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A CHARACTERIZATION OF THE ARC SINE LAW*®

By R. SHANTARAM
Indian Statistical Institute

SUMMARY. 1t is xhown that if X and Y are discrate identically di d
indopondont randem variables and X+ ¥ has tho samo distribution as XY thon X follows tho
aro sins law.

0. INTRODUOTION

Consider tho are sine density given by (¢ # 0)

J@) = m(dct—at) ), |z] < 2]¢]
=0 , olso e (0.1)

whoso odd order momonts are zcro and even (2r-th) order moment is givon

by (21:‘) ¢, n=0,12 ... IfXand Y aro independent identically distri-

buted (i.i.d.) random variables (r.v.’s) distributed according to (0. I} then it is
known (Norton, 1975) that

(X+Yy~XY . (0.2)
where ~ stands for “‘has the same distribution as”. We say that a distribution
satisfies (0.2) if i.i.d. r.v.’s X,Y following this distribution satis{ly (0.2).

In attempting to characterize distributions satisfying (0.2), Norton (1978)
is lod to the following conjecturo :
the aro sine is the only non-diserote distribution (having all moments)
eatisfying (0.2).

In this noto we prove this conjesturo and inoidontally obtain some intoresting
doterminantal identitics. Section 1 contains certain preliminary results that
aro needed and the conjocture is proved in Section 2.

® This work was dono while tho author was on sabhatical loava from the Univorsity of
Michigan, Flint,yUSA.
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1. NOTATION AND SOME LEMMAS
Lot m(2j) = (‘2’1), m(2j—1)=0 for j=1,2,... sl m{0) =1, Lot
D(0) = 5(0) = 1 and for » = 1, 2, ... dofino the matricos

D(n) = | |m(@i+5)]], 6,j=1012..,n
T(n) = | |m(2i+2j—2)]], Wi=12..,n
S(n) = || m@i+2)] 1], i§=01,2..,n

Turther, for 2 = 0,1, 2, ..., consider tho partitioned matrix
D(n) B(n)
B'(n) m(2n42)

D(n+1) = ’

whero B'(n) is the transposo of the (n4-1) by ) column vector B(n). Noto
that the last entry in B(n) is always zero and write B(n) = “f'(n) ” whero
B'(n) is n by 1.

o now provo several lommas necded in Scction 2.

Lomma 1.1: Ifi> > land j=i+r then

® TN () =i
® E () (7)) =meita.

Proof : Tho cnasy proof is omitted.
Lomma 1.2: det T(n) = 27 = del S(n).

Proof : Define the 2n-dimensional row vectors z!, a4, ..., z# as follows :
2l =(0n_t } Asy  Ong)

where 0,_¢ is a (n—i)-dimonsional row voctor of zeroos and Ay, is a k-dimen-
:—1
sionnl veotor with compononts (L ; ) ,§=0,1,2, .., k=), in that order.

Using Lomma 1.1 it can Lo scon that T'(n) is & matrix whoso (i, j) eloment is
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tho innor product of 2! and 24, Tho deferminant of such & matrix con ho
ovaluatod as follows (Bellman, 1973, p. 49)

s
1
z, =i =}
£ EH }
det T(n) =X g ‘2 tn e (L)
)
EA a:,'" zp

=% AG), say
w

whero tho sum i3 over all indices 1 £ i < 1, ... €7, € 2n nnd 2§ is the
j-th coordinato in 2!,

Beforo wo  evaluato tho right side in (1.1) we noto that

z!
xl

it = |. [ s tho » by 2n mwtrix, its j-th and (2n4+1—j)-th columns are

xn

idontical, 5 =1,2,...,n. Honco A(f) = 0 whonover two indicos are cithor
cqual or add up to 2n41. TFurther the right sido in (1.1) depends only on the
absoluto values of A(i). Consider only the enso A(i) 3 0.
Without loss of gonorality lot
Iihi<i< .. <<nntl iryy <. <i, K2 (k=0,1,2,...,2).

In view of tho above obscrvations, nono of the iy's (j > k1) ean be any of
tho & numbors 2n41—i(t < k). Thus, givon tho first L indices among
1,2, ..., n tho romnining n—k indices nmong n+1, 542, ..., 2n aro uniquely
dotermined and theso Iattor indicos mny then bo roplaced by their difforences
from 2n+41 sinco the corresponding columns in Af are identical. Henco,
whatover I, (k =0, 1, 2, ..., 2} and whatever 1 € f; <, < ... < fx < n, A(f)
is tho doterminunt of tho first 2 columns of A, with (perhaps) tho columns
permuted.  Sinco wo noed only AG)? and for iy =2 (¢t = 1,2, ..., n) its valuo
is 1 wo havo from (1.1)
dob P(n)=X1
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where  the sum i over aoll k=10, 1, 2,...,n and all chojces
11y <dge < ik €. That is

n

dot Ty = % ( '

)=2n.

Wo only skotch the proof of tho other doterminantal valuo. Dofine
(n+41) row vootors z9 2%, ..., 27 each (2241) dimoensional as follows

2 ={(0py } Ay i 0py)

In this caso tho only non-zero entry (= 1) in 20 is in thoe (n+1)st column and
hence only thoso indices with some iy = 2+1, (k= 0,1, ...,n) and no two
indices adding to 2n+42 contributo a non-zoro (= 1) value to the sum which
givos dot S(n). Hence

dot S(n) =i:' ( n
-0

B) =2

Lomma 1.3 : The cofactors of the zero eniries tn D(n) are all zero.

Proof:  We will only consider the case n odd ( = 2k—1) sinco tho other
case is cssentislly tho samo. Further we will only considor tho cofactors of
the zero entries (a) in row 1 and (b) in row 2 since tho caso of tho other rows
i3 soen to full in ono of theso cnses.

Case (n): Lot ay, a,, ..., ax bo tho cofactors of tho zero entries in row 1
read from left to right. Sinco tho inner product of the veotor of cofactora
of row 1 with the vector of eloments of row 24, 5 > 1, aro all zero, we got the
following systom of oquations satisfied by tho a’a

am(2)tagm{4)4... =0

am(4)+agm(8)4-... =0

ay
wnd so on,  That is P'(k) ¢ = 0 whore ¢ = n‘ and 2'(k) is as defined in

ag

Scotion 1. Sinco T(k) is non-singular tho proof in oaxv (s) is complotod.
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Case (b) : In this caso tho rolo of T'(k) is takon by S(k) which is also
non-singular, Tho Jomma is complotely proved.

Lomma 1.4 : det D(n) = 2.

Proof : It sufficos to consider tho caso n oven sinco the othor case is similar.
Lot n =2k It is casy to soo that & soquonco of interchanges of columns
and thon a scquonce (tho samo number—by symmotry of D(n)) of interchangos
of rows transforms D(n) into tho form

S(k) 0 ﬂ
0 (k)

whoso dotorminant is dot S(k). det T(k) = 2% = 2% by Lemma 1.2,
Lomma 1.6: B*(n)DYn—1)B(n—1)=0, n=12,..

Proof : Set B(n) = (b0, 5%, ..., biy) ond  B'(a—1) = (b, by, ..., by_y)
and D-Yn—1) = ||d¥]], 1,5 =0,1,...,n—1. Noto that either by = b, = ...
=bj=by=..=00rby =b; =..=b,=b;=... =0. Further, by Lomma
1.3, d4 = 0 for i4+j = odd. Donoting the left side of the cquality in the
statomont of the lemma by ¢, we have

n=y n-
c=% T pep .
(=0 §=0

Tho typical term in this sum is zero if $4-j = odd sinco then d =0. If
i+j = oven, thon oithor § and j aro both even or thoy are both odd and in
oither caso bfb; = 0 and thus ¢ = 0.

Lomma 1.6: Let A and D be square symmelric malrices nol necessarily
of the same order. Then

4 B
B D

=det A. det[|D—B'A-'B ||
—det D. det | A—BD-'B' ||

i  det

provided the indicaled inverses exisl.

A B
o |

- A-4FEF'  —FE-
B D B ﬂ

—E-'F E-
A2-15
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where E = D—B'A-'B, F = A-'\B and the indicaled invcrses exist.
Proof :  Tho roader is reforred to Rao (1073, pp. 32-33).

2. PROOF OF THE CONJECTURE

Boforo stating Thoorom 2.1 wo nood ono moro matrix. Using tho notation
introduced in Soction 1, lot

H D(n) G(n)
A(n41) =

@'(n) m(2n+2)

B*(n,
forn =0, 1,2, .. whore G(n) =

Noto that G(r)—B(r) = 2¢(n41)

whero e(k) is & k-dimensional column vector whoso k-th coordinate is 1 and the
others aro zero.

Thoorom 2.1 : det A(n) = 0 for every n = 2,3, ...
Proof : As a start, cloarly

dot A(2) = det

I
e

1 0
0 2
2 2

oL

By Lomma 1.6, part (i), wo havo, for n > 2

D(n—1) G(n—1)
dot A(n) = det

G'(n—1) m(2n) ’

= dot D(n—1).dot || m(2r)—@G'(n—1)D-Yn—1)G(n—1) ||
= 27-1m(2r)—G'(n—1)D-}(n—1)G(n—1)).

Thus tho theorem will bo proved if wo show that, for » > 1,

m(2n+-2) = ((n) D-}(n)Q(n)- @n

Consider tho right sido in (2.1), roplace G(r) by B(r)+2¢(n+1) and, using
Lomma 1.6, part (ii), roplace
2|

D~}(n) by a.
¢
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whore
P = a'\D-(n—1)+ D~ n—1)B(n—1)B’(n—1)D-}(n—1)
Q= —D}n—1)B(n-1)
a-1 = m(2n)—B'(n—1)D"(n—1)B(n—1) e (2.2)

assuming, for tho moment, that the right side is non-zero and thus defines a
non-zero @, Multiplying out tho resulting quantity we seo that (2.1)is
equivalent to

aim(2n+2) = B*(n)PB*(n)+4+4Q"'B(n). e (23)

Substituting for P from

l B*(n)
Hero wo have used tho fect that G(n) = }
(2.2) wo soo that

B*(»)P B*(n) = a~'B*(n)D-Y(n—1)B*(n)+{B*'(n)D-Yn—1)B(n—1)}*

= a~1B"(n)D-}(n—1)B*(n)

in viow of Lomma 1.5. Substituting for Q we see that Q'B*(n) = 0, again by
Lemma 1.5, Thus (2.3) is equivalent to
m(2n+2) = B*(n)D-Xn—1)B*(a)+4a e (2.4)
Wo procoed to show (2.4).
Note that m(2n+4-2) and D-}(n—1) can bo related in the following mannor.
Now
D(n—1) : B(n-—1) B*(n)

Dint1) = ................... eeeraaenns . @)
B'(n—1) m(2n) 1]

B*'(n) 0 m(2n+2)
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Using Lomma 1.6 port (i) for tho indicated partition, wo sco that
( m(2n) 0 ) ( B'(n—1) )
0 m(2n4-2) B*(n)

D-Yn—1)(B(n—1), B*(n))

dot D(n+1) = det D(n—1) det

Recalling that tho D matrix, and 8o its inverso, i3 symmotric wo have by
Lomma 1.5, B'(n—1)D-}(n—1) B*(r) = 0 and tho abovo reduces to

dot D(n+1) _ det ( m(2n) 0 )
dot D(rn—1) 0 m(2n42)

(B'(n—l)D"(n—l)B(n—l) 0)
"\ 0 BYmDa—1)Bn) “

= det || m(2n)—B'(n—1)D"(n—1)B(n—1) ||.
det | m(2n+2)—B*(r)D-}(n—1)B*(n) |

By Lemma 1.4, det D(n) = 2 and henco (2.4) is oquivalent to showing
4 = [m(2n)—B'(n—1)D'(n—1)B(n—1)].(4a) . (2.0)

But this is precisely how a is dofined (sco (2.2)). Tho theorem is provedif a # 0.
Sinco relation (2.6) follows from (2.5), Lemma 1.5 and part (i) of Lemma 1.0
(without appeal to part (i) of Lemma 1.6) it follows that @ 7 0. Tho thoorom
is complotely proved.

Corollary (Conjecture) : The arc sine density (0.1) 18 the only non-discrete
distribution (having moments of all orders) that satisfiea (0.2).

Proof : If ¢ =1, tho corollary follows from the theorom. Indced
det A(n)=0 for n=2,...implios tho corollary (sco Norton, 1978).
If ¢ 1, dofine iid. rv.’s X', ¥ by X =¢X', ¥ =cY. Thon (0.2)
becomes X'+ Y’ ~ X’Y’ which corrosponds to tho caso ¢ =1,
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3. CoxcrLusion
This author has also obtaincd partinl results pertaining to snothor con-
jocturo of Norton’s on the construction of finito random variablos satisfying
(0.2). Thero will bo published at a later dato,
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