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Abstract

In a certain class of two-parameter exponential distributions, we consider
minimum risk point estimation problems for one of the parameters. We pro-
pose to implement the sequential procedure of Bose and Boukai (1993) in
smaller “pieces” along the lines of Mukhopadhyay and Sen (1993). Unlike
the fully sequential procedure, one can obtain an unbiased estimator for the
variance of the stopping number in a piecewise methodology. On top of this,
the asymptotic second-order expansions of the regret functions for both the
piecewise and fully sequential estimators are same up to o(1) term and the
piecewise sampling scheme is operationally more convenient. The effect on

cost due to parallel processing is also discussed.

1. INTRODUCTION
The idea of a piecewise sequential methodology has been recently intro-

duced in Mukhopadhyay and Sen (1993).  Various associated second-order
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asymptotics in general and their applications in a few specific estimation prob-
lems had been incorporated in Mukhopadhyay and Sen (1993).  Bose and
Boukai (1993) discussed a purely sequential estimation procedure for one of
the parameters in a fairly general class of two-parameter exponential family of
distributions. To be specific, under a loss function that is given by a certain
weighted squared error plus linear cost of sampling. Bose and Boukai 11993)
introduced a purely sequential minimum risk point estimation methoedology
for one of the parameters in two-parameter exponential distributions and ob-
tained asymptotic second-order characteristics of the average sample <ize and
the “regret” function. Bose and Boukai (1993) had fully exploited and ex-
tended the machineries found in Woodroofe (1977, 1982). In this note, we
examine how operational convenience can be brought inside such purely se-
quential techniques by invoking the ideas put forth in Mukhopadhyay and Sen

(1993).

Let
f(2:) = a(z)exp [0,01 (2) + 00, () + C(@)] , (1.1)

0= (61,02), be a probability density function (p.d.f.), with respect to Lebesgue
measure on R, of a regular two-parameter exponential family of distributions.

Sce Brown (1986). The natural parameter space © is defined by

-c(§)
0= {0 eR?:e Y = /a(x)cxp[oll}] (z) 4 0, ()] dr < m}
so that ©° =interior of ®, which is assumed to be nonempty. It is well knowsn
that for any ¢ € ©, the random variable /= (U} l/;) has moments of all orders.

In particular, one writes

EyU) = (1, pa), e = —0c(9)]00;, i=1,2 (12

and

Vo(U) = (03;) 01 = —0%c(9)/00:00;, 1,5 =1,2. (13

Here, V3(U) is the associated positive definite variance-covariance matrix.
Let Xi, ..., X,, ... be a sequence of independent and identically dis-
tributed (ii.d.) random variables having the p.d.f. given by (1.1). Let
Tin = i1 Ui (X;) and denote by Ti,,i = 1,2, the usual averages. The
joint distribution of 75, = (T1:n, T2:x) is a member of the same t wo-paramete!

exponential family (1.1) where
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E{,(Tn) = (np1,ns), V,,(Tn) =(noy;), 1,7=12. (1.4)

Bar-Lev and Reiser (1982) considered a particular subfamily of (1.1) that
is characterized by the following two conditions which we assume to hold
throughout.

Assumption Al. The parameter 8, can be represented as 8; = —0, ) ()
where X (p2) = 0 (p2) /Ops for some function A (-).

Assumption A2. U, (z) = h(z) where h(z) is a 1-1 function on the support
of (1.1).

The family of distributions (1.1) under the assumptions Al and A2 is
known to include the normal, gamma and inverse Gaussian distributions. The
problem here is to estimate y; in the presence of the nuisance parameter y;. In
the three examples mentioned above, this problem reduces to one of estimating
the mean in-the presence of appropriate nuisance parameters. In what follows,
we collect some of the pertinent properties associated with the density (1.1).
See also Bose and Boukai (1993) for a few details. We mention that

(a) V({0(X)) = —[6N(u)]7; (1.5)

(b) (01, p2) 01 [pa X (p2) = A(pa)] — G (61),
to = A(p2) +G'(61), (1.6)

where G (+) is an infinitely differentiable function for 8; € ©,,

the appropriate set;
(c) ©; C R or ©; C R* and without loss of generality,
we will assume that 6, C R,
The minimum risk point estimation problem for u, was introduced in the
following way by Bose and Boukai (1993). Having recorded X, ..., X,, n > 2,
we have already defined Ty, and Ti., i = 1,2. The maximum likelihood

estimator of (6y, u,) is obtained as the solutions of
TLGI (01) = Z::, H2 = Tg;n (17)

where Z* = Ty,,—n) (T}.,). Now, suppose that the loss function in estimating
n 2in , Supp

K2 by Ty, is given by
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" 42l ?
La=pN ()] (Ten — p2) 41 (18)

where the known factor p(> 0) represents the importance of the relative
squared error of estimation in comparison with the linear sampling cost. The

corresponding risk is given by
Ra(p)=p(n10:)7" +n. (19)

which is minimized if n = ng = [p/ IOIH% and the corresponding mininim risk
is given by
R(p) = Rn, (p) = 210, (1.10)

had 8; been known. But, ng is indeed unknown and hence sequential method-

ologies are called for.

2. PURELY SEQUENTIAL PROCEDURE AND SOME
PRELIMINARIES
For the minimum risk point estimation problem under the loss function
(1.8), a purely sequential stopping rule was introduced in Bose and Boukai
(1993) and here we mention only some of the highlights. One starts the ex
periment with X, ..., X;n, m > 2, and then proceeds purely sequentially by

taking one sample at a time according to the stopping rule

N = N{p) =inf {n >m: Zia, < n(7’ (-p/n?)}. (2.1)

where {a, : n > 2} is a sequence of real numbers such that «a, > | and az =
14+ an™' 4+ 0(n'), ap € R. The stopping variable is motivated from the
expressions of ny and the maximum likelihood estimators. After stopping, M
is estimated by Ty:n.

Bose and Boukai (1993) proved that as p — oo, one has

Njno = las, E(N)/no— 1; (22

and

N = (N —no) & N (0, [493(;"(0,)]") . (23)

Under additional assumptions, stated below, various asymptotic second-ordef

characteristics of the sequential estimation rule (2.1) were also derived in Bost
and Boukai (1993).

Assumption A3. For some a > 1, sup,y 4, 2°G’'(—2) < M < o0
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Assumption A4. The initial sample size m is such that for some g >
2(2a — 1)™" and for all 6,¢0;, E, (257°) < co.

Basically, Assumption A3 controls the left tail behavior of the underly-
ing distribution function and Assumption A4 ensures an appropriate required
initial sample size. As mentioned in Bose and Boukai (1993), in the normal,
gamma and inverse Gaussian cases, one has & = 1 and Assumption A4 is then
satisfied with m > 1 + 25.

Under Assumptions Al-A4, Bose and Boukai (1993) proved that as p — oo,
one has

E(Ln)/R(p) = 1 (24)
E[noN'll(NSeno)] —+0for0<e<l. (2.5)

Also known are the results such as:
If Assumption A4 is strengthened to 8 > 3(2a —1)™", then, for some

appropriate number 8,
E(N)=no+6+0(1), (2.6)

N*? is uniformly integrable; (2.7
If Assumption A4 is strengthened to 8 > 5(2a — 1), then

n2P(N<eng) — 0 for 0<e<];

E(Ly)—R(p) = ;[61G"(8)] +o(1). (2.8)

For specific distributions, it has been established in the literature that the
distribution of N is fairly skewed to the right and hence practical implementa-
tion becomes awkward because, for certain sample paths, N can take a large
value even if ng is of moderate magnitude. Also, one will readily notice that
no unbiased estimator of variance of N is available. To circumvent these two
difficulties, we propose to perform several smaller experiments in pieces and
later combine these to arrive at the final estimator of p;. The following sec-
tion provides the details of this methodology. Section 4 presents second-order

characteristics of the effect on cost due to parallel processing.

3. PIECEWISE SEQUENTIAL PROCEDURE

Let k(> 2) be a fixed integer and suppose that X;;, X, ... are i.i.d.
having the p.d.f. given by (1.1),s =1, ..., k. Having observed X1, ..., Xin,
for n; (> 2), let Ty, and Z},. be as defined in (1.7), merely depending on
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{Xi1,..., Xin, } alone, 1 = I, ke We write i (oo ITRRNT .\:fﬂnh
and the pooled estimator of j; is
k
’1‘2(’;) = ”_l Z ,‘|'l'1:'l“ (31)
1=1
Along the lines of (1.8), suppose that the loss function in estiniating j by
(k) s e
means of 1% 1s given by
Ln = p| X" (112)] (lz(kl) - /‘2> + . (3.2)

under the standing assumptions A1-A2. p(> 0) being a known constant. The
associated risk R, (p) and the minimum risk R(p) are respectively given by
(1.9) and (1.10). Also, the optimal total fixed same size n = ng is given by
the same expression (p/ \OII)% as before.

We now define k separate stopping times which are all implemented at
the same time, independently, as a parallel processing network. Fach of the k
components starts with m (> 2) samples and then proceeds purely sequentially
by taking one sample at a time. Define

N; = N;(p) =inf {n >m:n [—_q (Zl'"u,,”é > /)“r '} . (33)
i =1,...,k where g (u) = G'~" (u). Note that the purely sequential stopping
rule (2.1) is equivalent to Ny with k = 1. Once all of the k separate and
independent sequential processes given by (3.3) stops, the experimenter has
available X1, ..., Xin, 1 =1, ..., kand u, is finally estimated by the combined

estimator Tz(‘;\), where N= (Ny,..., Ni). The total sample size required by this

piecewise sequential methodology is given by N = 3% N, Since N,’s ate

i.i.d., variance of N can be unbiasedly estimated by

A=k(k-1)" zkj (M- N)° (34
i=1

where N = N/k. Also, suppose that the it* stopping rule in (3.3) takes the
time t! say, in certain unit, 7 = 1, ..., k. Here, because one exploits the notiod
of parallel processing, the piecewise methodology seems to come up with the
final estimator in a time, t° = max {t{,...,t;}. The existing literature show$
that the original purely sequential procedure (2.1) will do this same job i
a time that exceeds ¢! = Y% ¢/, and t° can indeed be substantially smallef

than t!. Hence, it will be quite pertinent to evaluate E(Ly) and other relevant
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characteristics of the piecewise methodology (3.3). We summarize our findings

in the following subsection.

3.1. Asymptotic Properties

From Theorem 1 of Bose and Boukai (1993), note that I (N=n) is inde-

pendent of Tl,(’:,) for all fixed n and hence the risk function associated with Té?,
is given by . -
E(Ly) = pl&:[ E(N"Y)+ E(N)
= niE(N-!)+ E(N) (3.5)
where N = Y% | N;. The regret associated with the final estimator TZSI;\), is
then given by .
E(Ly)— R(p) = E{(N ~no)’ N}. (3.6)

Now, we summmarize the main results.

Theorem 1.For the piecewise sequential methodology (3.3), under the loss
function given by (3.2), we have:

i)n(;% (N —nyp) LN (0,[40?6"” (01)]_1) as p — 0o, under As-
sumptions A1-A2,

i) E(Ly)/R(p) = 1 as p — oo, under Assumptions Al-A4;

i)E (N) =no+ kb + 0(1) as p — oo, under Assumptions A1-A3
and Assumption A4 strengthened to 8 > 3(2a — 1)7;

iv)E(Ly) — R(p) = ;[63G” (8)]™ + o(1) as p — oo under As-
sumptions A1-A3 and Assumption A4 strengthened to f >
5(2a —1)7"

Proof. Part (ii) follows along the lines of Bose and Boukai (1993). From
(2.6), it immediately follows that

E(N)=nl+6+o0(1) (3.7)

where n* = k~'ng, under Assumptions Al-A3 and Assumption A4 strength-
ened to 8 > 3(2a — 1)7!. Now, part (iii) follows from (3.7).

In order to prove part (i), let N¥ = (N; — n}) /nr%, i=1,..., k. Note that
Nj, ..., N are independent and N} 5 N (0, [49'{0"(01)]_1) as p — 00, in
view of (2.3). Hence, (N7, ..., N2) 5 N (g, [462G” (8,)]" IM) as p — oo.

Thus, the multivariate central limit theorem implies that
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i Y koL Coa- 3w vol ;
(N —ng) /nd =k713 Z‘\-. - N (U, {»10;(. 0, J ) (3.8)
=1 ’
as p — oc, under “appropriate” assumptions.
In order to prove part (iv), we first show that (N ta)’ g s uniformly

integrable. Obsecrve that

k
(N — 710)2 [no = k7! Z N4 g Z (N, =) (_\'j - 7)
1=1

1<1< <k

and hence, under “appropriate” assumptions, in view of (2.7) and (3.7), we

write
E|(N — o) fno] = kTTR[A03GY ()] 4 gk (k= 1) (82 4ol d o(1)

= [102G" (6,)] " + o(1). (39)

From (3.8), we now conclude that (N — ng)? /ng is uniformly integrable. Now,
one can utilize (3.6) and the basic techniques of Bose and Boukai (1993) to

complete the proof of part (iv).

Remark 3.1. It is indeed most interesting to note that the regrets of the fully
sequential estimator and the piecewise sequential estimator are exactly samé
up to the second-order term, asymptotically. On the other hand, the piccewise
methodology can be theoretically very attractive. Recall the discussions given

after equation (3.4) in this context as well.

Remark 3.2. lim,_o E(N —ng) = é or ké provided that one uses a fully
sequential estimator or the piecewise sequential estimator, respectively. Here, -
one sees some “negative” aspect associated with the piecewise scheme. How
ever, “6” is usually small in magnitude and hence “k6” will not be too large in
magnitude if “k” is chosen moderately. The overall practical benefits Obtained
via piecewise methodology certainly outweighs this slight potential negati*®

feature. We address this aspect a little further in the following section.

4. SECOND-ORDER APPROXIMATION FOR THE EFFECT
DUE TO PARALLEL PROCESSING
Usually the cost of processing j units in a parallel network is smaller t

j times the cost of processing a single unit. Motivated by this, we define

han
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¢; = cost of processing j units in a parallel network.

Note that the possible values of j are 1, ..., k and it is assumed that ¢;/j is
a decreasing function of j. In order to carry out the cost analysis associated
with our piecewise sequential methodology, let Ny £ -+ < Ny be the order
statistics corresponding to the stopping variables Ny, - - -, Ni. For the moment,
let us suppose that there are no ties. In many situations, it will be quite

appropriate to quantify the total cost of processing (ignoring ties) as
C = ¢ Npy + xy (N(z) - N(l)) +- 4+ (N(k) - N(k—l)) .

Defining ¢; = ¢; — ¢;_1, ¢ = 0, we may rewrite

k
C =3 Niti. (4.1)

i=1

Recall that (N?,...,N?) 5 N, (Q,a2kak) where o = [462G" (6,)]". Tet
C* = (C — nycx) /n;% and thus C* = Z;?:l (N(j) - ng) Zj/n;%. Hence

C*—£->Yka,sp—>oo (4.2)

where Y, = Z;-‘zl Z(;)t;, Z’s being i.i.d. N (0,0%) and Z(;)’s the corresponding
order statistics. Let v (02) = E(¥x). Now, for 8 > 3(2a—1)7}, we can
claim that C* is also uniformly integrable along the lines of Bose and Boukai
(1993). In other words, if Assumption A4 is strengthened to 8> 3 (2a —1)7,
then E(C*) = v (¢2) + o(1), that is

E(C) =k exno + (0 (nok™1)7 + o(né). (4.3)

We note here that the effect of ties on the above expectation is of the order
1

o(ng ), since the probability of ties is negligible as p — co.
The corresponding second-order expansion in the case of the purely se-

quential scheme is given by
E(C]N) = cln0+c16+0(1). (44)

The point is that one should indeed compare this with (4.3) in order to get
the proper perspectives.

From Remark 2 in Bose and Boukai (1993), it follows that (4.3) holds if
™ 2 12, in the case of normal, gamma and inverse Gaussian distributions.
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As such, our results are given for the general family (1.1). Tu spectiic <pecial
circumstances, the sufficient condition “m > 127 may possibly be ingiroved
substantially. For example, in the normal case, for the corresponding petcewise

methodology, |N;| is uniformly integrable if m > 2 and henee (130 wil holdif
m 2 2. This observation has direct bearing on the point estimation problem
considered in Mukhopadhyay and Sen (1993). The expansion given in 12.6),
however, holds in the normal case, if m > 3.

Remark 4.1. One may obtain expressions of 4 (#2) from Section 6.1.3 in
Tong (1990). Other references can also be found in David (191 .
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