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The gauge theoretical formulation of a spin system is studied here. It is pointed
ont that & quantum spin can be associaled with 4 gauge bundic where the gauge
group is SU(2). The Ising spin is obtained by breaking the group 1w T(1)
coupled with a Z; symmetry giving rise to a Z; gauge Lheory In three
dimension. The gauge structure of a spin sysiem helps us to reformulate the
Block-variable transformation in terms of a gauge transformalion,

I. INTRODUCTION

It has been argued by Jona-Tasinio® that Gell-Mann and Low type renormalization group
eqquations which are essentially the oulcome of the gquanium field theory are equivalent in
formalism with the Kadanoff-Wilson type renormalization group equations which essentially
deal with block variables in Ising system. The main poinl of argument in showing Lthis cyuiv-
alence is that renormalization group equations in hoth these formalisms may be linked up with
the Jimit (heorems ip probability theory. Indeed Bleher and Sinai® Grat emphasized in a tgor-
ous mathematical way the link between the probabilistic ideas and renormalization group
equations. Later on, Gallavotti, Knops, Cassandro, and Martin-Lof® have obtained some re-
silts of a more generalized character.

In this contexl, it may be added that Fisher® has put some objections on the equivalence of
Gell-Mann-Low type field theoretical renormalization group equations and Kadanoff-Wilson
approach involving block variables suggesting that Lhese two approaches are *not as close as
the use of the same word might suggest.” Indeed, the main point of discrepancy lics in the fact
Lthat while the Kadanof-Wilson renormalization group equation is connecled with the distri-
bution function far block variables and renormalization transformartion expresses the distnbu-
tion for larger Blocks in terms of the distnibution of smaller blocks, the Gell-Mann—Low type
repormalization group equations in quantum field theory involve transformation which does
nol change the form of the distiribiiion. In view of this, Joua-Lasinio has pointed out that one
may characterize Kadanof-Wilson formalism as a global approsch and Gell-Mann-Low (or-
malism a5 a local approach as it deals with the original variables and no block variable is
introduced.

In this paper, we shall deal with the problem of equivalence of these two formalisms of
repormalization group equations from the point of view of a gaoge theoretical formulation of
a spin system. The close analogy between two-dimensional spin systems and four-dimensional
gauge theory has been extensively studied by many autheors,” The analysis of renormalization
Eroup equations is shown to have same strucivres in both the svstems. The striking similaricy
has also been observed during the phase transition phenomena which are associated with the
condensation of lopological objects. In the case of a two-dimensional spin system these are
kinks whereas in four-dimensional gauge theory these abjects are magnetic monopoles.® Here
we shall point cut that & quantum spin is assoclated with a Hermitian line bundle a over the
comfiguration space when the classical spin 15 associaled with an arbilrary veclor. The gquanivm
Hesenberg spin is oblained by lfiing the [Tamilionian on sections of a gauge bundle where the
gauge proup is SU{2). The Ising spin is ohtained when thiz group is broken to U(l) corre-
sponding to the & component of the spin with the property of Z; invariance. This in three
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dimension cotresponds 10 Z, gauge theory. This gauge structore of a spin system helps us to
reformuolaie the biock variable transformation in terms of pange transformations and in this
way becomes identified with the renormalization group equations of quantum field theory in 2
dircel way.

Il QUANTUM SPIN AND GAUGE BUNDLE

Many suthors have studied the classical limit theorems for Lhe partition function of quan-
tutn spin sysiems.” It has heen pointed out that for & guanium system corresponding to the
angular momentum J where the spin operator § satisfies the eigenvalue cquation

S5+ S, + 5, 19=F(J+ 1}y (1)

the f— ec limil corresponds ta the classical spin, Indeed, the classical spin can be associated
with an arbilrary vector defined in the configuration space. Here we shall show that the
guantization of a classical spin is associaled wilh a Hemmitian line bundle over the configura-
tion space.

A spin system can be deseribed by a “direction vector” £, attached to a space—time point
x, when the twe opposite onentations of the “direction vectar™ &, give rise to opposite helie-
ities cortespomding to spin up and down states, Now to have a direct correspondenee of the
“direction vector”™ £, with the helicity states, we describe the spin system over a configuration
space by the coordinate ZM=x* 4+ " =3* + ((/DAR (@ = 1,2}, where we associate the “di-
rectiom vector” £ with a two-component spincrial variable & Indeed, replacing the chiral
coordinate by Lhe matrices, we get

: ) '
M x5 e, (23
where
. Mox! g
X =
2ozt P px!
and

Al
A eSL{2,0).
With these relations we can defioe a helicity with help of the twistor equation®
Z 274 AT g7 4 0, (3)

where T, {7,-) is the spinorial variable corresponding to the four-momentom variable Do U
conjagate of x, and is given by the malrdx rcpresentation

P (4)
and

Fi= {CJ‘:’TA'L Euz {'ﬁ-‘{'f’a/f‘rj

wiLh
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art =f| x4 |- Eﬂ,ﬁ‘ g

Toygr v

Equation {3} now involves Uhe belicity operator
S=—AMFT {5)

representing a spin up or down state. It is observed that the complex conjugaie of the chiral
coordinate {2) will give cse to the opposite helicity state.

Now we can define the upper half plane D~ where the coordinate Z =%, +if, is such that
£, belongs 1o the interior of the forward light cone £»0 with the mndﬁmn det £ > G and
1 Tr £ 0. The lower half planc D iz given by the set of all coordinates Z, with £, in the
mtenur of the backward light cone £«0. The map Z— Z* sends the upper half plane to the
Iower balf plane. The space of M of null plane [det£™ =0] is the Shilov boundaty so Lhal «
function holomorphic in & {0} is determined by 11s boundary values. Thus if we consider
that any function &{z)=d¢(x) -ia{L} 15 bolomorphic in the whole domain, the helicity
+4% [ —4) in the null plane may be taken to be the limiting value of the helicity in the upper
{lower) half plane,

In the complexified space—time exhibiting the helicity states, we can now write the metric
a5 B x,8,2). It has been shown elsewhere” that this metric structure glves rise to the SL{2,CY
gauge theory where the field strength tenser F ., is given by

Fjy=0,B,—8,B.+ [ 8,.8,] (6}

with B.e SL{2,C}. In view of this, we can have a gauge Lheorctical formulalion of the spin
syslem when we write the spin variable attached to a site X, by a coordinate formulation

Qu=x,+iB, BeL{2,C} (7

Demanding Hermiticity of the line bundle, we may restrict B, to the wnitary group 5U(2).
This indicates that a Heisenberg quaniuom spin may be associated with the gauge bundle where
the group structure is SUI(2).

It is noted that the introduction of the “direction vector™ &, al a space-lime point x,
suggests that the bebavior of the angular momentum i such a coordinate systerm will be similar
1o that of a charged particle moving in the fleld of a magnetic monopole. Indeed, the wave
function #(z) should take into accouni the polar coordinates r,0,¢ along with the angle y
specilying the rotational orientation around the “direction veclor” £, Lhe cigenvalue of Lhe
aperater &7y just corresponds tio the heheity state. In an anisoiropic space, the components
of the linear momentum satisfies a commutation reladion of the form

o
Lpar] =fﬁ£i_.‘k'r§' - (8}

I such a space, the mwotion of a parlicle is equivalent to the motion of & charged particle in the
field of 2 magnetic monopole. In this space, the anpular momentum is given by

F=rp—ptr (93

The fact that in such an anisolropic space the angular momentum can take the value | is found
to be anslogous to the re&ult that a monopate charged particle mmpﬁsite representing a dyon
salisfying the eondilion gg =1 have their angular mamentum shifted by 1 unit and theic stansncs
shifl aceordingly.'” Evidently a fermion can be described by a scalar particle moving with i=
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in an anisotroptc space. Hence the [, value denoting the spin orientation corresponds to the
gauge bundle having the group structure (1}, In view of this, an Ising system can be repre-
sented by a collection of fermions and the gauge bundle having the group strocture {1}
together with the reflection invariance property (2, invariance)} suggests that this can be
represented by a &, gauge theory in three dimension.

Now to study the spin—spin interaction in terms of the associated gauge fields, we note that
the simplest Lagrangian density which is imvariant under SL(2,C) transformation in spinor
affine space is given by

L= i Tr *PPF oF s, {10)

Following Carmeli and Malin,'! if we apply the usual procedure of variational calenlus, we et
the field equations

As[*PF o] — [ By e?PriF 5] =0. {11)

Taking the infinitesimal generators of the group SL (2,C) in the tangent space as
a0 1 0 ol
z’=[1 0], 32=lﬂ_1], g3=[u D] (12)
we can write

B,=b,8"=h, g
[#=1,2,3]. (13)
Flllv=frl‘3a=fpv' g

From this we can now construct a conserved current corresponding to the Lagrangian'!

P e Ve {14}
Indeed, we find from Eg. (11} that
P30 —b, X £5] =0 (153
This suggests that
=", X =D 1 5. (16)
This gives

From this we note that when the three-dimensional configuration space is represented as a
consiant time surface of a 3+ I-dimensional configuration space, the Heisenberg spin—spin
interaction can be represented in the zero lattice spacing limit as J¥,, + J%5, interaction where
the corresponding group structure of the gauge field #, 15 SU(2). It is noted that in this case,
the three components of the current

J. Math, Phys., Waol. 234, No. 2, Fabruary 1993



G, Goswami ang P, Bandyopadbyay: Spin system, gauge theony, and rengrmakzation graup 753

. ; . < : [CHR | . .
However, for the Ising inferaction, we can take the inferaction J"{'m.ﬁ("ﬂ} {no summation } in the
continuum limit where the index f represents aiy one component of the 3fy,. To be specific, we

21 ; i ; 11y
can tuke the second component J, for this purpose. Now from the relation J
e 9“"“‘331.1”[# we can write

Pl — el ()= IMCUx), (18)

f 3 z L)
where £ behaves fike & constant axial vector, Now from the relation ﬁpﬁ‘ ?=U, we fing that
C{X) is a constant. Thus from the field cocrent relation

Jim] [
=] : (19}
By Ay
we find
A +1
= A Lo (20)
A, s

where we have atilized the relation —JSiih =Jith. Taking ¢ as a normalization factor, the
above relation i redoced Lo

A7 r+1 -
Ly= ; (21}
s ~1 Loy

EE

Thus we observe that in the Z, symmelric case, the gauge field 4,=[4, .4, _] appeats as a
disconnected ane. The reflection invariance property suggesis that [;F 1] gives us the Z; gange
F=

theory in three dimension when the analysis s carried oul in 3+ [ dimension al constanl time,
The constant nature of L, with the specific property L, =~ L, defincs a gauge ficld

¢
= .|
Thus a vortex {r, =0} or an antivortex {r_ =) can be associated with a pauge field.

It is 10 be noted that the topological term in the Lagrangian (10} can be written as 8,04,
where [ s the Chern—Simons charactenislic class. This is defined as

p

T
L,.=exp|ir,] with L_

1
W= — e P T3 8 y =3B BB, (22}

wherte the Pontryagin density 15 given by
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i
et el ;
= T Tre™F  Fon (233
The charge corrcsponding to the gauge feld part is the Ponlryagin index ¢ where'?
o= | patx= [ a0 x (24)

From this we sce that ¢ is actually associated with the magnetic pole strength for the corre-
sponding field distribution.
In 2~ 1 dimension, the corvesponding Chern—Simons (€S} Lagrangian is given by

L%=%I _J-a‘-’x €4, A4, (25)

where 4, is a gauge field. The cnrmsmndmg topobogical invariant, known as the Hopf invari-
ant whlch exhibits the Hopf map 8 =5 [73(5°}=2] is given by

H=—y- fcﬁ X e ALF {26)

If p denntes a four-dimensiomal index, then we find that
ﬂpE"’“"’{AﬂF =i W ) (273

which eonnects the Hopf invariant witk lhe chiral anomaly, A three (two)-dimensional spin
system may be visualized by projecting the Euclidean Pontryagin {Chern-Simons) theory on
a three (two)-dimensional manifold. In view of this we note that the kinks in spin system may
he transcribed in the language of magnetic monopoles when the gauge thooretic version of a
spin system js taken into agcoant.

IH. QUANTUM SPIN, GAUGE BUNDLE, AND KABANOFF-WILSON FORMALISM

We hayve shown above that a quantum spiti sysiera can be represented by a gauge field
whare for the Heisenberg spin the pauge group is 5U(2 ) and for the Ising system this splits mto
Ui1) coupled with 2 2, symmetry leading to a Z; gaoge theary in three dimension. We shall
hete point cut that this helps us to realize the Block variable Lransformation as 3 gauge
transformation.

From aur above analysis, we depict a spin system by 2 configuration variabic where cach
coordinate point is given by

Ze2x,+iB,, {(28)
8, being the corresponding gauge field. In view of this, the black spin variable may be con-
structed by caonsidering
D,lk)= 2 m= 2 B, (29)
=k, Eky

However, sinee 8, 15 a gauge field, its value is arbitrary and thus by allowing & suitabie gange
transformation, we can again replace X; B, by B,. This implies that the magnitude of the
direction veclor attached 1o the site £ is not of any conseguence rather its orientation has its real
significance. In the spin variable term, this means that the net odentslion of the tatal block of
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spin variables is of main concern and not the magnitude of the block variable Z; o This is the
main philosopy of Kadanoff-Wilson formalism.
Let us consider an infinite system of spin variables and construet a sequence of hosted

[T 11

lattices having spacing “a.” Mow we dellne a block variable

O, (k)= 2, T (30}
Bk

where the sum runs over all the spin o; in the box &, which implies the recyrsion refation

'Pn(k}:Um

B, (k)= X ®,00,) (31}

The probability distribution expl—SH{o)] of the o variables induces naturally a probability
distribution on the @ yariables when L, the size of the box, is Jarger thin the coherence length
£, the correlations of block variables belonging to different blocks will be essentially zero which
implies that for large #, the probability disteibution of & (&) iz factorized and each ¢ is the
sum of praclically uncorrelated variables. At the critical point 7'=T, £ is infinite and hence
the probability distribution of <+ (&} for large » should be well defined. Generally, the rescaled
vatiables =L, %@, are introduced so that the new variables have finite variance when
71— o at T+ T The crucial hypothesis in the renormalization group appreach is connected
with caleulating the distribution function far block variables and the cotresponding renormal-
ization transformation is the lransformation which capresses the distribution for larger block in
terms of the distribution of smaller blocks.

In the gauge theoretical formulation of a spin syslem, let us define the site { having spin o,
by the coordinate

Z,=x,+iB, . (323

Mow for a block of # spins, we may define a single spin having a new site f having the
coordinale

z,~ Frxﬂr_ X n+iB, =%, +iB, {33}
which indicates that Z;x, /n is the c.m. coordinate and due to pasge freedom, the spin effect
is again realized by the original gavge field B, Now as discussed in Sec. IT, in the Ising model

the spin—spin interaction can be mapped into the current—current coupling in the continuum
limit where the current 7 is defined by

12) 1
Jogy =ePa3 0,

Due o the gauge freedom, it is independent of the magnitnde of the gauge field B, and hence
for a hlack spin vanable we naote that the effective current

ijiz:.z z [E"Imﬁaufi?]i (34)

P s 2 £ g iz
can be reduced o the original current J© through somne suitable gauge transformation. Thus
the interaction of two such block spins can be reduced 1o the interaction of lhe original spin
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variables, This indicates that the probability distribution of the block variables should be the
same 3% the prabability distribution of the crigingl spin variables and henee the transfarmation
L'—=&L preserves the partition function of the system apart from a multiplicative factor

This suggests a renormalization group transformation of the Hamiltonian

Hyp=Rsldd;} (36)

which is realized through the change in the coupling constant when the original spin variables
arc Tetained.

IV. DISCUSSION

We have shown above that a quantum spin can be associated with a gauge bundle and the
tlock variable ransformation can be associaled with a gauge transformation in the pange
space. This helps us to relate the Kadanoff-Wilson formulation with a gauge transtormation.

This gauge thearetical formulation of a spin system is associated with the Chem=8imons
topalagy which has an important bearing. Indecd, From our analysis we oay note ihat when the
gauge field current J, is taken to represent a spin at a certain site in a lattice, the associated
gauge field A, may be taken to lic on the bond and the corresponding vertex may now be
related to the Jones polynomial of knot theory in Euclidean three-dimension and its general-
1zation to guantum groups. Ta be more specific, sinee the Jones palynomial and its generali-
zation can be identifled with the expectation value of Wilson lines in three dimensional Chern—
Simons gange theories, the evaluation of these expectation values may be related to the two-
dimensional integrable statistical mechanics when we project the three-dimensional system (o
the two-dimensional plane. This helps us to link up the spin systems with topalogical field
Lheory in a direct way.
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