norm §. We define the pullback norm 8¢, where £ is
the family D) (w) (see 2.10), on the matrix tangent space 7,0 @ My, It follows
from the Corollary 2.5 that complete contractivity of the module is equivalent to the
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eondition
EL(V} Q éﬂ,w[v}‘

In other words, the question of contractivity implying complete contractivity “lin-
earises” for our class of modules, that is, depends only on derivatives of functions
in H(2) ® Mi. More precisely, complete contractivity follows it for all F €
€ Hol, (12, (Mg)1), the map

DF(w): (1,2 @ Mg, Caw) = (Tu(Me) & Ma, E),

{see 2.16) is norm decreasing.

We would like to view this as generalised Schwarz lemma. A result due to Yau [14]
provides a fairly general Schwarz lemma under curvature hypotheses on the domam
and target manifolds. In analogy with this resuit, one should seek geometric conditions
on the various different norms on the matricial tangent spaces of the domain and
target. We note here that, as opposed to the situation in [14], our tangent spaces are
matricial and the norms involved are not necessarily Hermitian, Kahler etc., and so,
for example, a suitable notion of curvature would have to be found for such Schwarz
lemma. For instance, the evidence in support of such lemma is Ando's theorem stating
that contractive modules over A(D?) are completely contractive.

In Section 2.6, we introduce the notion of a norm decreasing metric for matricial
tangent vectors. Let X5, and Cp, be the Kobayashi and Carathéodory metric
respectively, It is shown that among all such metrics, the injective tensor product
norm

((Tu ﬂ, Gﬂ,w}@{#“’{n ' QP}L

is the smallest while the projective tensor product norm
{(Tw ﬂ', I{ﬂ,w)é'(Mﬂ: DI):I},

is the largest such distance decreasing metric. In s recent paper [1], J. Agler has
reproved Lempert’s theorem, which states that the Carathéodory and the Kobayashi
distances are the same for a convex domain 2. However, using Parrott’s example,
it is easy to see that for the tri-disk, the two extremal metrics for matricial tangent
vectors we have obtained do not agree (see Remark 2.4).

1.1l. Tangent vectors

Let £ be a bounded region in €™ and w = (w1,...,wm} in 2 be an arbitrary
but fixed point. In what follows, it will be usefnl to think of a vector v in €™ as an
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element of the tangent space T, {2. For any pair of complex scalars & and 3, let

(L) v(g.a)= 5 8 | emicc)

0 o
and given a tangent vector v = (Vy,. .., tim) in T2, define the commuting m-tuple
(1*2] N(U,W] = foﬂh M‘]‘.}, = 1N(vfne-'wm]:|

Let ¥(w) be the germs of holomorphic functions at w. As usual a tangent vector v in
T..82 acts on any f in &(w) by the rule

a(f) = (Vf{w),v).
It is not hard to see that the map gy - Hw) — M3(C) defined by

(1.4} _ e (£) E F(N (v, 0)) = N((f), £())

is a continnous algebra homomorphism coinciding with the evaluation map on
Clz1,...,5m] (¢f [7, Proposition 2.2.3]). We can think of €? as 2 module over
#(w} via the action m : ¥{w) x £* — 2

{1.5) m(f,)=pn(F)-v. fed(w) and reCE

We will write Ef.’ﬁ” iy for this module. Thus, each tangent vectar v in 7,42 determines
a module C%,, ., over ¥(w). In particular, Clio e 18 also a madule over H=(R),
the algebra of holomorphic funetions on 2. 'We wish to determine, when the module
Cﬁ;cvle is contractive over H°°(), that is, to determine the set .

(1.6) Tow={v€ T2 :|Im(f,v)lles € [Iflfeclvlle} =
={v € 7.2 : llon{Hllop € 1. f: 22 ~ 21D holomorphit},

where ¢l D is the closed unit disk in C.

ReEmark 1.1 Note that, by the maximum modulus principle, I'np,. does not
change, if we use the open unit disk D as the target space in 1.6.

We wil consider later more general modules determined by what we call matricial
tangent vectors.

The following notation will be very convenient. For fixed w in £2 and any domain
A containing 0, we let,

(1.7) Hol, (2, A) = {f : £ — A is holomorphic and f(w) = 0},
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(1.8) Hol“({A, )= {f : A — 2 is holomorphic and f(0) = w},

and for a normed linear space X, we let (X}; be the closed unit ball in X. Note
that, any holomorphic function f : 2 —+ A induces a linear map f. : T, 22 — Ty 4,
defined by

{1.9) Folwy= (1) o(f™))

where (f,..., f™) = f. In particular, f.(v) = v(f) is in 750 for any f in Hol, (2, D)
and v in T, 2. 1t is not hard to see that [T, Lemma 3.2], C:‘,}["‘w} is conkractive if and
only if

(1.10) sup{[[N{f. (v}, Fw)Mllep : F € Holo (2,03} £ 1.
For any f in Hol. (2, D),

O .f»('i—']]
o0 0

(L.11) UNC (o), ) lop = EH | =1
: op

i
The Carathéodory length Cp (v} of a tangenl vector v in ¥, 12 is defined by the
formula

(1.12) Crw{v) = sup{[fu(v}] : f € Hol(12,D}},

and is a norm for any bounded domain §2 in ™. F follows that, if Ei,{vle i
contractive, then the Carathéodory norm of the tangent vector v in T, 17 is at most 1.
The indicatrix of 2 at w is the closed unit ball in T, Z with respect o suitable length
function on T;, 2. We will write the indicatrix with respect to the Carathéodory norm
as I'(Cpu). Note that,

(1.13) Paw= I'Cayu).
For our purposes, it will be necessary to introduce the dual objent
(1.14) Pw) L[V (W) : f € Hol,(2,D)}

However, the fact that Pi{w) = I'(C; ) will be established in Section 2.6.

We refer the reader to the survey article [5] for details on the Carathéodory norm
and the indicatrix. _

There are some natural modules that can be constmctad from f.‘?..r“, oy 28 Tollows.
Let H*({)) ® M; be the algebraic tensor product of H*(£2) and the linear space
of £ x k matrices, M. We think of an element of H*(2) @ M} as a M;-valued
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holomarphie function and declare its norm to be the supremum norm on 2. Unless,
we specify to the contrary, A, is to be thought of as a normed linear space with
respect to the operator norm. The homomorphism py ® I : 5 (12) ® M — Mo,
which we shall denote by pg.:f]'1 makes the &-fold direct sum, Cfﬂ:”le @ -@Ci,{“ w @
module over H™(2) & M; via the action

(1.15) (Fv) = (BWHF) v, v&€Chu® ®Chuw

where the dot on the right indicates usual matrix multiphcation. H F is in H=(Me
@My then F = [F¥]: 2 — M, and we have

(1.16) (AEAFM) = (NFD)] = (N (FI (v}, FF ()]

We say that the moduls ﬂ:ﬁ;{t ) is completely contractive if for each k, the map PF?:}

is a contraction. It will ba useful to think of Ef-,;(um &P C%‘,{u w) 38 module with
respect to a different but equivalent action. For any pair of linear transformations T
and A in Mg, led

A T
1T M A=
(117) @a={y 4l

By applying snitable row and column operations, we can write
(o WE) = NP (v}, 7 )] =

1.18 )
(1.18) _ [Fg») if;f;g*;?'}] = N(F.(3), F{w)),

where F, : T, 2 — T'p(, )M is the induced map.
Note that if we write F in Hol, (52, (M)} as

(119) F(Z]:{Zl —wl}Fi-i----—i—{zm -Wm}j"qm"i'"', Fp e M;
then
(1.20) Ful) = Ty 4+ 5 4 Bin P

The module structure on Eir(.w) & @ Ci’(v,w} aver H™(2) @ M; determined by
the action

(1.21) m%) : (F,u) — N{Fu(v), Flw))-v

is isomorphic to the original one, via a unitary module map. Thus, the contractivity
(A : i
2% is equivalent to that of mf*}, Once again, it can be shown [8, Lemma 1.6] that

'E 3 . . - r
P_E\l’j {or, for that matter m':j‘j} iz & comtraction 1f and ocly if

(1.22) sup{[iN(Fu(v}, F{w))ilep : F € Holu(R, (M)} € 1.
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HE F.‘Dl[v]”

The following is & version of Schwarz lermnma.

However, for F in Hol,(£2, (Mg)1)

(1.23) INV{Fu(v), F ) llop = = || B (@)} op-

Lemma 1.1, If 2 in €™ is the unit ball with respect to some norm [|-||g on C™,
then the indicatrix I'{Cpg) is 7.

Proof. Recall that, the indicatrix I'(Ciz o) is
F(Can)={vehfd: Gn,g{vj- £l}=

={oe T2 : {Vf(0),v} < 1, f€Hol(2,D)}.

Here, we think of ¥V f{(}} as a co-tangent vector in T3 2. One form of Schwarz lemma
(12, p.161], implies that ¥ f{0) is a linear function in Holg(2,0), that is, Vf(0) iz a
linear functional of norm at most 1 en (C™,|| - ||a). On the other hand, any linear
functional of norm at most 1 on (C™, || -{|q), is in Helg(2,D). Thas,

DA0) = {V0) : £ € Holp(£2,D)} = (€™ ]| - || h-

Tt now follows that Cg (V) < 1if and only if v is in {C™, ||-]|i ). Since, (C™, [|-|la)**
and (C™, || - l|a) are isometrically isomorphic, the proof is complete.

While the proof of the following theorem is not difficult, we wish to emphasize
that the statement of the theorem is equivalent to the distance decreasing property
of the Carathéodory metric.

Tueonem 1.1. Every contractive module E?\T{u,uj is completely contractive,

Proof. We have to show that for any v in I'pu = I'(Caw)
BRI <1, F € Holu(2, (Me)s).

The Carathéodory metric is distance decreasing, that is, for any holomorphic map
fi0-1,

Ca g o)) € Crult).
In particular, we have

Cimuno(Fa(v)) € Cawl(v)
A trivial consequence of the previous lemma is that, Cgo(v} = [lt]ln for any ball

((C™, ] - [l))s. In particular, Craq,y, 0(V) = ||V]|op, and for v in I'(Cg o), we have

[1Fe(2)ilop = Ciata)y 0o Ful2)) € Caulv) €
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The proof is now complete.

Let K be a compatt subset of C™ and A{Int K}, be the algebra of holomor-
phie functions on Int A, which extend continuously to K. Contractive modules over
A(Int K) correspond in a one to one manner to m-tuples of Hilbert space operators,
which admit K as & spectral set (cf. [3]). Recently, J. Agler has introduced the no-
tion of a spectral domain for an m-tuple operators. Contractive Bilbert madules aver
H*{{2) correspond in 2 one io one manner tc m-tuples, which admit £ as a spectral
domain. Thus Theorem 1.1 is the limiting case of Theorem 1.9 of {1]. While, Agler
suggests that a proof can be obtained by ﬁfuitiug arguments, we have included a di-
rect proof of Theorem 1.1, bath to introduce some basic techniques and to emphasize
the complex geometric language.

2. MATRICIAL TANGENT VECTORS

In this section, we consider modules determined by matricial tangent vectors,
that is, an element V of 7, Z @ M,. Note that, we may write V € T, 2 ® M,, either
as

ki
(2.1) V=3 WeE; eln,
=1
whete, E;; is the usual matrix unit, or by setting V' = [ufj]. we have
i
(2:2) V=3 aeV, V'eM,
i=1
where, e is the standard basis vector in C™. If f : £2 == 2 is holomorphic, then the
induced map fo ® In : T2 @ My, — T,,82 ® My, is defined by

foL)V)=(f.0h) (Y aeV)=
=Y fle) @V = Y (VA (), e)i:) e V.

If fi = (E%f) (w), then

(2.3)

(2.4) (LX) =% fev.
For V in T, @ M,, we will write £.(V) instead of (. ® L)V). The map
o 2 Bw) — Mo (C), defined by (see, 1.2 and 1.17)

() E FN Vw1, L), N (Vi ) =

(2.5)
= N{f(V), flw)]),  Fe€dw),
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is a continuons algebra bomemorphism [2, Proposition 2.3, coinciding with the eval-
uation map on polynomials. Let €37,y be the module over H™(2) determined by
this action. As before the E-fold direct sum, Gﬁ«‘}“w}$ - ~$C:ﬂ}v.w} 15 a module over
H*™(2) ® My, via the action determined by

DR = [FUNViwidn))y - o, N(ViwmIn)] =

(2.6) = [N(FI(V), FFHw)l. ),

where, F' = [Fi" is in H®(2) @ Mj. However, after euitable row and column
operations, we find that

(AN = (N(FIV), () Ta)] >

(2.7 LeFfw Fiv) :
- [ . Lo F(W]] = N{F.(V), I, ® F{w));

FV=FRi@WVi+ -+ Fm®@Vpn, where Fi= (65

TF-”) {w) (see 2.4).
Thus, for F in HF°°(12) & My and v in Ei}‘[vle s O < Cfﬁ:vm, the module structure
on the k-fold direct sum of Eifﬂ(".w} determined by either of the actions 2.6, or 2.8,
are somorphic. We will without loss of generality, consider the k-fold direet sum of
Ciﬁ: v,w) 88 amodule over H%(2)@ My via the action induced by N{ Fu(V), L®F(w)),
and set

(2.8) (A)F) = N(F(V), I ® F)).
Even in this generality, it can be shown that [, Lemma 3.3], pﬁ} is eontractive for
aay & = 1, if and only if

sup{ || N (Fu(V), O)llop : F € Holy(£2,(Ma)1)} =

(2.9)
aup{[|Eu(V)ilop : F € Holu (2, (Mi)1)} € 1.

QuesTioN 2.1. When is a contractive module C3fty, , over H™ (2}, completely
contractive?

Remank 2.1, To answer this question it would be helpful to define
(2.10) DO (W) E(DF (W) : F € Hol, (82, (Mi)1)}.

It turns out that D) (w) is & unit ball with respect to some norm {cf. [10, Propo-
sition 3.1]}. We will later determine this norm explicitly (see Corollary 2.1 and 2.2).
For a fixed but arbitrary mairicial tangent vector V € T, i2 ® M, set

HOE £V, and PRV E R(V),
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for f € H*(f2), and F € H*(02) @ M, respectively. Questiop 2.1 is answered by
determining the norm

(2.11) 1™ = sup{{lp(F)fjop : F € Holu(£2, (Mi)n)}]-
First, we consider the case k = 1 and try to describe the zet (recall 1.6)

(2.12) Touw={VeT 26 M,: llew(fHllop £ 1, f: 12 — D is holomorphic} =
‘ = {V € T.Q® Ma : [[£o(V)llp < 1, / € Holu(2,D)}.

To imitate the proof of Theorem 1.1, it wnu]a then saem na.tﬁral tt-} define
(2.13) Cowl(V) = sup{lf(V)llop £ € Holo(2,D)}.

It turns out (see proposition 2.2), Cn (V) is distance-decreasing. However, the
following simple example, shows that C‘; i, o{ V), is not always equal to ||V]|qp.

ExamrPLE 2.1. Let

¥ W,
V= [ 11 11] o
Vo, Vas

[ e R = R
[ — R = i =
L B = R = =]
L= =T = N

Note that, ||V]|ep = +/2, while

3. a;ﬂ’u‘i erle]T € 1} :

ii=1,2

Cau(V) = sup {

If 2 and y are unit vectors in C? then

<( }: d'l',jp;,j) ﬂ.v) = tr(fa;][{Vizz, w}]°)-

if=1.2
Since ||[{Vi;2, 1)]* llop < 1, it follows that Cp (V) < 1.
2.1. Pullbacks

Let V be a finite dimensional vector space and W be a finite dimensional normed
linear space. Let £ C Hom(V, W) be some family of linear maps. Define & function
-1l v =Ry by

(2.14) [[u]]e = snp{}| Lo : L € £}
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It is clear that
llevlle = leflivlie, «eC,

and
o1 + w2|le = sup{||[Lvy + Lus|| : LE L} £

€ sup{||Luall + [Zuzl : L € £} € llmlle + [velle

slnge

NLvel| €lleelle fork=1,2and L& L.
It is easy to see that [J{ker L: L € £} = {0} if and only if || - ||¢ is a norm.
PROPOSITION 2.1. Let us assume that || - ||z is & norm. Then
{v:lille <1} = (VL7 (w: [lwl| < D},
Let
where {w : {|lw]| < 1} is the unit ball m W.
Proof.

lolle 1 [ Lol| € 1forall Le £ &
e Llve{w:|lw|<llforallLel o
wvel Hw:||lw|<1}forall LE L

SvE ﬂ L™ w : Jho]| £ 13
Let

2.2. Examples of L, where || - ||z is a norm

ExaMprLE 2.2, Let
W= Th(Mp) = (M), 0p,
V=T, and
L ={DF(w): F € Hol, {12, (M)1)} C Hom(V, W).

Then | - ¢ is 2 norm.

It is enough to show that for some v € T,f2, v # 0, there exists F in
Hol, (2, (M )1) such that DF(w)(v) = F.(v) # 0.

So take a linear functional A : T,(f2) — C such that A(¥) # 0. Say A =
={A1...Am). Then the linsar map

O e OO R R v T
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satisfies A(v) # 0. If we define F by
ﬁl{z} = i{{z = L""]] = (zl == L“'ljfll"ll:"-‘] e (zm = Wm)}'mldj

then 7 & Hol (C™, M,), and clearly DF(w) = X. However, ¥ does not necessarily
map 2 into (M), Since 2 is bounded, we can take C = lg%xlf‘(zjl < oo, and

1 : = =
P = - F satisfies DF(w)u = %DF{W]U - %A{ﬂ] £ 0. So we are done,

Let X and Y be finite dimensional normed vector spaces. It is possible to con-
struct various norma on the algebraie tensor product X ® ¥ using the norms on X
and ¥. One way is to iniroduce & norm, which is independent of the representation

n .
of the equivalence class ig to assign to Z £ ® 1 the norm it receives when regarded

i=1
as an operator from X* to ¥, that is

) )
3 a txlys‘[ = EUP{
i

=1

(2.15)

Z“:‘P(ze]yrﬂ P €X”, ol = 1}.

i=1
The nerm || - ﬂ is called the injective tensor product norm.
ExamrLE 2.3, Let

W - Tﬂ[Mk]_l @ (Mﬂ} = (Mkmap)r
Vo= T,(83) @ M, and
£= {DF{w)@ld: F € Hol, (12, (M)}

For any botinded domair {2, || - ||z is a norm as well.
The following is true for vector-spaces of finite domension. Suppose L: Y — W
then for a fixed vector apace X, consider

(L) :VeX -WeXx

and note that
C-skerL = VEW

15 exact and &X is an exact functor
b (ker D)@ X VX T wex
is also exact. So ker(L ® Idyx) = (ker L) ® X. Thus,

(ker{DF ® ldx : P € Boly (2, (My)1)} =
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={ Hker DF : F € Hol (2, (M }1)} ® X = 0.
hy the preczeding example.

REMARK 2.2, This exampls sugpesta the following definition. For ¥V € V, let
= def
(2.16) Chu(VIZ Ve,

where £ is the same set of linear maps as in the preceding example, Note that for
m 2 2 we can not apply the maximum principle to conclude that: the norm C¥% "
does not change if we use only those holomorphic function on §2 which take their
valves in the.cpen unit ball of k x k matrices {recall Remark 1.1). However, given
any r > 1, we observe that,

Hol,, (2, (M4)]) € Holu{£2, (My)1) C Holy (2, r{(M)}).
H we call these families £9, £ and »£7 then the corresponding norms satisfy
eileo M- lte <1 - firee = 7l - lle,

for all » > 1 and we have equality everywhere, by letting » — 1. Thus, Cg , is the
same whether we use an open or closed matrix ball as the target, The above family
£ gives a sort of Carathéodozy norm with respect to Hol,(f2, (My),) for matricial
tangent vectors a8 ||- || o (compare 2.13). We obtain the usual Carathéodory norm by
takingn=4=1.

The next proposition about || - ||z is a universal functorial property that charac-
terigses || - |l

DeriviTION 2.1. We say some arbitrary norm ||-||q on V is L-distance decreasing
if £ (L(V, W), that is

1] < livfla  for all L € £.

Frorosrrron 2.2, ||-||g 75 the smallest £-distance decreasing norm on V.

Proof. It 1s trivial to check that || - ||z is £-distance decreasing by definition.
The norm || - |5 is L-distance decresing if and only if

Mol € |l forall L€ Lve V.

Equivelently, sup{|[Lv]| : L € £} £ |iv|lq, that is, ||v]|e € ||2]ia.

The least distance decreasing property of various Carathéodory norms (Examples
2.2 and 2.3} follows for halomerphic maps {see 2.22 and 2.24).
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2.3. Pushforwarda

There is a dual notion to {| - ||z, namely || - [I°, which is defined as follows.
As before, let V and W be finite dimesional vectar spaces with a norm on W

with the only difference that £ € Hom{W, V). Define a function || - He .V — R, by
aih A" = inf{jlul}: Lp=Aforsome Le £, pe W} =

i
inf{flull : 4 € £71(N)}, where £7HNE| JZ1N): L e £},

for X € V.- If no L with Ly = ), exists, define ||A||* = 0 note |J0[i* = 0, and also for
c# 0,

[eM|* = inf{||uf| : Dyt = ) for some p € W and L€ L} =
= inf{lci }-#“ e (}-p.) for some L £ C, l,u e W} =
e | e e

. 1 1 1
= |e| inf oM : L oH for some L € L, oH EW: =

= Jelinf{|] : L(s) = X, o' €W, L € L} = eI

ExaMPLE 2.4. Let W=Ty(B), V =T, (2), and
L= {Df{0): f e Hol* (D, 5}

Note that the nerm || - ||* is the Kobayashi norm Kp ,, on T{f2) (<. [5]).
We now find sufficient conditions on £ so that |} - [[© is a norm.

HyroTaESIS 2.1. W list, for £ € Hom{W, V) the following conditions
(i) there exists a distinguished vector J € W with ||Ji| = 1 such that for each
# € W with ||u|} = 1, there exists a linear endomorphism (of W) B, which is of
operator norm 1 and B, {J) = u.
(i) If L& Land R, asin (i) then Lo R, € £.
(iii) For any X € V, there exists L € £, x € W such that

Lp=X and [}l = [isll

(iv) £ is convex, that is, for oy, c3 € By, L1, Ly € £ we have

1L +eals
¢1 +¢x

ProposiTION 2.3. If £ satisfies Hypothesis 2.1 and J € W be the distinguished
unit vector guaranteed by (i), thereof, then



CONTRACTIVE AND COMPLETELY CONTRACTIVE MODULES 6T

() for any X € V, there exists an L € £ with L(cJ) = X, where ¢ = ||A]|*.

(&) |- Ji* is 2 norm.

Proof. (a) By (iii), there exists g such that ||g|| = ¢ = ||A|| and Zp = . But
iy is a unit vector, so %# = Ry(J) by (). So p = eR,J = Eu{cJ). But then
Lp=(LoR,){eJ) and by (ii) Lo Ry € £. So we are done. By definition ¢ = ||A*.

{b) By part (a), there exists L € £ such that

L(eJy =X and |ef = Y| = [IM]*.

So ||M}¢ = 0, which implies ¢ = 0 and in turn A = 0. Thus || - ||© is positive definite.
To prove triangle-inequality, again by Proposition 2.3 for Ay, A2 € V, there exists
1,07 & Ry with
Li(ey =M and & =||A)° >0
But then
I:C1L1 -+ ﬂ'ng:I{J:I ” AL+ Ag
(ex+ea)  (en+eq)

eiLi(J) =

But L =

c;iz *+02L2 ¢ £ by (iv) of Hypothesis 2.1. This means
e

s + Agl|©

R WTH = 1= |20 + Xall® < e+ 2 = [l + [|24]

This completes the proof.

PROPOSITION 2.4. Let £ satisfy Hypothesis 2.1. Then the unit ball of || - ||* is
described by

Pev:ME g =L{peW: lul < 1}E | W)

LeL

Proof. If ||A]|€ € 1, then
A= Ly for pe W and (Juf = [M< < 1

by (iit) of Hypothesis 2.1. Thus, A€ |J L((Wh).
Lel
Conversely, if A € |J L{{W})), then
Lec

A=LuforsomepeW, i land Lel,

which implies
inf{llull: Lu=2, peW. Lell<lul <1
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Thus, [Al€ < 1.
2.4, Examples of L satisfying Hyypothesiz 2.1

ExaMpie 2.5, Let £2 C C™ be a bounded domain, w € 2. Let

W = T3(D) = C (usual cotangent spaces),
V=T5(f2), and
£ = {{Df{w))" : where f € Hol,(£2,D)}.
On W put the obvious norm |- |. The family £ satisfies Hypothesis 2.1,
(i} of Hypothesis 2.1 is satisfied (for the distinguished vector 1 & C), sinee the

unitary group of 5" acts transitively on 5 = {@: |a| = 1}.
Note {Df{w))* (1) = A implies

Ao) = W(DFEN) = (2_ §—j:a:w)zr=-) = uwm
So that (D f(w))* is the linear functional

3 9 )
g (ﬁaf;,,,,,ﬁa—zfn:) on THQ) =V

by definition.
{i1) is clearly satisfied, for if & € Iso{W), e € C, and |o| = 1, then

(Dfw))* oa = D{af(w))* for f € Hol,(2,D),

and clearly, af € Hol, (12, D).
(iv) is satisfied since

€1 (D.fx{w}l*l i Z‘j(ﬂfzfﬁ*}]' = (Df{w))",

eifitexfs

h -
et ) +en

¢ = 0. But

(e1 +¢2]}Ei§|fd _3

Il <

c1+ &3

So f € Hol,(2,D).
It only remains to prove (iii). We have 1o use a normal family argument, which
applies to any bounded region 2 C ™.
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Let » = [|A]|*. Then it is not hard to show that there exists a linear map £ : €™ —
—C, fw) =0and z — 9 (2 ~ws)fy such that A = £(1). By choosing o satisfying

af : 2 —D, we get A = (af)* ( ) so that A = {D{af)}* (—) This shows that the

set £7()) is non-empty. So suppose given f € Hol, (52, D) with (D fi(w))*{se) = A
and |||} = # + e, € — 0. By extracting subsequence, since Hol,(2,D) is a
normal family, fi — f aniformly on compact sets for some f € Hol, {12, D) and so
D, — Df by Montel’s Theorem. Similarly, y; is a bounded sequence, so pz — g by
taking subsequence. Now,

X = (Dfe(@))" (ux) = (D))
and [jp]| = lim|[pk]] = r 4+ limey = r. This proves (iii) and we are done.
CoROLLARY 2.1. {A € T2(42) : [|4)}° € 1} = {Vf{w) : f € Hol,{2,D)}.
Proof. For any f € Hol, (2, D), using Proposition 2.4, we have

(A€ T2 4] < 1) = Lo ol < )=
= (r) W <1y = { (s wpl@) <1} =

={(Zup@n - glwne) -m<1f =
= {V(pf)w) : |u| €1},
which is clearly equal to {Vf(w) : f € Hol.(£2,D)}.

We note that for A = ) Ei; ® Aij € M} ® My, = Hom(Mp, M), we have
i

td

(DF(w)* @ [d)(4) = (Z s w)Aig, ... EEF” {W]Au‘) =

]

=AcDF(w)@ld.
We will in analogy with 2.8, write (DF(w)* ®1d) as 7.
EXAMPLE 2.6. Let

W= Hﬂm({Mﬁ 1 DF“): {Mi ' D]'.')} = (Mi ' tl‘]{il{M}, ) 'DP}:
V =T3{2) @ (M, op) & Bom(T,(2), Mi), and
£ = {(DFW))" : P € Bol(@, (M),)}.

Then £ satisfies Hypothesia 2.1.
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Since DF(w) is in Hom(7T.,(12), M;), and A is in Hom({M;, M,); we see that,
Ao DF(w) belongs to Hom(T, 2, M} = V. Furiher, if £2 is a bounded domain and
A iz a bounded set In C* then Hol,{f2, A} is an equi-continuous family of maps.
Furthermore, if every bounded subset of A is relatively compact then Hol, (2, A) is a
normal family {¢I. [13, Lemma 1.1(ii) and Lemma 1.4]). In view of Remark 2.2 and
the preceding comments. it follows that Hol, ({2, (My)1) is a normal family.

Froof. (i) If g € Hom{My, Mz} = W is an operator of norm 1, R.(Id) = g,
where R, : Hom{Ag, M) — Hom{A, M) is right multiplication by g, so the
distinguished element J can be taken aa Id € Hom( M, My ).

{(il} Suppose R, ¢ Hom(My, M) with ||Hullapep = [|#llep £ 1 then

(o R NA) = (B A)o DF(w)=Aepo DF(w) =
= Ao Dlpe F)w) = Ao DF'(w) = (F)(4),

where F' = o F. But F : 2 — (M)s and 56 Fllop < llliop, 50 ] < |, amd
F {2 = (Mg, This implies {ii).

(iii) Normal family argument, we won’t repeat the proof.
erFy +oaky {_421 Iyt Bt

N t(iv] Sinee prerur g , 3ame proof as previous example shows
a
Fy 4 eafly
P SRS ¢ Pol (00, (M)
D ¢ Holl (@, (Mao)

CORDLLARY 2.2, Lot W,V and £ be as in Example 2.6. Then

{A: A€ € 1} = {DF(w} - & € Hol, (2, (M )1 }.

Proof. Exactly as in Corollary 2.1, with the identity map in Hom{Mj, My)
replacing 1 as the distinguished alement J. Note that

- 8F  aF
F(Id}:(a?,...,gg;-).

DEFWNITION 2.2. An arbitrary nomm j| - ]|* on V is called £-distance decreasing
if for all £ € £ we have

[Lpeli® < J|esi]  Aor all g€ W

ProposiTioN 2.5. The norm |} -{|* s the Iargest L-distance decreasing norm on
V. (This proposition is dual to Propesition 2.2.)
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2.5. Duality principle

Let W be a normed linear space and W* be the dual linear space with the dual

norm. Let
(2.19) £ C Hom(V, W), sothat £* C Hom{W"*,\*),

where £* = (dual of £}, V* = dusl of V.

THEOREM 2.1 {Basic duality principle). Assume that ||-|lc and{| -H€* are norms.
Then (]| fle) = I -*"-

Proof. First we claim (- ]} < |- I*"

We recall Proposition 2.5 which says ||- || is the largest £*-distance decreasing
norm on ¥*. So it is just enough to show that {|| - j|2)° s £*-distance decreasing.

Let L* € £* (g0 L € £). Then for p € W*

NTTROY " S (¢ ) [{s, Lv}]
(HE"ule) h|§f|[£.s.‘l. Helle ;|us||1ig1 lelie

but |} - ||z is L-distance decreasing, so ivll: = ||Lzll. So

e e IO
(e < | T

Now, if [|vllc < 1, |Lv]] € 1, then [Lv:||v|jc £ 1}{:{wEW [hwf] < 1}. So that,

(1L el sup Hes, w)l E1ull (as an element of W

wligl [fael|
This proves what we wanbed.
Next, we claim
I le < q-N57Y
(This would show || - [t = [| - |I©7, the other insquality we need). We will show that
(1] - |I£¥" is L-distance decressing, and since || - |[¢ is least £-distance decteasing by

Froposition 2.2, we would be done.
Use Proposition 2.4, to observe that {”}”":* £ 1} =Lu: |l £ 1}

(H““L'r = sup HJ' “)l HL“P'}T"H >

= 5 r T
pieegs I~ pust, orece BE°HE #
s, L)

> . (because [|[L* gl < |jpll) =
luilgs, £ec Hull

= ||Lu|™ = ||Lo|| for all L € L
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Thus, {|Lo|| € |[v[|¢™ for all L € £.
This shows || - |7 is £-distance decreasing and the proof is complete, m

Remarg 2.3, This theorem generalises to any arbitrary famly £. In this situ-
ation || - |l and || - ||* are quasi pseudo norms respectively. This theorem therefore
contains Proposition § of [6] as a special case,

2.6. Distance decreazing metrics

Following Royden {11, p. 397], 2 hyperbolic infinitesimal metric of arder n is an
asignrment of a norm &g on the matricial tangent space Tp @ M, 2 C €™ such that

(2.20) p{w, V) = (1= {lf*)7HIV]lop
and for any holomorphic function 7 : 2 — 12,
(2.21) 655D, J(V)) € a0, V).

Note that if £%) = {DF(w)®@1d : F € Hol, (2,{Mg))} and § is hyperbolic infinites-
unal metric then § is £(1)-distance decreasing, that is, for all f € Hol, (£2, B) we have
I£e(VNlop < (V). Similarly, if Lgpy = {DF{w) @7d : F € Hol“{{Mu)y, )}, then
& is Lpyy-distance decreasing. Thus, in view of Proposition 2.5 and 2.2, we have the
inequalities

(2.22) Caw(V) < 8V) € Knu(V).
Further, if we define as in Example 2.3 (compare 2.16)
(2.23) Bh (VY E |V |Em,
where 5
W= (Tn(l:;"-ffj;}L)@'(Mn:ﬂP)j
V= waﬂj e {Mﬂ)
Loy = {(DF(0)@1d : F € Hol*({(My )1, 2}

then we have the following inequalities at the level of matricial tangent vectors

(2.24) Cowg - 5Ch, € <RE. << Knw

i
Note that the maps [ =5(AM});, defined by

P diag{z,...,2z) and (=) A 211
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satisfy 7 ad = [d. For f & Hol {0, 0}, define F = {0 f € Hol.(12,{My),). Since
roF = f, the map §f — F is injective. Similarly, for ¢ € Hol*(D, 2}, define
G =gor & Hol((Mh, ). Since Goi= g, the map g ~ & is injective. This
proves the first and the lasi ineguality in 2.24.

To prove the middle inequality, we show that C‘f-;,w is Lppy-distance decreasing
for all &, Recall that, in this case W = Th(Me)1 @My and V = _1':.,!? @M, Let L £
€ Lepy = {DFRId - F € Hol® ((Me)1, 20} Then for W e Wand V = L(W) = g. W,
¢ € Hol*{{AMy)1, £2) we have

MWl cen = Ch (V) = sup{lIPu(V)||op : F € Hol(R2, (M; 1)} =
= sup{{|Fuge(W)llop : F € Hol($2, (M;h)} €
< sup{|{FR}(Wllep : F € Hol(€2,(M;)1), h € Hol*((My)1, 2)} <
< sup{j|Ga W|ap : G € Holpg((Mz ), (M;)1)} £
< sup{[IGL W1 : € € Holo({(My)1), (M;)1)}-
Recall that (see 2.8), G.W = (DG(0) ® I)(W). The Schwarz lemma app]ied to the
two unit balls (M )y and {M; )1 says that DG(0) is a contraction. HW = Z A;®B;

i=1

is any representation of the matricial tangent vector W then we have
G (W)l < 3 1DG(0) Asflopll Bellop < D I 4illopl| Billon
Thus, sup{[|G. W] : & € Holp{(Mp)1, (M;)1)} < ||W]|. This completes the proof of
the inequalities 2.24.
We now go back to our basic question (Question 2.1).
TaEorEM 2.2, g, SV € T.R @ M, : Cau(V) € 1} = (o)

Proof. Kote that, Corollary 2.1 identifies the set Di{w) with the unit ball with
respect to the norm || - |I¢, where £ = DfX(w). Next, Theorem 2.1 identifies this
ball ae the unit ball in the co-tangent space T2 with respect to the dual of the
Carathéodory norm. This completes the proof. :

Conrottary 2.3, If Ci}‘(w“,} is contractive then
aup{ Crat,yo,0(Fo (V) - F € Holo (2, (M)} € 1,
for k=12, ...

The proof of this corollary is the same as that of Theorem 1.1, once we note that
Ca w i8 & L)-distance decreasing metric. In fact, as we have seen, it is least such
metric.
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Note that, Cn (V) is the injective tensor product norm of V as an element of
(Tu2,Cn.) ® (Ma,op). Thus, V & Fa if and only if V : I'Ch , — (M)

CoroLLaRY 2.4. Cify, , is contractive over 1 @(f2) if and only if

Ve E{Mn-. ﬂP}'é":Tuﬂ: gﬁ,w}lj-

The proof follows directly from Theorem 2.2.

COROLLARY 2.5. Every contractive moduls C%Y"H,’w} over H*(2) is completely
comtractive il and only if

Fo: P(Cauw) — (ToMe @ Mya),0p))1 & (Mea, oD)1,
for all k and F in Hol,(£2,{Mg)1). Or, cquivalently, if and only if for all

ér}i,w=f?zlw=---=fff;!u=---, =T

This corollary is merely the statement that contractive modules are completely
contractive if and only p{*} is a contraction (in the sense of 2.11} for & = 1 implies it
remains & cobtraction for all & > 1.

CoroLLary 2.8, C%?(V:w} is contractive over H®(§2) if and only if Cmv,o] 16
cantractive over H™(I'{Cg . )).

REMARK 2.4. Note that if C . = Kp ., then every contractive madule Cfy, .,
is completely contractive over H*(£2). However, there are examles due to Parrots
(cf. 18], in fact Cq,, # C.?i,w} of contractive modules of this type over the fni-disk,
which are not completely contractive. This shows that the two extremal metrics in
2.24 can not be equal.

3. OPERATOR SFACES

In this section, we relate our discussion on contractive and completely contractive
modules over H™{2) to that of the theory of abstract operator spaces.

Let X be a vector space over C and let M, (X)) be the vector space of n X n matri-
ces with entries from X. The vector space X is matrix normed if each (Mo (X), {|-{ln)
i5 a normed linear space such that

1. For every B in A, (X),0in Mp(X), 1B 2 0lltm = ||Bla.
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2. For B in Mn(X}, A, C in My, {[ABC|| < 1Al Bll.HIC]].
Among the matricially normed spaces, there are some matrix norm structures,
which are £~-matricially normed. Such spaces are called operator spaces (cf. [10]).

DeFmviTioN 3.1. If X and Y are matrix normed spaces and ¢ : X — Y is
linear, then we define, ™) : Mu(X} — Mn(Y) via ®)((24)) = ((2i;)). We say
that, [lip[les = sup||t*}|| is the eb-norm of . The map p is said to be completely

E

contractive, if pt*) is a contraction for each k.

There are many natural ways in which we may matricially norm a vector space
57 {cf [2]} However, we single aut one partmulam matrix norm structure on a vector
space X. Let (X,}|-||), be any vector space, declare the norm || - ||n by identifying
My (X) with the injective tensor product (X, || - [)&{Ma,0p).

Let X = (T;02,C ) and DR®)w) C My(X) be the unit ball with respect
to the norm [| - ||%, where £ = Hol,(f2,(M3);). This gives X an operator space
structure [10, Proposition 3.2). It is shown in [10} that if 2 = B is the open unit ball
with respect to some norm in C™ then

DB*N0) = (TyB& (M, op))1.
If B is homogeneous then this result remains valid for an arbitrary point w € B. We
have a similar result for product domains.
THEOREM 3.1. For any two domains 2,2y C C, let 2 = £ x {2, be the

product domein and w = (uw,wy) € 2. Then

DRMw) = (T502&(My, o))

Proof. For j = 1,2, let Fp, ., be the Ahlfors functions (cf. [4, Theorem 1.6])
for the domains £2; at the points w; € ;. The indicatrices I, w; are disks of
radius r; = DFqg, ., (w;). Let Gj =17 Fp, ;. The G; — Iy
DGj{w;) = 1. It is of course, easy to see that

and the derivative

alaty

’Dﬂ‘[*}{w] Z ( [U1Mi}(ﬂl ® ﬂz)é{MhﬂPj]i

To verify the opposite inclusion, let A € {Ts w821 X £22)®( M, 0p))1 be arbitrary.
Singe

Gﬂ;xﬂ;,(ml,ug} = max{Cp, w, vCrg e h
the indicatrix

Fﬂtxﬂg [L558 I’-.?n:I Fﬂ‘i iy x Pﬂ# Lelgy
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and it follows that
&= EGl,GQ} P ow i — I“mxﬂ,lmhuﬂ.

Nate that,
AoG: M x By = (M), (AoGHwi,wa) =0

The derivative (DG){wy,ws) = Id, and therefore
D(4 0 G){ws,ws) = 4.

Thus,
A e D) (w)

This completes the proof.

4, APPENDIX ON THE QUOTIENT NORM FOR MATRD TANGENT VECTORE

On 7, we clearly have the holomorphic vector bundles
L{{(Ma, 1), T12) = (M, 1r)* @ 712, and

(41)
L(T0R, (Mg, 0p)) = T2 @ (M., op).

where the tensor products and linear maps are fibrewise.
DeFviTION 4.1. We define,
aﬂ.ﬂ = ﬁ({Mnrw}mewf-?p Gﬂ,w}]} £ (Twﬂ: Cﬂ,w}'é'(Mm ﬂp): and

Ean= H{(w, Vi:wef2, Velfunlil}

Similarly, there is a dual definition,
£ o = L{{Tu92.Cu), (Ma, 0p)) = (T5 2, Ch . Y8{Ma, 0p), and

Enn=][{w.A):weq 4e(E )
If f:02— 2, fw) =10, and f is holomerphic then

(4.2) fo i T{Caw) — I'(Ca )
and by 4.2, we obtain the map, f, : £un — Ejuy defined by

(4.3) Fo(V) = Vf(w) o V.
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Similatly, there is a pullback, = : s £y n defined by
(4.4) £ () = Ao VFlw).

These maps induce functorially maps f e — é-'f_;,,, and fg : Eﬁ g £.Fl,n‘ Here
the case £ = 1 is the standard push forward of tangent vectors or pullback of ¢o-
-tangent vectors. The corresponding bundle diagrams are

f: Ean — g.ﬁ',n f# : Eﬁ;ﬁ e g.igl,n
(45) : wlo. | and x| i
o Folf e AT f:2 = #

For notational convenience, we think of a point in £5, as a pair (z, Z). We obtaim
the map f:&n, — £ n by setting

(4.6) f(z.2) = (£(2), £1(2) © 2).

We have called an element of &, ,, & matricial tangent vector at w. There is a way
to view these as ordinary tangent vectors to £q . Indeed, 2+ £n,o and 2+ £5
as the gero section. Let j be these inclusions.

PROPOSITION 4.1. There is a split exact sequence,
0 = TR TEG L1020 = TR @ (My, 1) = 0,

which identifies the matricial tangent bundle as the normal bundle to j(2) in £a 5.

Froof. If 7 is a co-ordinate chart around w, we have
Tul€nn) = Tz~ (1)) = T,(U) x Hom{M;, T.,(42)) =

= T,(I1) & Hom( Mg, To(2)) = T, (£2) & Hom(M;, T..(2))
This completes the proof,

The map, f-'; ] F{Cfn,n.mzj) — FEGEﬁ ,.f{z.ﬂ'}:l is obtained by

(4.7) V)= (£ (0), f(2) o V).

Let ((214...,2m), (2}, ..., Z17)), be a coordinate system in £qpn and f : Enp — O
be holomorphic, with f{w, 0) = 0. Write,

(4.8) oD =S a—w)f+ 3 3 2,
=1

ii=1i=1
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Tdentifying, (£un)1 as the fibre at w of Epn we see that Crp wn(0V) £
€ Cizy o fw,0y(0, V) and using the distance-decreasing property, 4.2 of the Carathéo-
dory metric on £ o, we oblain

(4.9) 500, V)i £ Ceg 00, V) € Ciey a3, 0(V) = Cau(V).
Let us put F; = {Ffj], f=1,...,m Thus,
(4.10) ]trZF; -vf[ = [£:(0,V)] € Cpu(V).2

In particulay, if V! = wX, L= 1,...,m, (51,....%m) € [(Cow) and X € (Ma)ys
then Clp (V) € 1. Observe that,

(411) T e R XL, BT e iMe)s
that is,
(4.12] El(ﬂlFl bl UmFm}”gp -.{_‘ |L(t‘1,.F1 & s ﬂmFm)”tr g L

DEFINITION 4.2, Let ¢ : TE€p, — T2 @ M, be the quotient map, that is,
q(v, V) = V. Define, the quotient norm of V as

Vil = inf{Ceg, o (v, V) 2 g(w, V) =V}

THEGREM 4.1. The quotient norm and the injective tensor norm for a matricial
tangent vector are the same.

Proof. Let (w, W) be a fixed but arbitrary point in £p , and f be in Hol, (2, 0).
We obtain, a map (as in 4.7), a0 i-vf-'u,p-. -i(Mnh,

(4.13) Foflz2,2) = #(f(2), fulz) 0 2} = fu{2) 0 Z.
For (v, V) in Ty, 0y€52,2, we have

(4.14) (Fo flu(o, V)= fuw)V)

Caw(V) = sup{|lfs(V)||op : f € Hol,(2,D)} =
= sup{lI(F 0 e (0, Vilep : £ € HOlL(2,0)} <
< Sup [P, Vllep - F' € Hoku(Enms (Ma)r } =
= sup{[|Fy(v, V)flop : F € Holu (£ q, D} < ilirfct-';;,q,.[...,u){ﬁ V) = [ivilg
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The last inequality is valid, since every map f: £ — D descends to a map F =
=(F1,...,Fn) : M(Cau) — (Mp) in view of 4.12. On the other band,

IVl = inf Ceg m,w0y(t V) € Cru o0 V) =

=sup{|If.(0, V)| : f € Holu(€nn, D)}, £ Cruw(V) (recall 4.9).

This completes the proof.

10.
11.
12.

13.
14,
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