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ABSTRACT

The small sample properties of the family of blended weight chi—square
(BWCS) goodness-of-fit tests are investigated. Like the power divergence
family, this family is a very rich subclass of a more general class of
goodness—of—fit tests called the disparity tests (Basu and Sarkar 1994a). Use
of the standard asymptotic chi—square distribution in small samples can give
quite inaccurate critical regions for most members of the BWCS family. We
derive three other asymptotic approximations of the exact distributions in
order to obtain more accurate significance levels for the BWCS tests. Two of
these approximations are computationally simple to use in practice.
Numerica] comparisons are made for the equiprobable null hypothesis, for
various multinomial sample sizes and numbers of cells. Exact power
omparisons show that under specific alternatives to the equiprobable null
hypothesis there may be other members in the BWCS family that have more
Power than the commonly used Pearson’s chi—square.
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1. INTRODUCTION

Let X = (X~ X ) denote the vector of observed frequencies for k categories
for a sequence of n observations on a multinomial distribution with
probability vector ¥ = (e k) gk_ m=1 Let p = (P),Py- 2py) = (X I,

L X /n) and let 7, (7r01, ) be a prespecified probability vector w1th
T > 0 for each i and Ek ™ .-1 Several test statistics are available for

testing the simple null hypothems

Hym=m, (1.1)
There are the well-known Pearson’s chi—square and the log likelihood ratio
test statistic as well as some other less used goodness—of—fit test statistics
like the Freeman—Tukey statistic, the modified likelihood ratio statistic and
the Neyman’s chi—square.

Cressie and Read (1984) and Read and Cressie (1988) developed a
class of goodness-of-fit test statistics called the family of power divergence

statistics denoted by {IA: A € R} which contains as members the Pearson’s
chi-square, the log likelihood ratio statistic, the Freeman—Tukey statistic,
the modified likelihood ratio statistic and the Neyman modified chi—square
for A = 1,0, -1/2, =1 and —2 respectively. Read (1984a) studied small

sample properties of the I" statistics, and compared the performance of the
asymptotic x2 and three other alternative approximations of the exact

e by _
distribution of the I” test statistics in small samples under the equiprobable
null hypothesis (also known as the symmetric hypothesis):

Hpr=m=(1/k 1/k, ..., 1/k). (1.2)

An even more general class of goodness—of—fit test statistics, called
the disparity tests, which contains the family of power divergence statistics
as a subclass has been introduced by Basu and Sarkar (19942), hereafter
referred to as B&S. The disparity tests can be used to test simple as well as
composite hypotheses. In the case of composite hypotheses the disparity test

statistics are computed using the minimum disparity parameter estimators
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(Lindsay 1994; Basu and Sarkar 1994b, 1994c; Sarkar and Basu 1995). B&S
show that another subfamily of the disparity tests called the blended weight
chi—square family of tests denoted by {BWCSa, 0 < a < 1}, like the power
weighted divergence statistics, contains a member (BWCSI/B) that provides
an excellent alternative to the usual Pearson’s chi—square and the log
likelthood ratio tests for testing whether the observed multinomial variables
are sufficiently close to their null expected values. For testing (1.1) the
blended weight chi—square {BWCSQ, 0 < a < 1} test statistic is defined by

k
2nBWCS (p, r.) = nk (1.3)
@ 0 i=1

The Pearson’s chi—square (Pearson 1900) and the Neyman’s chi-square
(Neyman 1949) statistics are the BWCS0 and BWCS1 tests respectively, and
their denominators are combined with different weights to obtain all the
BWCSQ family members.

In this paper we examine the inaccuracy in using the upper percentage
points of the usual x2 approximation for the null distribution Fo(-) of the
BWCSQ statistics for testing (1.1). The significance levels produced by this
dpproximation can be considerably different from the desired nominal levels
for many BWCSQ tests. We derive and examine three other asymptotic
approximations of FE in order to achieve significance levels that are closer to
the nominal levels, for small sample sizes. We also measure their maximum
approximation error over the entire range. For various multinomial
distributions Yarnold (1970), Odoroff (1970), Larntz (1978), Read (1984a)
and Rudas (1986) gave simulation results on the error incurred in using the
standard chi—square approximation for one or more of the power weighted
divergence statistics. The specific simple null hypothesis used in our
NMumerical experiment is the equiprobable hypothesis (1.2), significance of
which is discussed by Read (1984a, p. 930). For different multinomial sample
Sizes and various numbers of cells recommendations are made on which
approximations to use to obtain most accurate critical regions for different
members of the BWCSQ family of tests. Exact powers of the BWCS  tests
4 also compared for various @ values under specific alternatives to the
€quiprobable nyll hypothesis. Exact power comparisons show that several



214 SHIN, BASU, AND SARKAR

other members of the BWCS‘x family have more power than the most
commonly used Pearson’s chi—square (BWCSO) under some alternatives.

The format for the remainder of this paper 1s as follows. In Section 2
we briefly review the disparity tests for the simple null hypothesis (1.1). We
present three alternative approximations of the exact null distributions of the
BWCS test statistics in Section 3. Section 4 contains a discussion of small
sampleacomparisons of these three approximations as well as the chi—square
approximation under the null hypothesis (1.2). In Section 5 we present exact
power comparisons for various a values under some specific alternatives to
the symmetric null hypothesis. Finally, some concluding remarks are given in

Section 6.

2. DISPARITY GOODNESS=OF-FIT TESTS

First, we briefly describe the disparity tests for testing the simple null
hypothesis. For more details for this case as well as for the composite null
hypothesis case see B&S. Let G be a strictly convex function on [~1, o) with
G(0) = 0. Then, the disparity test statistic for the simple null hypothesis
(1.1) generated by G is defined by

Dsz 2an(p,7rO)
where

k p;
pG(p’TO) = E G(W_ - 1)7(0{
i=1 "0

: -1
Letting 4= (7 ,p, — 1), we see that the Pearson chi—square statistic, the 108
likelihood ratio chi—square and the power divergence family are generated by

G(8) = &, G(8) = (#+1)log (6+1), G(6) = [(s+0) M =1/ (A(A+1)

respectively. The blended weight chi—square {BWCS , 0 ¢ a € 1} family 38
generated by G(§) = 2_152/((15 + 1). The statisticO;)G is standardized tO
2np, so that the latter converges to a chi—square statistic under the simple
null hypothesis (B&S, Theorem 3.1) and under the assumptions that G 15
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thrice differentiable, G(3)(O) is finite and G(a) is continuous at 0, where G(3)
denotes the third derivative of G. In the following section we consider the
three other approximations of the null distributions of the BWCSa tests one
of which ( F(t) in (3.6) below) is obtained under the specific equiprobable
null hypothesis (1.2).

3. APPROXIMATIONS OF THE EXACT NULL DISTRIBUTIONS

Suppose the null hypothesis HO: =1 is true. Then, by Theorem 3.1
of B&S for each value of the family parameter o, we have

Fo(t) = Fx2(k—1)(t) +o(l) asn-o (3.1)

for all t, provided k is fixed. Let sz(u)
with v degrees of freedom. The chi—square distribution sz(k—l) is the usual
approximation used to compute critical regions for the well-known Pearson’s
chi—square and the log likelihood ratio test statistics. Following Read
(1984a) we present three closer “approximations to Fg. The first is the
moment corrected x? distribution whose mean and variance agree to the
second order with those of FE, and is defined by

(+) denote the x? distribution function

F(t)=F (1)) (3:2)

2k—1
where x)
¢,= (kD)L —=d}/? + n7ha d =1+ [n(2(k-1))] b,

with

a_= of~S +3k — 2) + o(3S —6k + 3),

b=(2—2k -1 1 g) 4 a?(39S —9k® ~66k +36) + (—18S +6k + 36k —24)

and § = Eli(:lwdil - The terms ¢ and d_are the asymptotic means and
Variances of the BW(CS tests tg the or(zier o(n’t). We derive the above
?Xpressions using equatign (5.1) of B&S. The expectations of the terms
"volved in the equation (5.1) of B&S can be found in Read and Cressie

(1988, Appengiy A11).
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Using a general asymptotic probability result for lattice random
variables of Yarnold (1972), Read (1984b) derived the asymptotic expansion

of the null limiting distribution of the 1} statistics under the hypothesis

(1.1). Let wj = 111/2(pj - 7r0j), j=1,2,... k. The normalized vector W =

(Wl,...,Wr), where r=k—1, takes values in the lattice
L= { w=(w1,...,wr): w= n1/2(n—1m - 7r0) and me M }
where = (7r01,...,7r0r) and M = {m = (ml,...,mr): m;, j=1,...,r are

nonnegative integers satisfying Egzlmj <n }. Following the method of Read
(1984b), we exploit Theorem 2 of Yarnold (1972), which gives a useful
expression for the probability of lattice random variables belonging to an
extended convex set B (for the definition see Definition 2.1 of Read 1984b),
and derive an approximation of the exact distribution function Fo(t) of
2BWCS (p, 7,) up to the order n°! by considering the extended convex set

Ba(t) = {w =(W1,A..,wr): 2nBWCSa(n-1(m, m,); 1rO) < t} (3.3)
where
_ —a1/2 p 1/2 7
W= —Z‘;___le, m=n"2g 4 ¥, m=n / LR L
Using a fourth order Taylor serie.s expansion of 2nBWCSa(p, TO) (as a
function of p, around 7r0i) we get the following.

THEOREM 1. The asymptotic expansion for the distribution function FE(t) of
the 2nBWCSa(p,1rO) i given by

F(t) =30+ 35+ I3+ o(™%?), (34)

where J‘;, J;’ and J;’ are d

efined by Jl' J, and J, respectively in Theorem 2.1
of Read (1984b) with B =

B (1) defined in (3.9). Furthermore,

J% = 1
1= gyt + m{ 2(1~S)FX;,,(I(_1)(1;) +

2
[3(35-4%-2) ~ 18(54%) o AS-3K"+2k)a” IF 5, () +
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[ ~6(25-k*—2k+1) +12(45-3k* -3k +9) o +
18(~35+3k”+2k—2) o? P afeag)(t) +
[(96" 6+ 1)(58-3K2-gk+4) IF sy (1) }
and an approzimation of J ‘2’ to the first order is given by
j;z { Na(t) _ n(k—l)/2va(t) H e—t/2(27m)—(k-1)/2Q—1/2}

S S B
where S= Ei:lﬁm, Q= Hi:lwoi’

N (t) = number of multinomial X vectors such that 2nBWCS(p; ) <t

Va(t) = the volume ofBa(t)

~ (e, {HM} (a2

ey )@ 200 (k+1)

By Theorem 2.1 of Read (1984b) the term Jg is O(n™). Since the
members of the family of 2nBWCS (p, 0) tests are asymptotically

®quivalent (Bg&S, Theorem 3.1) we have n(J J) o(l) as n - w.
Therefore, a1 {pe a-dependent terms in J" are O(n /2 ). In view of the
€xpansion ip (3.4), .] can be regarded as independent of a. Because the

evaluation of J is complicated in nature (see e.g. Yarnold 1972, for J3) as
Was done by Read (1984b) in the case of power divergence goodness—of—fit

Statistics, we ignore the term J;in (3.4) and as a closer approximation of
F (t) than 2k 1)(t) we propose to use:

= J2 4 jo 3.5
Fy(t) =37+ J5. (3-5)

We derive the third approximation of the exact null distribution of
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the BWCSa test for the situation when the number of cells k increases with
the sample size n. We assume that n/k - a for 0 < a < o fixed. In such
situations the asymptotic null distribution of the BWCSa tests is normal. In
the case of the Pearson’s chi—square and the log likelihood ratio statistics
Koehler and Larntz (1980) examined the applicability of the normal
approximations for moderate sample sizes with moderately many cells. Under
the symmetric null hypothesis (1.2), using Theorem 2.4 in Cressie and Read
(1984), which follows from Holst (1972), with

[ -1
Ex) =—
o =) + (1-o)

it can be shown that F(t) = F(t) + o(1) asn - w, where
-1
Fio(t) = P{N(0,1) < o (t—1 ) }, (3.6)

N(0,1) denotes a standard normal random variable,

2
_ [(Y/a) —1]
= “E{ o(Y/a) + (1-a) }

and

Ur21 = a2k{var[ a([ﬁ({Yé?L—&i) ] — aCov? [Y/a, aE‘E/Y;/L{)i)—F;(i]‘Z) ]}

for0¢a<1,andYisa Poisson(a) random variable.
4. SMALL SAMPLE COMPARISON OF THE APPROXIMATIONS

Among the three approximations F,, F  and Fg, Fo 18
computationally the simplest and Fy is the next best. In our comparative
study it is shown that F provides the best approximation if compared across
the enti et rihngs ) .
o I?f.lr&‘,“ dlStIlbl?thIl FE’ but FC emerges as the best choice 1
Pproximating the right tail of Fp.- This fact together with its computational

ease, makes the use of FC in place of the standard F 9 desirable as well
as practical for most BW(S tests x2(k—1)
o .
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In our numerical study all comparisons are made under the null
hypothesis (1.2). For any fixed n, k and &, we compute the exact null
distribution ¥ following the procedure described in Read (1984a, Sec 2.1).
We use two methods to measure the approximation errors associated with
the four approximations sz(k—l)’ FC’ FS and FN for small sample sizes. The
graphical results that we present here correspond to n=20 and k=5.
However, we studied all the combinations (n,k) for n=10, 15, 20 and k=2, 3,
5, and the corresponding results are discussed in Section 4.3.

4-1. Comparison of the Upper Percentiles of FE’ sz(k—l)’ FC’ FS and FN

We compute the 90—th and 99—th percentiles of Fp, Fx2(k—1)’ Fo, Fq
and FN for various multinomial distributions with parameters n, k and » =
%= (1/k1/k,...,1/k). For v = 0.10, 0.01 and for i = E, x2(k-1), C, S, we
compute t7,i such that
t ;= min{t: Pr(U < 4] > 19}, (41)
where U has the distribution F.. Once the terms ¢ , d , u and g are

calculated, the 100(1—y)~th percentiles t7C N of F, and Fy

i 1/2 _
Tespectively are computed as t c=Ct da/ t ey and t'r,N = /Jr} +
7,2, Where 2, 15 the 100(1—y)—th percentile of the N(0,1) distribution.
Calculation of the percentiles of F. and F¢ involves consideration of all

n+k-] . . .
k-1 | POssible multinomial vectors.

The 90—th and 99-—th percentiles of the five distributions are
lustrated in Figures 1 and 2 for a € [0,1] and (n,k)= (20,5). In the figures
CV—CH], CV-E, CV-C, CV-S and CV-N respectively denote the
Percentiles of FX2 1y Fp Fo Fg and Fy. The solid horizontal lines

TPresent the percentiles of the x%(4) distribution. The percentage points of
especially at

and t
v

Fg and F . approximate those of F much better than F ;,,
the 10% Jeyel. The approximation F, performs well at the 1% level.

{2 Mezimym Approzimation Error

In the previous section, we have compared two right tail percentiles of
the five distributions. In this section, for a fixed (nk,a) we compare the
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Critical Value

alpha

Figure 1. True and approximate critical values for the equiprobable null
hypothesis at the 10% nominal level (n=20, k=5). In the graph CV—CHL,
CV-E, CV-C, CV-S and CV-N denote the critical values corresponding t0

sz(k—l)’ FEv Fc: FS and FN IESpeCtiVEly.

worst error made across an entire approximating distribution in estimating
FE' It is called the maximum approximation error and following Read
(1984a, Sec 2.3) is defined by

n’

M, = mix [I*‘E(2nBWCSO‘(x ™) — Fi(.‘anWCSa(E, T(‘)))l (42)

for a fixed a and i= x2(k-1), C, S, N, where BWCS (-,-) is defined in (1.3)
4
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Figure 2. True and approximate critical values for the equiprobable null
hypothesis at the 1% nominal level (n=20, k=5). In the graph CV—CHI,
CV-E, CV—C, CV—S and CV—N denote the critical values corresponding to

FX2(k—l)’ Fo ¥, Foand F respectively.

and x represents the observed value of the multinomial random vector X.
The sign associated with the maximum difference M, is also recorded. The
results for n=20 and k=5 are graphically represented in Figure 3 where Mi’
i= X¥k~1), C, S, N, are denoted by MCHI, MC, MS and MN respectively.

In general, the maximum approximation error is minimum for FS.

4.3 Conclusion

On the basis of the findings in Figures 1-3 and the other (nk)
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Figure 3. Maximum approximation errors for the equiprobable null
hypothesis (n=20, k=5). In the graph MCHI, MC, MS and MN denote the

maximum approximatio g ectively.
pp n errors for sz(k_l), Fc, Fs and I‘N respectively

combinations that we studied numerically, we can make the following
observations. In general, it appears that the range of a values where the
limiting chi-square distribution reasonably approximates the critical values
of the exact distribution for moderate values of n is [0, 0.4]. For small to
moderate sample sizes the use of the chi—square critical values to
approximate the exact critical values is not recommended outside the above
interval. In such situations one may use Fg or Fyy Fy may also be used if k
is moderately large. On the whole, however F.is the best choice when one
takes into account the computational aspect of the three approximations.

The BWCS 173 Statistic, which belongs to the acceptable range of @
values [0, 0.4], has been recommended by B&S to be a good alternative t0
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Figure 4. Histogram of exact distribution for the 2nBWCSl/3 test statistic

(n=10, k=5) together with the X2(4) density.

t.he usual goodness—of—fit tests like the Pearson’s chi—square and the
likelihood ratio statistic. In Figure 4 we also illustrate how well the right tail
of the exact distribution of the BWCSI/3 test statistic is approximated by
F (k1) for n=10 and k=5. The height of each bar in the histogram equals
Fhe €xact probability that the 2nBWCSl/3 statistic belongs to the particular
Interval.

5. EXACT POWER COMPARISONS

In the last section we discussed how one can obtain excellent

#PProximations of the exact critical regions for members of the BWCS
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TABLE I
Exact Power Function for the BWCSa Randomized Size .05 Test (n=20,

k=5).
-
5
e
o 15 0.5 0.9
-
1.00 0.2574 0.0785 0.5893
0.90 0.2574 0.0785 0.5893
0.70 0.3853 0.0839 0.5739
0.50 0.5627 0.1024 0.4485
0.30 0.6366 0.1120 0.3777
0.10 0.6907 0.1211 0.2851
0.00 0.6997 0.1228 0.2720

statistics. In this section we present small sample powers of the BWCSQ tests
for testing (1.2) against

Hl: .=

~ 6f(k— i=1,2,... (k—
{ {1 /(k—-1)}/k 1,2,...,{k-1), (51)

(1+8)/k i=k,

where —1 < § < k—1 is fixed. We have computed exact powers for three
alternative hypotheses defined by 6 = —0.9, 0.5 and 1.5, as in Read (1984a)-
For a multinomial distribution with n=20 and k=5 we compute the
randomized BWCS _ tests of size 0.05 for o = 0.00, 0.10, 0.20,..., 1.00. The
results are presented in Table 1.

Table 1 shows that the exact power of the test statistics increases as
increases when § is negative. In such situations, therefore, the Pearson’s chi~
square is the least powerful test within the BWCS family and tests with
higher values of & will perform much better. However, when § is positive the

eXéCt power of the tests decreases with a and in such cases the Pearson’s
chi—square will be the most powerful test.



SMALL SAMPLE COMPARISONS 225

6. DISCUSSION

In this paper we have studied the properties of the BWCS family of
goodness—of—fit tests in small samples. By studying the equlprobable null
hypothesis we have recommended range of « for which the exact distribution
of the goodness-of—fit tests may be reasomably approximated by the
chi—square distribution. Three other approximations are provided for the
exact distributions of the statistics which often produce better results when a
lies outside the iuterval {0, 0.4]. In particular, we recommend the use of the
moment corrected chi—square distribution FC which appears to be the
optimal choice when the accuracy of the approximation and the

computational case are both taken into consideration.
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