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1 Introduction

In this note, we consider the problem of identifying the extreme points of

WWo particular convex sets, one associated with a finite von Neumann algebra

tquipped with a faithful normal tracial state, and the other with such an algebra

id a von Neumann subalgebra. (For work on similar problems — pertaining to

Efllezset of cxtreme points of certain sets of maps on operator algebras — scc
:2,5])

To be precise, let M be a finite von Neumann algebra equipped with a faithful
tormal traciaf state (henceforth denoted by ‘tr’) and let D(M ) denote the set of
tormal, unit.+f, completely positive self maps of M which preserve tr. Then D(M)is
dconvex set which is compact in the topology of pointwise a—weak. convergence,
and 5o the sci 0,(D(M)), of extreme points of D(M), is non-empty. This is one of the
o sets we are interested in. Taking a cue from the Birkhoff-von Neu.mann
theorem, on. might conjecture that, at least for “good” M, 6,(D(M)) consists of
Precisely the sutomorphisms of M. We show that this conjecture is valid when M is
healgebra 17(2, K) of 2 x 2 matrices over K, where K = R or €, and invalid when
M=M(n,R), n=3 and M=MnC.nz4 .

Next, let N be a von Neumann subalgebra of M, with M as above, and consider

tie convex seq
K(M,N) = {xeM:x 20, Ey(x) = 1},

Where E denotes the unique trace-preserving conditional expectation of M onto
N. Thig set is clearly convex, and will be g-weakly compact prOV}ded N 1§
Wficiently ‘ample’ in M. (For instance, if M and N are (necessarily finite) factorsf
d if the Jones index [M:N7 is finite, the above compactness holds because o
2 basic inequality due to Pimsner and Popa which states that, in this c;sc.
'S[M:NTE,(x) whenever xe M and x = 0. In the just dlsc‘fsls?d A W1 i;}
"and N are finite factors and the Jones index [M:N] =t "is finite - we shé
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find it more convenient to change normalisations and consider the set
C(M,N)=1tK(M,M)={xeM:x 2 0, Ex(x) =1} .

It is not hard to see that any projection in C(M, N} is necessarily an cxtreme
point of C(M, N). As is well-known (see [6, Corollary 1:8]), projections in M with
conditional expectation equal to t are precisely the Jdpes proicctions which
implement the conditional expectation of N onto a subfact@ 2 such that N = Mis
the result of applying the basic construction to the.p & P = N. Thus the set
C(M,N)n2(M) is a well-studied object. Here and @s8Where, we use the symbol
#(M) to denote the lattice of projections in M. We obtain an upper tound for the
trace of the support projection of any extreme point of C (*, MY which sufiices to
prove that C(M, N)n 2?(M) = 0.C(M, N)in the special case when © = 3. We also
show, by example, that the equality C(M, N)n P(M) = ¢,0(M, N)isnot vabd in
general, for [M: N ] = n* n > 1. We however leave open the possibiiity of equality
when N'n M =C.1.

2 Markov maps of M(2, K)

Throughout this section, M will denote a finite von Neumatun algeban, with
a distinguished faithful normal trace denoted by tr. By a Markouv imap of 1. we shall
mean a normal completely positive linear self-map L: M — M which prosurves the
identity of M as well as the trace tr —i.e., L(1) = 1 and tr(Lx) = to v for eIl vin M.
We denote the set of Markov maps of M by D(M). The terminology ‘Markov map'
is inspired by probabilistic considerations.

When M = C", withtro = a; + o, + . . . a,, it is seen that Le D{M if and only
if there exists a doubly stochastic matrix D = [d;;] such that (La); = )_,¢,;%; for all
xeC". (This example is the reason for our use of the notation D(M ) fur the set of
Markov maps of M.) It is the content of the Birkhoff-von Neumann theorem that
the extreme points of this set are the permutation matrices; in other words.
0.(D(M)) is precisely the set of automorphisms of M in this case.

When M = M(n, €), it is known that a linear self-map L: M — M Is completely
positive if and only if the matrix [L(e;;)] is positive, where {e;;} is the usual set of
matrix units in M(n, €). For L as above, let us write I;; = Lic;;}: note that if
x=[&;) then Lx =¥, &;l;; so that L preserves the trace if and only ik for al
[&;], we have ) &, =3 &;trl;, which clearly happens if and only if trly =
0i;Vi, j. Hence an equivalent description of D(M(n, €)) is as the sct

{L = [lijli<ijen:lijeMn, €©), L 2 0, trl;; = &y, Z ;= l} .

Definition 2.1. Let K be R or €. Let L = [[;] be an nxn matrix of matrices
li_fe_;yl(n, K). Motivated by the above discussion, we say L is a Markotr map if it
satisfics the three conditions:

(1} (complete positivity) The n* x n* matrix [1;;] is positive semi-definite.
(i) (identity preserving) > " I; = | '

(itl) (trace preserving). trl;; = ;.
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In this section, we shall investigate the extreme pomts of D(M(n, K))forK = R
@ First we need some definitions:

Definition 2.2, A positive semi-definite (square) matrix is called a correlation marriv
il all 1ts entries on the main diagonal are equal to one. Let K, denote the set of n x n
correlution matrices with entries in K(=R or Q).

Detinition 2.3. A Markov map L = [1;;]is said to be an inner automorphism if there
CMSEs o unitary matrix 4 U(n, K) such that li; = e U forall | <, J < n. where

¢, are usual clementaryg@matrices (standard matrix units).

IUis clear that if M = M, KL withK =R or €. and il 4¢ M is a correlation
matrix. then the map
LiM-M

X—A4- X

defines an element of D(M) (where - denotes Schur or Hadamard multiplication:
L b VNGT = La X)) s also clear (by taking X ¢;;. 1 < i j < n, the clemen-
tary s trix units) that the only way weean have L,(N) - UXU* forall X ¢ M. for
some wiitary U in M s for U (o be a diagonal unitary and A to have rank onc.
Namels, U = diag(m,). where m; are numbers in K of modulus one. and

B [m,mi],

Lemma 24, Let M = M(n. Ky with K = R or €. and et AeM be a correlation
mairin. hen
Lyec DMy =>Aec (K,).

where K, ds defined above in Definition 2.2.

Prooj - We shall show that there exist (LT o DIM)such that £, = Ry
where 0, €10, 1] for all k and Y0, 0= 10if and only if there exist AL . .. A,
K, ~uchthat Ly = Ly, and 4 = Do, Oy

We only need to prove the only if* part of the above assertion. So. suppose
L _\;’k" VO Ly 0,€[0.1] for all k. and \_A” yOe=1Tet jej7, ) denote the
standard set of matrix units in M. For cach fixed i = 1.2, .. .. n. we have

e = Lyle,) = Z O Lyley)
Ao

Since vy, is a rank projection and /7, is a Markos map. 1t follows casily that
Litey=¢iforl <k <m and 1 <i<n.

Next. fix 1 <4, j < nand note that for cach k = 1. 2. . mowe have:
s :,( Ltey) ”‘*“'u’) 20
Ci ) T Lite,) Lyte,)
thy
=30 e K such that Liter o . (h
okt

"
Henee 2,0e,,) = Ay e, for all i, j. where 4, - lang 1w, I and F]““ loo 1y
Since J (the matrix with all entries cqual to onel s positine semidefinite. it follows
that
A Lgthy=100) -0

Lo Ao K,oand the proof is complete.
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Proposition 2.5. Let M = M, R,rn=30rM=MnChn=z 4. Then, there exist
extreme points of D(M) which are not given by inner automorphisnts of M.

Proof. Tt is known, cf. [2], and [3], that (in the notation of the last lemma) K,
contains extreme points of rank greater than one when K =R, n 2 3 or K=C,
n = 4. The Lemma 2.4 and the remarks preceding it complete the proot. O

We next look at 8,(D(M(2, K))) for K = R or C, and the main propusition is

Proposition 2.6. The set of extreme points 3.(D(M (2, K))) is precisely the set of inner
automorphisms, viz. the set

{L: [:lij]:lij: UeijU*, where Ue U(Z.K)' .

To prove this proposition, we need scme potation and a couple of lemmas. By (i),
(ii), (iii) of Definition 2.1, if Le D(M },

(i) the matrix
def A C
L=[lij]=<c* B) 2

is positive semi-definite as a 4 x4 matrix in M(2, K). In particular A4 and B are
positive semi-definite.

(i) A+B=1.

(i) trA=trB=11trC=0.

It is well known that if B above is nonsingular, then the matrix

A C
C* B
in (2) is positive semi-definite if and only if
A>=CB 'C*. €
Now since A is positive semi-definite of trace 1, we may write it as
1
A:AM:(Z,P ) @
€ 3+ p)

where peR and eeK are numbers satisfying p? + |¢|> < } since det 4 = 0. Thus,
by (ii) above,
1 _
B=1—A=<2+-p , 8)
—& I1—p
which clearly implies that
AB = det A = det B G)

so that B™! = (det A)™! 4, if A (equivalently B) is nonsingular. Combining this
with (3), we see that if 4 is non-singular, then the matrix (2) is positive semidefinite if
and only if

CAC* < (det A)A .

Definition 2.7. Let us say that a trace zero (cf. (iii) above) 2 x 2 matrix C is 2 det
A-contraction if CAC* < (det 4)A.

Lemma 28, If Led (D(M(2,K))), then A is singular.
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Proof. Let us assume, to the contrary, that det4 + 0, which implies by the
positivity of A4 that det 4 > 0. We will eventually show that L can be expressed
as a nomn-trivial convex combination of two Markov maps. We first make the
following: ,

Claim 1. If Ue M (2, K) with tr U = 0, then
U=u, (2 g) Ut (6)
for some U, e U(2, K), where «, BeK; further [a), |f] < 1 = Ul £1.
The proof is quite elementary, and we omit it. O
Claim 2. Tf A is nonsingular then C is a det A-contraction if and only if
C = A*UB? )

where U M(2,K) is a (det I-) contraction, tr U = 0 and B=1 — A as above.

We have remarked above that det 4 = det B implies that B is also nonsingular,
positive semi-definite, so the square roots of 4 and B make sense. Now by the
hypothesrs on C, and the fact that B~ = (det A)~'A4 by (5), we have

CAC* < (detA)A

< C(det A) " *A%A%(detA) *C* < 4

(A *CB *)(B™iC*4*) <1
which is equivalent to U = (4~ *CB %) being a contraction. This implies

trU =tr(4"#CB™ %)
= (detA)"*(tr (A ~*CA?))

=(detA) *(trC) =0

since C has trace zero. This establishes the Claim 2. (]

Claim 3. If L is extreme, A is nonsingular and U is as in Claim 2, then U e U (2, K).

This follows from Claims 1 and 2, and the fact that the extreme points in the unrth
disc have modulus one.

Thus we assume henceforth that C = A*UB?, where UeU(2.K), trU =0 and
B=1-—- 4. We can further assume, by Claim 1, that

v=(; 3)

and from Claim 3, |o| = |B] = 1.

Now define: Lo
o« 0 (8)
4 (o 1> <0 lf)

Clearly, 17 and W are in U(2, K).
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Further define
IZI 1 _ A% 0 Ve“V* Velz I/* All 0
éx B,) \o BY)\Veyv* Venv*J\0 B
A, G\ _ (4 0 (Wer W™ We21W* <A* o)
Gy B,) \0 B\ We, ,W* We, W 0 B*

We now make the following assertions:

S T

- \_/

Claim 4. (a)_trC; =tr C, = 0.
(b) 4,20, B;z0fori=12

()1>t—trA1 trB1>0
d1>(1-t=trd, = tr B, > 0.
(e)detA——detB:Oforl=12
f) A= A1+A2

(g) B= B1+Bz

(hy C= C1+C2

@t —A1+B1,tasm(c)

() (1 —t)I = A, + Bs.

trC, = tr(A*Ve,, V*BY)
= tr(Ve,, V*B*A%)
— (det AY: (tr Ve,, V*) by (5)
= (detA)*(tre;,)=0.

Similarly tr C, = 0, proving (a).
By definition,

= (A%V)ey, (A*V)*

which is positive semidefinite since e, is. Similarly for A,, By, B,, proving (b)

Since Al and B1 are positive semidefinite, and not equal to zero (by the proof of
(b), since A*V, B¥V are nonsingular), their traces are strictly positive. To show their
equality, note

tr B, = tr(B*Ve,, V*BY)
=tr(Vey,, V¥B) = tr (V(I — ey,) V*(I — A))
=1—tr(VV*A4) + tr(Ve, V*A)
=11+ tr(AVe, V*A ) =trd, =1t.

Similarly tr A2 =tr Bz > 0. The fact that this is (1 — t) and hence that t <1 will

follow from tr 4 = tr B = 1 and (f) and (g). This proves (c) and (d).
By definition

det A, = (det A)(dete,,) = 0 = (det B)(det e5,) = det B; -
Similarly for A,, B,, proving (e).
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Computation shows that (using the Definition 8, and |a| = |B| = Ly
Ve, V* = We,, W* = e i=1,2
Ve, V* = qe,,, Wey, W+ = Pes, .
It follows that: |
A +4,= AXVer, V¥ 4 Weyy Wy gt = 4
Similariy,
By + By = Bt (Ve,, 1+ + We,, W*)B* = B
Ci+Cy= AX(Vey, ¥ + We,, W*)B?
= AUB* = C

where the last line follows from Claim 3. This proves (f), (2), and (h).
Since by 75],

it easily foilows that
A1 By = (4%Vey, V*4¥)(BHVey, V*BY)
= A¥Vey (det d)er, V* = 0= 5, 4, |

Thus 4, and B, are positive semidefinite commuting matrices. This means 4, and
B; can be simultaneously diagonalised. Since, by (b) trd; =t=1trB, and by (5),
det 4, = det 1§1 = 0, and since 4; B, = 0, we can write the simultanequs diagonal
forms of fL and I§1 as diag(t, 0) and diag(0, r) respectively. So these simultaneous

djagong] forms add up to tI. Thus Ay and B, also add up to tI. Similarly

A2+ B, = (1 — 1)I. This proves (i) and (j).

Now we are ready to prove the Lemma 2.8. In terms of the definitions of (9) and
tas in (¢} of Claim 4 above, let us define:

A1 = l_l/ziil, BI = [_IEI, Cl = t71€1
Ay =0 —1)"'4y, By=(1—1)"'B,, C, = (1 — 1)~ ' ¢,

def (A, Ci

= fori=1,2.
Cl* BE

i

First let ys see that L, for i = 1, 2 are Markov maps. From the last two equat'ions i'n
), it follows that L; are positive semidefinite. From (@), (c) qnd (d) of Clzm.n T'”
ollows that tr A;=trB;=1, trC; = 0. From (i), (j} of Claim 4. it follows that
4+ B = I This shows L,e D(M(2, K)) for i = 1. 2.

From (f), (g), (h) of Claim 4, we have

A C
L (C* B> 1
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It only remains to show that L, + L,. But if Ly = L,, we have 4, = A, which
implies . .
(1 - t)Al = tAz

= (1 — t)A¥Vey, V*AY = 1A Wey, W*AR
=1 —1)e;; =tey,=>t=0,(1—-1)=0 '

which is clearly a contradiction. This proves Lemma 2.8. O

- A C
“\C* B

be a Markov map which is extreme. By the preceding Lemma 2.8, we have ﬂlatj A is
singular of trace one, as is B. Since B = I — A, we may assume, after o unitary basis
change that

Proof of Proposition 2.6. Let

A=€11,B:€22.
Thus, if U denotes this unitary

 _ (UenU* UCU*
T\UCH*U* Ue,y, U*

where C' = U*CU. Now since L is positive semidefinite extreme,

I e;; C
C'* €25

is also positive semidefinite extreme. Since 0 occurs in the 2-2 and 3-3 diagonal
entries, this positivity implies that the whole second and third rows and columns

are zero. Thus
c (%7
0 0

and |y| £ 1. Now if |y| < 1, it may be written as
Wy + w,

2

. L
where |w;| = 1. This would force L' =

L= e G =12
e en) T

where C{ = w;e;, for i = 1,2, contradicting the extremality of L. Thus |7 = 1
Now another unitary change preserves e, e, but converts C’ = ye;, to e12- This
shows, by the Definition 2.3 that L is an inner automorphism. The Proposition 2.6
is thus proved. =
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3 Extreme points of C(M, V)

Throughout this section, we assume that N ¢ M is an inclusion of finite factors
such that the Jones index 17! = [M:N] < 0. We write E for the unique trace
preserving conditional expeetagign of M onto N. Also we reserve the symbol e for
the ‘Jones projection’ of ~L2(M,/ﬁ"‘)m onto L2?(N, tr); recall that the von Neumann
subalgebra M, of & (L*(M, tr)) generated by M and e is again a finite factor, such
that Ep(e} = 7.1 and that eme = (Em)e for all m in M.

As in the ‘ntroduction, we define

C=CM,N)={xeM, Ex=r1}.

Since Ex > txforallxin M ., [6], it follows that xe C=>0 < x < 1,and hence Cis
4 compact convex set in the g-weak topology. Since any projection in M is an
extreme point of the set of positive contractions in M, the following inclusion is
evident:

PM)nC<é,C. (10)

This ¢=ction is devoted to the study of 8,C.

Lemma 3.i. Let pe #(M). Then,
i) p A e = poe, where po = 1y1;(Ep)e Z(N); further po = p and tr (p A €) = 1trpo.

In particuiar, trp > 1 — 7=>po + 0.
() If Ep is invertible, then

pAet=p(l —(Ep) te)p;

in general - i.e. even if 0esp (Ep),
tr(p A e'L) = trp + Ttr 1{0}(Ep) - 7.

(Here and elsewhere, we write 14(x) for the spectral projection of the normal operator

X corresponding to the set A.)

Pr (i
00f of (i) pAe=s— lim (epe)"

n—>w

= s — lim (Ep)"e

n— o
= Po€ -

Now,
p=p A e=poe=PPo¢

= po = PPo

=>Ppo=P-

Finall
Y trp>1__T=>tr(p/\e)>0.

This proves (i).
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Proof of (ii). Compute thus:
petp=p(l —e)p=p— pep
(pep)* = p — pep — pep + pepep
= p — 2pep + p(Ep)ep .

An easy induction argument then shows that
n /n . H
(pep)' = p[l + 2 (=1 <k> (Ep) "¢ ip (11)
k=1 B,

=p[l + Y. (Ep)elp.
where

wio= 3 () e
k=1
—n t=0
(1 =ty —1
t

t+0.

Since 0 < Ep < 1, it would follow that |1 — ¢| < 1 whenever e <p Ep an.d t=0.In
particular, if 0 ¢ sp Ep, it follows that the sequence {,(/~p)} converges 1n norm to
—(Ep)™%; hence

p A et =w—lim(pe'p) = p[l —(Ep)”'e]p

In general, even if Oesp Ep, we find on taking traces in (11), that

tr(petpy =trp+ ) (—1) (Z) tr(p(Ep) el
k=1

=trp+r1 Zn; (— 1) <n> tr(p(Ep)™1)
k=1 k

/

=trp+1y (—1F <n) tr(Ep)
k=1 k

=trp + ttr{(1l — Ep)" — 1] .

Now, {(I — Ep)'} converges weakly to 10,(Ep), and so,
tr(p A et) = limtr(petp)’ -
=trp + ttrlo(Ep) — 7. -

. i re
(Actually, we will not really need (ii) in our further arguments, but gave it he
as it is a natural complement to (i).)

Proposition 3.2. x€0,C=trl,,(x) = .

. 1,80
Proof. Fix & > 0, and put p = 1, ;)(x) and p, = 1,4,(Ep). Suppose trp = 1=5
Po F 0. Then

PoeP(N)=[M,;:N,, ] =[M:N]>1
=13y = y*e M, such that y & 0 and Ey, Y =0.
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Then E;y = 0, because ze N = tr yz* = trp, ypyz* = tr YpPoz*po = 0. Without loss
of generality assume that ||y || < & Define x, = x + y. Then

Eyxy =tand |y|<epy<ep<x.

So x4 =0 Therefote‘,"mxi eC::,ﬂ and x=2* i x_. Thus, for all &>0,

e (xS 1 -1 So, trig ()21 -z 0
Coroliary 3.3. If[M:N] =2, then §,C(M,N) = C(M, N)n 2(M).

Proof. Here, C = {xeM,:Eyx =1%}. The map x—1 — x is an affine isomor-
phisms of C onto itself. (This is the only step where the hypothesis [M:N] = 2 is
used.)
Thus
xed,C=1—-x€0,C.

Therefors, if xe 0, C and if p = 1;4;(x), we find tr p 2 7, since p = 1,)(1 — x) and the
Proposition 3.2 applies. However, x = p while

trx=trEyx=1=trp.

So,x — p=0and tr(x — p) £0.So x = p. U

Example 3.4. Let M = M(n%, €)~ M, C)® M(n, €) and let N=Mn CO®
L M. Thus,

Then, [44:N] = n? and
E[A;]=[6;A4]
where 4 = % zn: A;;. Thus, in this example,
i=1
o {[A,»,»] go:é A,.,.=%-1} .
Let {e;;: 1 £ 1i,j < n} be the usual system of matrix units in M(n, €), and define
ey = % [e;] -
Then e,, e ?(M)and E(eo) = % It follows from [6] that if pe Z(M) n C, then there

eXists a u in U(n, €) such that
1 .
[p;] = diag(u, u, . . ., ¥) (; [e,‘j]>d1ag(u*, wr )

Wwhich is to say

1 .
Dij = ;1‘ ueiju* v’a.] .



648 e R. Bhat et al.

Thus, p = [ p; 1€ Z(M) ~ C implies tr p;; =0 for i + . o Lif x = [x;;) belongs
to the convex hull of (M) C, it must be the case that trx;; = 0 for i . Since
|

=—JeC
a=-;J€

where J is the matrix with each entry being the identity matrix, the above
observation, in conjunction with the Krein-Milman theorem, impiies that

0.C+ CnPM).

Thus the equality 6,C(M, N) = #(M)nC(M, N ) need not hold in general
However, it is conceivable that perhaps this equality holds in general under the

additional hypothesis that N'n M = C.1. |
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