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Fuzzy Logic Approaches to Structure Preserving
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Abstract—Sammon's nonlinear projection method is computa-
tionally prohibitive for large data sets, and it cannot project new
data points. We propose a low-cost fuzzy rule-based implementa-
tion of Sammon’s method for structure preserving dimensionality
reduction. This method uses a sample and applies Sammon's
method to project it. The input data points are then augmented by
the corresponding projected (output) data points. The augmented
data set thus obtained is clustered with the fuzzy C-means (FCM)
clustering algorithm. Each cluster is then translated into a fuzzy
rule to approximate the Sammon's nonlinear projection scheme.
We consider both Mamdani-Assilian (MA) and Takagi-Sugeno
{TS) models for this. Different schemes of parameter estimation
are considered. The proposed schemes are applied on several data
sets and are found to be guite effective to project new points, i.e.,
such systems have good predictability.

Index Terms—Dimensionality reduction, fuzzy rule-based sys-
tems, nonlinear projection, Sammon’s method.

L. INTRODUCTION

EATURE extraction and dimensionality reduction are im-
Fpﬂr[unl problems in pattern recogmition and explomtory
data analysis. Feature analysis can avowd the “curse of dimen-
sionality,” improve generalization ability of classifiers by elim-
inating harmful features and reduce the space and computational
requirements associated with analysis of the data. Many features
not only lead to more computational overhead, but often can
create confusion thereby degrading the pedormance of a classi-
fier or any other system designed on them. Dimensionality re-
duction can be done mainly in two ways: selecting a small but
important subset of features and generating (extracting) a lower
dimensional data preserving the distinguishing characenstics
of the original higher dimensional data. This paper deals with
extraction of lower dimensional data.

Let ¥ — {x-. %0, ... %, } beasetof n feaure vectors (sig-
nals) in B, The jth observed object (some physical entity) has
veclor x; as it's numencal representation; gy, 18 the fth char-
acteristic (or feature) associated with object 7. Featre extrac-
tion and data projection can be viewed as an implicit or explicit

mapping & from a p-dimensional input space (o a g-dimensional
outpul space

o T R (1)
such that some criterion, O, is optimized. Usually ¢ = o, but for
somme feature extraction problems ¢ may be greater than p also.

A large number of approaches for feature extraction and data
projection are avatlable in the pattem recogmition literature
[1}-[ 11]. These approaches differ from each other in the charac-
teristics of the mapping function &, how € is leamed, and what
optimization criterion {7 is used. The mapping function can be
linear or nonfinear, and can be learned through supervised or
unsupervised methods.

Sammon’s nonlinear projection method [3] is quite effective
for small data sets. For large data sets the computational over-
head 15 very high. Moreover, Sammon’s method does not have
predictability; in other words, with every new data point, the
entire process is o be repeated. In order o equip Sammon’s
method with generalizability, some neural network (NN) imple-
mentations have been attempted [10], [11]. NN-based schemes
usually work fine but sometimes the perfformance on the test
data becomes poor. More importantly, the NN-based schemes
always produce some outpul even when the test data are far
away from the training data or are outliers. For example, even
if an input is far away from the convex hull of the training data,
the network will produce some lower dimensional representi-
tion for it. It would be more useful, if we can develop a system
that 15 interpretable [not a black box like the mululayer percep-
tron (MLP}], can mterpolate (1., has predictability) and can
deal with outhiers. AL least the system should be able o reject
the inputs which are far away from the training data. Fuzey
rule-based systems have all these three desimble properties, and
hence, in this paper we explore the possibility of wsing fuzey
reasoning system for structure preserving dimensionality reduc-
tion. These schemes integrate structure preserving charactenstic
of Sammon’s function and the generalization capability of Tuzzy
rule based systems. As 1o the knowledge of the authors so far no
attempt has been made o exploit the power of fuzzy rule based
system in dimensionality reduction.

The proposed schemes are found to produce, like Sammon’s
algorithm, lower dimensional data which are coberent with the
original data at a lower computational cost. The performance
of the proposed schemes have been compared with onginal
Sammon’s algorthm and NN implementations of Sammon’s
method. The results obtained are quite satisfactory.



II. SAaMMON"S NONLINEAR PROJECTION METHOD

Sammon [3] proposed a simple yel very uselul nonlinear pro-
Jection algonthm that attempts o preserve the structure present
in a set of o points in p-space by finding » points in g-space
such that interpoint distances in g-space approximate the come-
sponding interpoint distances m p-space.
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Let E TR DERLy SRR ey S )
= 1.2, ..., 1] be the set of » input vectors and let ¥ = {y,
¥ = I’r,m Yizs -+ s Whgy - & = 1,2, ..., n} be the un-

known vectors o be found.
Let df; = dlx;, 30 % %5 € ¥ and dyy = dlys. ¥, ¥

¥ € ¥, where {x;, x,} be the Evclidean distance between x;

and x;. Sammon suggested looking for ¥ minimizing the error

function £
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Sammon used the method of steepest descent for (approxi-
mate) minimization of £ Let ¥;{t) be the estimate of ¥; at the
fth iteration, ¥, Then, y:(f + 1} is given by
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il + 1) = w0 — ; =1 .0 (3)

where the nomnegative scalar constant o 15 the step size for gra-
dient search.

With this method we cannot get an exphicit mapping function
goveming the relationship between patterns in R and come-
sponding patterns in 7. Therefore, it i1s notl possible 1o project
new points. Hence, with every addinonal pomt, 1L 1s necessary 1o
redo the optimization with all data points. Every step within an
iteration requires computation of {{n{n — 1137/2) distances and
for large v the computation tme becomes high. Fmally, there
are many local minima on the error surface and it is vsually un-
avoidable for the algorithm to get stuck in some local minimum.
When n is large, getting a good solution may be difficult and one
may need o try several intializations.

Several modificatons of Sammon’s algorithm have also been
proposed [4]-[7]. These algorithms approximate Sammon’s
method and do not have predictability. Even for comparison of
the quality of outputs, it 1s desirable o compare with onginal
Sammon’s output. Consequently, we do not consider any
approximate version of Sammon’s algorithm.

1. ARTIFICIAL NEURAL NETWORKS FOR SAMMON'S
PROJECTION

The potential of artificial neural networks (ANNs) in various
applications 15 well established. Recently a number of ANNs
have been proposed for feature extraction and mulivanate data
projecton [8]-[11] Next, we discuss an interesting neural im-
plementation of Sammon’s method which augments Sammon’s
algonthm with prediction capability [8], [Y].

Let us express Sammon error given in (2) as

n—1 .r.I

i=L j=i+1l
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TABLE 1

TEN CENTROIDS FOR [RIS Data PRODUCED BY Fuzzy C-MEAns {FCM)

(luster T | * I3 Ty W #

1 DBILG | 0.306% | 0.1674 | 0D.0132 | 06671 | -6.0394
2 OBET4 | 03548 | 07303 | 02330 | 03269 | 0.5557
3 0.6303 | 0.3526 ( 0.0440 | 0.2318 | 0.3451 | (4841
4 0.8180 | 08719 | 0.5730 | 01768 | 0.3908 | 0.4137
G 06307 | 0.3010 | 0.3954 | 0,1223 | 0.3625 | 0.138}
6 0.6741 | 0.4842 | 0.1774 | 0.0089.| 0.6563 | 0.0332
T 06363 | 0.4236 | 0.1978 | 0.053% | (LOTI0 | 002390
& 0.7235 | 03232 | 05141 | 01406 | 03319 [ 2872
g 0.7634 | 0.3366 | 0.627% | 0.2058 | 0.2929 | 04172
1 LU.E4E5 0.4504 | 0.1770 | 0.0199 | 06066 'I].{r[!lﬂi

TABLE 11

SORTED CENTERS FOR . AND THE ASSOCIATED MEMBERSHIP PARAMETERS

Cluster | x4 Elf: bfl
1 0.6116 | 0.0379 | 0.0191
5 (L6307 | 0.0191 | 0.0056
T 0.63683 | 0.00588 | 0.0093
10 (.64686 | 0.0093 | 0.0275
i} 0.6741 | 0.0275 | 0.0402
] 2.7233 | 0.0492 | 0.0401
4 0.7634 | 0.0401 | 0.0546
4 08180 | 0.0546 | 0.0123
3 0.8303 } 0.0123 | 0.06T1
2 0.8874 | 0.0571 | 0.0389
Bt 'I'I 1 ‘I r. F\ 'IL. I'I‘| |‘
x ,' ||r| N A A R |
Eet \ / Y, v/ 1
\ | \
Bk | : \
5 a“ - Il- i '-' P . lI Ii i ) i
| Ty a7 ars T cil T
Fig. 1. The ten antecedent membership functions defined on feature o, of
IRIS.
where
W
}'?ﬁ—}lkdt-r i}
d“i‘hr
with
A= n 1 n
X O P
=l EEr

off; and o, are the distances, respectively, in R¥ and RY be-
tween patterns ¢ and .
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Jain and Mao [8], [9] used a multilayer feedforward network TABLE 11
for Sammon’s projection. The number of input nodes is set to . pocir Lsan ron Variaus MeHcos ran EvarrDurk Sey
The number of output nodes is equal w g. A pair of input x; =

Moy e X is applied one after another and the coresponding SAM | 100
outputs ¥; and ¥ ; are noted and are used w define E;,. Like PCA 10000
an MLP, Jain and Mao trained the net using backpropagation to ONN | 10000
minimize &
In [8], it was shown experimentally that the number of nodes MNN_| 10000(PCA )+ 1000(MLP)+10000{Sammon net)
required in the hidden layer w be around nq to get good results. FRTS | 100(SAM)+100(FCM)+10000(TS)
Although, it is an interesting application of NN to data projec- FRMA | 100{SAM}+100{FCM}+10000({MA})

tion, it requires a lot of space and training time to get good re-
sults. The error after training, as we will see, is also not found
comparable to that of Sammon’s algorithm.

In [9], another approach was followed for training so as 1o
take advantage of the nonlineardty of the above network. Ini-
tially, a PCA network [12], [13] was used o project data and
then standard backpropogation algorithm was used to approx-

TABLE IV
SAMMON ERRORS O8N X, ANDON X WHEN TRAINING was DONE oM X,

imate principal components. The connection weights of such -
; BT : Data Set Methods | SE{Rx,., X SE(Rx.,. X
a trained MLP were then used to initialize the weights of the . Ry, X7v) (Rxy., X)
Sammon’s neural net. This means that Sammon’s network is SAM 0.004653 0.004603
initialized such that it behaves like a PCA network. PCA 0.015391 0.012137
The main purpose of this network was to handle nonlinear  ygyg ONN 0.028049 0.020450
1 L . L . Al
data,' as, linear -Eiata are very well leJJﬁI:,LI:d by the PCA net MNN 0007353 0.008097
work, but even this may not always be achieved by the proposed
implementation [9], as shall be seen from Section V-B. FRTS 0.010243 0.226525
FRMA | 0010380 0.102227
IV. PROPOSED FUZZY MODEL FOR DATA PROIECTION SAM 0.0011932 0.001415
Sammon’s algorithm does not have predictability, i.e., with PCA 0.002208 0.002041
every new point the entire data set has 1o be projecied afresh; Helix ONN 0019336 0.020057
this in wrn reduces the practical wtility of Sammon’s method. MNN 0.003240 0.003082
iu we wantstu zel asystem for Sammon’s projection with pre- FRTS 0002816 0.001502
ictability. Several NN schemes have already been sed as
s S % e Fpo FRMA | 0.001985 0.002140
a solution o the predictability issuve, but they have some prob-
lems as discussed earier. Here, we intend 1o identify the relation SAM 0.000752 0.000024
between input and the projected data by a set of fuzzy rules so PCA 0.019768 0.018788
that the task of projecting new points becomes a trivial job., We Elongated ONN 0.049553 0.051860
assume that the data set under consideration is obtained from
: : s T i Clusters MNN 0.006700 0.008257
a time mvartant probability distribution. Under this assump- ’
tion if we extract the rule base from a epresentative sample X FRTS 0.000776 0.000811
then its performance on a new data point % is expected o be FRMA | 0.001257 0.001219
nearly the same as that of the system identified from the data set SAM 0.021783 0.038214
e Herriee TG . - -
R = X U=t So our scheme consists of the following three PCA 0.104631 0.103091
Rl Sphere ONN | 0.387898 0.548430
1) project X by Sammon’s algorthm to generate ¥7; 3
2) extract a fuezy rule base [ from (X, ¥) as described Shell MNN 0.040100 0.046007
next; FRTS 0.023808 0.032445
3) use K to project any new data point. FAMA | 0.024524 0.031867
\ - st e X — I : T
Lor Lo IRPUN 02 seC e X e Jag Xy v i Y Al SAM | 0.013757 0.015138
projected (output) data set be ¥ = {¥1, o, ..., ¥} © RY
We define PCA 0038642 0028246
e 10-D Normal | ONN 0.113191 0.117386
Tt gt x; £ RY e el i e ;
A =9E = v, ERY )T 3 Rt Mixture MNN 0.117438 0.121100
'Lonsely, we call a data set linear if a linear transformation can project it to a FRTS 0.019950 0.023553
lower dimension preserving the cluster structure in the original data. Otherwise, FHEMA 0.065307 0. 06255
the data set is nonlinear in nature.
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Le., X7 18 %y augmented by x; Suppose we cluster A" by some
clustering algorithm producing a set of centroids

i " v £ R¥ g . :
W ={v;=(1,’f-;__'RT)(:R!+!’J ?-:'_,2....._4".-}

and a partition matrix (hard or fuzey). This clustering results can
be used w0 extract fuzey rules. Use of clustering for fuzey rule
extraction is motivated by the fact that if there is a cluster in
the input space with centroid +7 and if we assume a smooth
relationship between the imput and output, then the points in
the output space corresponding o the mput cluster are likely o
form a cluster around v’ Thus, if v is associated with a good
cluster in the input—output space, then thisis a signal that when
xp — vi|| 15 small, ||yz — +/|| would also be small. This s
a mugh indication that such a cluster corresponds to a locally
continuous and smooth mput—output welation. Even when the
data do not have any cluster structure in the patlem ecognition
sense, iLis possible w partition the input—output data o several
subsets such that for each subset such a rule can be written.
Thus, the ith cluster can be translated into a rule of the form
Mamdani-Assilian (MA) model [14] :
If x is CLOSEto ¥¥ theny is CLOSE to v
Takagi-Sugeno (TS) model [13] :
If % is CLOSE to T then y = ugf
Usually, the antecedent part, if 2 is CLOSEto vF, is writlen as
a conjunction of p atomic clauses: If ) is CLOSE to ¢ and a0
is CLOSE to v, and - - and =, is CLOSE to w,. The function
w;f) in the Takagi-Sugeno (T-5) case primarily models the
behavior of the input—output relation in the neighborhood of +¥,
Rules can also be generated by clustering 37 In this case, the
centers {vF ] can be obtained as centroids of associated clusters
in X . Similarly, when A is clustered, the centers {v*} can be
generated as centroids of associated clustersin ¥
If a fuzey clustering algorithm is used, then we can induce
fuzey clusters on different axes by projecting the membership
values of the extracted clusters. Suppose the clustering is done
in %*. One of the simple ways Lo assign 8 membership value o
the inpul vector x; 15 by
X = x,-)
L

And then each component of x; £ R can be assigned mem-
bership values in the same way, 1.e.,

]
X, v

pUX = ma 4 Xt = g ( XE XM
J .

}"«{J'l'_i'::' = 1]1;1:»‘. {IéﬂkaliﬂkJ' = Ijj ¥i=1Z ....p

Although several authors [16]-[19] have used explomtory
data analysis for rule based system identification, there are sev-
eral problems as discussed in Pal er al. [25] which need careful
attention o make such approaches useful. We next discuss these
1ssues [ 23] and our solutions o them.

1) Choice of the elustering algorithm: Although there
could be many choices, we use the FCM algonthm as
we have no idea about the type of cluster strocture that
may be present i the data. FCM extracts hyperspherical
clusters and any input—outpul relation, even say a hinear
relation, can be approximated by a reasonable number of
hy perspherical patches (clusters).
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2) Choice of the clustering domain: There are four choices:
clustering of Y, clustering of ¥, clustering of X *, or clus-
tering of both X and ¥ separately. In this paper, we de-
cided to use X" because in X%, X and the comesponding
¥ oare ted together so that mterpretation of a cluster as a
rule becomes casier.

3) Deciding the number of rules or clusiers: Researchers
have wsed different cluster validity indexes like the
Xie—=Bem [20] index, Gath—Geva [21] index and so on.
These indexes have been developed for cluster valida-
ton without paying attention to the rule-based system
identification problem. Hence, use of these indexes for
the present problem is debatable. Suppose we have two
compact big (the convex hull of each cluster is big) well
separate clusters. Here any cluster validity index will
mndicate ¢ = 2, but cach cluster has wo high variability
to be modeled by a single rule. We have heunstcally
decided the number of clusters.

4y Chaoice of the structure of the rule base: This refers 1o
deciding on whether Mamdani-Assilian (MA) model or
TS model 15 to be used. We do not have any prior knowl-
edge about the possible nonlinear relation that might be
present. So owe decided o use both the MA model and
the TS model with linear consequents. Under a fairly gen-
eral set of conditions, the MA model can approximate any
nonlinear relation, similady, TS model with linear conse-
quents can also approxmmate any nonlinear relation.

5) Estimation of parameters of the model: We shall dis-
cuss 1t in the appropriate place.

6) Validation of the model: A common practice is 1o use

square error on the training data as an index for validation.

In the present case, in addition to visual assessment of

outputs we also consider Sammon’s error for validation of

the system. Moreover, we partition the data X into X .

and X, suchthat X = Xy 00X, and Xy nX g, = o

We identify the rule base £y, using X . and test Ly,

on Xy But how do we assess the quality of output with

MopeT Let SETH. Y be the Sammon error on the data

set X obtained by the rule base . To validate the model,

we compare SR A, A with Sammon error direetly
compuled on A by the original Sammon’s algorithm.

Each of these issues requires a much detailed and careful

analysis and that is beyond the scope of this paper. We men-

tioned these issues here to indicate that the proposed system can

further be improved by paying closer attention Lo these issues.

Here, we simply establish the utility of fuzzy mle-based system

for dimensionality reduction. For the sake of completeness, we

next briefly discuss the FCM algorithm.
Given X = {x;, %2, .... x.} C R¥, the FCM algorithm
finds a partition matix 7 [10:5 ] and a set of centroids

V= {vi, woe o0y ve F minimizing [24]

dnlU V=30l ke w4 (4)
k=1 i=1
where s a weighting exponent greater than 1 (yypically m =
2y and the mner product nomm metric

T g
X ¥ 4 =Xk

vt A K vl

¢ is the number of clusters, and A is any p = p positive—definite
MAalTix.
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Let v, 4 = 1, 2. ..., ¢ be the centroids of the clusters ob-
tained by FCM on X7 . We translate the ith cluster (using the TS
model [15]) into a rule of the form: £~ If x is CLOSE to v¥
then ¥ = m;{x. +¥}. Note that, “x is CLOSE to v¥” is an an-
tecedent clause with p components. Thus, IiT 7+ If o) is CLOSE
to) and - - -and o is CLOSE o), then y = w;{x, v Since
¥ & R, T, can also be viewed as g different rules, one for each
componentof . This set of « rules forms an initial rule base for
data projection. For the MA model we translate the dth cluster
as ¥4 if x is CLOSE to v¥ then y is CLOSE to v¥. Like a
TS rule, here too the antecedent part 15 wrillen as a conjunction
of p atomic clauses.

For an input vector x;. = T%, let rv; be the firing strength
of the rule Ft75 computed using any T-norm [26], say product.
Then ¥ = {1, Gignys - - ding )’ 18 computed as

5 omamiviy
i izl
Y= P
Z L
il

For the MA model we can compute y using one of several
defuzzification methods like the height method, the center of
gravity method [26]. For computational simplicity we use the
height method of defuzzification [26].

A. The Rule Identification Scheme

As mentioned earlier £ ¥ corresponds 1o a set of g rules. We
denote these g rules as L7 If x is CLOSE to v¥ then y,
wig{x i) i=1,2 o Weuse iy = digo-t; | dijre
o A Rgpidi | e L 1,2, ..., 1, when
digped = 001, ..., p) are constants o be identified. Thus, the
output is a linear combination of ':{. and the input. Since 'r.'%}
is given (i.c., a constant), without loss of generality we denote
n:i:-_.J-,_,.t'j‘:; as iz and estmate it along with other parameters.
Henee, the output s computed by

kg i (K, v F,J
1

A=

Wy = ' J 15

37 g

=1

cqo (B)

[

As pointed out by Takagi and Sugeno, given a set of rules with
fixed anecedents, oplimizing the parameters in the consegquent
equations with respect o trmming data reduces o a linear least
square error estimation. This problem can be solved easily and
the solubon 1s always globally optimal [15]. Since the output
cluster centrowds are not necessary for this model, one might
be inclined to use only clustering of the mput data. However,
it is not a good idea as a cluster found in X ignoring ¥ may
correspond 1o more than one region of the output space.

To choose the appropriate set of consequent parameters o, 7,
we have o formulate the oplimization problem as a linear least
squares problem. In doing this, we rewrile (6) as

'.is“'.-: = E P |:d1_-||'|'j ] d‘f_‘fl RN foae d):j:l:l b -rﬁ.j'-::
=1

{a) {h

S

m“mﬂ“‘"”

ic) id)
: fre B P
i ! b
! E n:;s-g |
i g | P T |
f | + . |
St - HPE |
_E:.q:r_'fl.lﬁ_ = é‘i_ +
L S _ sy |
? | 4 & i |
: P
.'1'“
(e (fi

iz

Fig. 2. Results for Ins. (a) SAM output for Ins on X o, (b) SAM output for
Irison X {c) PCA output for Iris with training an ¥ and test on X {d) ONN
output for Inis with training on X .. andteston A () MNN output for Iris with
training on V. and test on X (£) FRTS output for [ns with training on Y.
and test on N {g) FRMA output for Ins with training on X, and test on X

where

ik
If.r-g,.‘; = o %
R

=L
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Fig. 3. Results for helix. (o) SAM output for helix on X0, .. (b) 5AM output

for helix on A ) PCA output for helix with training on 5+, and teston A
(d) ONN output for helix with training on &, - and teston X . (e) MNN output
for helix with training on %o, and test on A . (f) FRTS output for helix with
training on o and test on X, {g) FRMA output for helix with tmining an
oo amd test on XL

Therefore
-
Yy L vl g dig g e - Al e (7)
=1

Then using a set of input—output data, we can easily obtain
the consequent parameters

W

DY il jodagn - dognddy ds, ey i)

J=12,....9

-t -
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by the least square error method using (7). So, for a set of »
input—output data, (7) gives us a system ¥ A - I where

_EEE i RYE I A ] ’ .
Y =¥, ¥ oo ¥y, =010, DP,‘:_[.I—-_.I:.'XQ and
A
FhILtfhle fRLLCELLT cpele Ll s pELL WLpt fALle Wil
F L I E e e I S I - R 4 B e B L R )
."-[r.l R LT |r'[1'| 181 '|U-1'|r.' R R * P -'IITI.I.I- R L 'w.u_,'..-

Here, ¥, ., is a matrix of output values, A, ;.41 18 acon-
stant matrix as all gy and g, are given, Do) 18 the matnx
which contains all parameters o be estimated. The estimate of
£} minimizing this square error |10 — ¥ || is given by

D=iAT A ATy (8)

B. Choice of Antecedent Memberships
In order to implement the rule base we need w define the
membership function for “»; CLOSE to w;." We use asym-
metric tiangular functions having peak. «;; = v7; and widths
EJ"" ,[,H (here £ and It indicate the lefl and right mdlhs of the
lrldn}_.ll.,]l Note that, «;;s, s and FA s for all ¢ rules (one for
each output vanable) Lnrn,sp-undmg m a p.irl.lLuI.ir cluster 7 are
the same. For the jth feature, o find FJ and F) we procecd
as follows. WL sort 1,4 = 1, 2. ..., -, LLl th wrlmj list be
wd=1.Z L ‘&upp-uu, w7, Lakes the mith position in the
sorted list, e, vy i . then th width of the fuzzy set asso-
ciated to ;. fi.L the mlh fuzzy seton the axis for jih feature)
is defined by

.'.l.a,l_{d-v.l ..T|\—J'} rn:j!"'r': 1 fg::l
and

H . a p
arn —_—i. X ! -
I'Jm__.J {e,m i "hf:.‘r} . i A O o I

The widths of the fuzzy sets at the two extreme ends of the
domain of «; are defined by (11—(14) as follows:

b, = {uf, — (L — (005 (H; — L3}

Elﬁ..'.l' { Wig = T:J} (12)

(107

(11}

i T e
b5 {'u_,-___;, — 1_.-.‘} (13}
b, UL 008« (I = L0 —f . (14)

Here, L, and IT; are the lowest and highest values of feature
4. Equations (11) and (14) expands the domain of the jth
feature by 5% on either side. The choice of the asymmeltric
triangular membership functions with the left and right widths
as defined in (9)—(14) ensures sufficient overlaps between
adjacent membership functions. Table 1 shows the en six-di-
mensional (four-input and two-output vardables) centroids
obtained from the FCM algorithm for the nommalized IRLS data
[22]; while Table II displays the sorted values corresponding
to column x; of Table 1. For this feature, H; = 0910236
and L, (}.5520 Td4. This makes b,r'll (03T 221 6 and
P 0038881 62, Columns 3 and 4 of Table 11 display the
left end and right end of all ten membership functions defined
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Fig.4. Results forelongated clusters. (a) SAM output for elongated clusters an
e (h) SAM output forelongated clusters on X o) PCA output for elongated
clusters with training on % . and test on X (d) ONN output for elongated
clusters with training on X; - and test on X {e) MNN output for elongated
clusters with training on Ay, and test on X (£) FRTS output for elongated
clusters with training on X7 and test on X . {g) FRMA output for elongated
clusters with truining on %, and test on V.

on ) and Fig. 1 depicts the graphs of the comesponding ten
membership functions.

C. Further Tuning of Parameters

In Section IV-A, we have oblained the least square emror
(LSE) estimate of the consequent parameters of a TS model
assuming fixed values for the antecedent parameters. We
take this as an initial choice for the consequent and then use

the gradient descent method o funther refine alfl parameters
(including  antecedent membership functions) becaose  the
objective function minimized by the clustering algorithm and
the objective function that a mle base should minimize are not
the same. Moreover, such a two-stage hybrid scheme for further
tuning of consequents along with membership parameters is
justified because when membership parameters are altered
the LSE estimate of the consequents may (usually will) not
remain optimal. The rule base parameters o, EJ,-,.- and «f;
are luned wsing gradient descent to minimize the error F
S 9 — wall? as

= _ ik 5
it + 1) =it} — g = -
3 / £k g
I ] Ty y
e+ 1) =bjit) — e =
it “ Ity —dt‘
bt 4+ 11 blt) — o c'.i"f'ﬁ "
and
‘ . ar
diill + 11 =dizil) — oy el "

In (15)—(18), ¢ indicates the ieratwon number. One might
argue that direct gradient descent (without the LSE estimate ) on
all parameters should be able w produce the same resull. Yes,
theoretically it 1s possible. But we all know the problems with
gradient descent when we do not have a good starting solution.
In this hybnd scheme, since the mital antecedent memberships
are judiciously chosen based on cluster analysis, they are hikely
to form a reasonable good set of linguistic values. The LSE
estimate of the consequent parameters keeping the antecedent
memberships fixed will result in a fairly good rule based
system. Hence, our gradient descent step will start with a good
mitialization and we are hikely to get a better rule base with
less tramning epochs. For the MA model, we tune all parameters
of the antecedent membership functions and the peak of the
consequent membership functions using gradient descent.

To summarize we get two schemes: fuzzy rules extracted
by TS model (FRTS) and fuzzy rules extracted by MA model
(FEMA).

FRTS | |

L
Run Sammon's projection with X < R¥ a
input to generate Y C R
Augment X by Y to get A*;
Run FCM algorithm to produce ¢ clusters
using X*;
Define MF's for antecedents using
(9)=(14);
Form the initial rule base;
Find L5SE estimate of the consequent pa-

]

rameters using (B);
f# Tuning of the rule base #*/
Refine the rule base using eguations
(15)-(18) till
EMS5 error < ¢ or iteration — maxsteps;
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Fig.5. Results for sphere shell. (a) SAM output for sphere shell on .. (h)
SAM output for sphere shellon ¥ ¢) PC A output for sphens shell with troining
on X and test on Y. {d) ONN output for sphere shell with training on 0
and test on AL el MNN output for sphere shell with tmining on Vo, and test
on W (1) FRTS output for sphere shell with tmining on X - and teston X . {g)
FRMA output for sphere shell with training on Ay, and test on X,

In Algonthm FRTS, ¢ s apreassigned small positive gquantity
and maxsteps 15 a predetermined himit on the maximum number

[EEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 3, JUNE X2

of ilerations. We can now use this tramned rule base 1o project X
and any new data points.

FEMA [ |
[
Run projection with X < R as
input to generate Y < Rt
Augment X by Y to get X*;
Fun FCM algorithm to produce ¢ clusters
using X*;
Define MF's
(9)-114});
Form the initial rule base;
f+ Tuning of the rule kase =/
Eefine the rule base using equations
(15y—(18}) till
RM5 error

Sammon' s

for antecedents using

< ¢ or iteration maxsteps;

This traned rule base can now be used o project X and any
new data points.

V. IMPLEMENTATION AND RESULTS
A. Data Sets and Computational Protocols

To demonstrate the effectiveness of the proposed scheme we
mmplemented the following algonthms: Sammon’s algorithm
(SAM). principal component analysis (PCA) net, onginal
NN implementation of Jan and Mao (ONN), modified NN
mmplementation of Jamn and Mao (MNN) that vses an MLP
tramned o leam the principal components as the mitahzatnon
of the net for data projection, FRTS and FRMA. All algorithms
are tested on five data sets named Iris, Helix, Sphere-Shell,
Elongated-Clusters, and 10-D Normal-mixiure.

Ins [22] 15 a well-known data set consisting 150 pomts from
three classes mnoa four-dimensional space. Each class has 50
points, One of the classes 1s well separated from the rest while
the other two have some overlap.

Helix 1s a three-dimensional (3-D) data containing 1004
points drawn uniformly distributed on a helix [3].

Sphere-shell [23] 15 a synthetie data set consistng of 1000
points in 3-D0 500 points are selected randomly withm a hemi-
sphere of radius 1 and rest 500 are generated in a shell defined
by two hemispheres of radn #2 and +3, such that 1 < 2 < 3.

Elongated-cluster [9] is also a synthetic data set consisting of
two elongated clusters of 300 points each in 3 space.

Ten-dimensional (10-D) nommal-mixture 15 synthetic data
containing a mixture of three en-vanate normals. [1 contaims
200 pomts from each of the normal distributions.

For ONN and MNN we used networks with one hidden layer
having 20 nodes. For FRTS and FRMA rule-based systems, we
used ten rules for all data sets. In all cases excepl SAM, we
used randomly selected 30% of the data set for traimmg and the
entire data set for wsting of the systems. We applied SAM on
the entire data set so that we can compare the genembization of
the identified system. The number of epochs for each method 1s
listed in Table 1L
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Fig. 6.  Results for 10-D normal mixture. (a) SAM output for 10-0 normal
mixture on X, (h) SAM output for 10-D normal mixture on . o) PCA
output for 10-D¥ normal mixture with training on XN and test on X (d) ONN
output for 10-D¥ normal mixture with training on 3, | and test on X () MNN
output for 10-0 normal mixture with training on X+ and test on X () FRTS
output for 10-D¥ nomal mixture with training on X andteston Y. (g) FRMA
output for 10-Dnormal mixture with truining on A . and test on Y,

B. Results

Table IV reports SE{ Iy
all data sets. In addition, the first row for each data set shows
(in bold) the Sammon’s error obtained by SAM on Yy, and

X Column 3 comesponds o0 Sammon’s error on X, when
the system 1s traned on X while column 4 comesponds 1o

Xo) and SE Ry, . X for

(R

Sammon’s error on the entire data set X when the taining is
done on Aq,..

For visual assessment of the results, we display the scatter-
plots of the projected data. Fig. 2 includes seven scatterplots of
the two dimensional outputs produced for IR1S data. In Fig. 2
and in all other figures the following numbering schemes are
used: (a) corresponds to the scatterplot of the output produced
by SAM on X+..; (b) corresponds 1o the scatterplot of the output
produced by SAM on X; (c)-(g2), respectively, comrespond 1o the
output produced by PCA, ONN, MNN, FRTS and FEMA for
the entire data set X when the tmming 15 done only on Xy,
i.e., they comespond to column 4 of Table 1'V.

For IRLS except ONN, all methods produced good projec-
tions. For ONN, although the scatierplot looks quite different
from the rest, it does separate the three classes, SE{fy, . X
is the highest for FRTS, though visually the output is gquite good.
This tells that the rule base £, is not doing a good job of op-
timizing Sammon’s error on X but, since it did a good job for
Ao i, Ky has caplured the structure inherent in the data,
the projection of X is reasonably good.

Fig. 3 displays scatterplots of the projected data for Helix.
MNote that, the orientation of the projections by SAM are dif-
ferent for ¥y, and Y [Fig. 3(a) and (b}], but the structural con-
tent remains the same. For Helix the performance of ONN is
quite poor. Table IV shows that interms of 5 & (on X and X ),
again QNN 15 the worst. The scatterplots also reveal the same.

For elongated clusters (Fig. 4) and Sphere-shell (Fig. 5) the
TS rule base (FRTS) does the best job while again ONN is the
worst. Forboth data sets SE{ Ny, KXo ) with FRTS is almost
the same as that of Sammon’s error, Similarly, SE{ Ry, A
with FRTS is very close to the Sammon error directly computed
on X by Sammon’s orginal method. This reveals that FRTS
does an excellent job of generalization (ie., achieves a good
prediction capability ). For elongated clusters although the SE
value for FRMA is not as good as that of FRTS, but both of them
are much smaller than the SE for other methods tried. Fig. 5
shows that for sphere-shell FRTS results in the best output which
not only preserves the shapes of the two classes, but it also nicely
separates the two.

Fig. 6 depicts the scatterplots for the 10-D normmal mixture
data. In this case, PCA does a very good job (both in tenms of
SE and scatterplots). None of ONN and MNN could do a good
job of projection at least for the simulations that we tried. On the
other hand, both FRTS and FRMA exhibit good genemlization
and structure preservation.

V1. CONCLUSION

In this paper, we have proposed a fuzzy rule-based scheme
for structure preserving dimensionality reduction (feature ex-
traction). It s based on the structure preserving charactenstic
of Sammon’s method and the generalization capability of rule-
based fuzzy systems. We used both the TS model with conse-
quent expressed as a linear combination of the input varables,
as well as, the MA model with height method of defuzzifica-
ton. An imitial rule base was extracted using cluster analysis.
For the TS model, the consequent parameters of these rles are
then estimated vsing LSE technigque. The antecedent as well as
the consequent parameters of the mle base thus obtained are
further refined using gradient descent. For the MA model we
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tuned both antecedent and consequent paramelers using gra-
dient search. We tested the proposed schemes on several data
sets and obtained excellent results. Our method achieved four
things: 1) unlike Sammon’s method it has good predictability;
2) computationally, it is more efficient than original Sammon’s
method; 3) it has beter predictability than some of the NN im-
plementations of Sammon’ s method; and 4) itcan detect outliers
while testing.
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