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SUMMARY. The papor de cortuin ostimatos for probabilitica of Gaussian procosss
to obstract Wionor spaces. Various opplications are studiod,

1. INTRODUOTION

It is tho aim of this paper to extond to abstract Wiencr spaces certain
estimates for probabilities of Gaussiun stochestic processes obtained by Freidlin
(1972). ‘These results of Freidlin are, in tho context of Grussian processes,
analogous to results obtained by him and Wentzell concerning small random
porturbations of dynamicsl systems (Wentzell and Freidlin 1970).

Theorems 1 and 2 are tho besic results of tho paper. Tho notion of an
‘“uction functional”, introduced in Froidlin (1972) has a natural meaning as
the square of the norm of tho reproducing kernel Hilbert spaco of tho abstract
Wiener spaco.  Tho remaindor of the paper is dovoted to tho following appli-
cations. In Soction 4 tho problem of high level occupation times of continuous
Gaussian procoesses is considered and u differont proof us well as an extension
of Marlow's 1csult is obtained (Marlow, 1973). An application to tai
probabilitics of cuntinuous functionals of Gaussian processes is mado in
Soction 5. Tho results obtained bear comparison with thoso of Marlow (1970).
An ansloguo of the Laplace nsymptotic formula for integrals on abstract
Viener spaces is dorived in Section 6. ‘This formula generalizes the work of
Schilder (1966) and Pincus (1968).

2. FREIDLIN-\VENTZELL TYPE ESTIMATES FOR ABSTRACT \WWIENER SPACES

Lot (£, I, BB) bo an abstract Wioner space, i.0., lob I o o separablo Hilbert
space, || - [| & maasurablo norm on /7, I the Banach spece abinined by complot-
ing I with rospect to ||+ [l, snd £ the injoctive mup of I inte B. Tho dua!
B* of B is donscly containod in tho dusl ZI* of 7, which will be irlontificd with
H. Lot < -, +> donoto tho nutural pairing between B° and B, and lot [+ lr
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and (-, )i denoto respeetively the norm and tho inner product of J7. Taot
8 be the o-ficl? of Borel subxets of B and let x bo the o-additive oxtension to
(B, Q) of the canoniesl normal distribution on 77, i.0., the Gaussian measuro
on (B, 8) with zero mean and envariance kernol

Ry y2) =nI <Yp 2> <Yt > pde) = (Yo Y Yoy B

Lot K*® bo tho closed wnit Lall of B* and lot

o= sup [| <pz> |}dx)= sup Rly,y)= sup |yl
VEKe B veKe veKe

Noto that o =|li]|, the norm of tho injective map §. Sinco B is soparable,
thero is n sequenco {y,} in K* such that x| |2l =sup | <2,7,>| <0} =1
"

ond g2 =sup [ | <=z,y,> |?p(dr). Henco, by a rosult of Ferniquo (1971,
n B
Thoorem 8),

[ oxp [a2]|®] p(dx) << o0 for all << 1/(20%).
B

Let {@;} be a sequenco in B®, which forms a completo orthonormal system
in H. Then < ¢y, x> aro independent standard Gaussian random variables

n
and the sequenco {x,, =T <> ¢,} converges to x in || - || -norm y-nlmost
i=1

suroly a8 n— 0. Put

n
o= sup [|<y,z—z,>]|2p(dx)=sup {R(y, N-S <y > ’}-
yeK* D yEKR® 1=1

»
R* is w*-compact, R(y,y) md T < y, ¢y >2 are continnous in w*-topology,
=1

-
fmd’E <9.¢;>2%1 R(y,y). Ienco, by Dini's theorom, o2 — 0 08 2 — co, and
-1

it follows from Ferniquo's theorom quoted above that, for any given , v> 0,
there is an integer N such that

plz|llx—2z,)) > u} < const.«oxp[—v] for all 2 > N, e (1)

Wo shall now prove the basic ostimates which oxtend the results of Freidlin
(1972) to abstract Wiener spaces (sco also Wentzell, 1972).
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Theorem 1z Let gell. Then, for any positive wumbers & and h, theye
ie a positive mumber €5 = €,(8, b, ) < 1 such that

nlz|lez—all < 8} > plellle—(BleNl < 8

> exp[—(2¢%)7(Igl; + 1))

Jor all 0 < € < €. The lower bound is uniform with respect to ¢ suck that
I3l < eonst. < co.

Proof: Tot pg Do n Ganssian mensuro defined by p () = p(d-¢),
Ae8. Then pend py nre mutunlly absolutely continuous relative to 8 and
the Radon-Nikodym derivative dpgfdp ia given by

dpyldp = exp [($, x}~—(1/2) M5 ],

whero (¢, 2)~ is a Gaussian random variablo, corresponding to ¢, with mean
0 and varianco ||g|%. Then

1Ellle—(S[e)l < 8/e} = je_yre{wc) 2]l < Of€}

=oxp ['-(25’)"”‘}5"5]"{ oxp [—(8/e, 2)~1p(dz),
where A = (z||lx]| < é}. Puta=p{d), which is known to bo strietly
positive, and let A be a number such that M > (2 log (2/a))}- gy
Put D ={z|(—g¢[e, 2}~ > —I[e). Then (D) = 1—pfx|($, 2}~ > I}
> 1—exp [—(1/2) MSNH > 1—(a/2) end 80 p{A () D} > af2. Henco

nlelle—(S/e)l < 8} > exp [—(2e2)Iglf — M fe].p {4 M D}
> oxp [—(2e) (Il + 2. e+ 2 log (2/a).€?)].

Given k> 0, chooso g, small enough so that 23/e4-2 log (2/a). « €3 < & for all
€ € €. Tho proof i3 comploto,
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Theorom 2: Let Ky = (e T | W3l < ) and dr, Kp) = inf {le—gil |66 K.
Then, for any positive numbevs 8, h and r, there is a poritive nuwwher
€= &4(6, 0, ) suck that

x| d(ex, I) > 8} < exp [—(2€?)~Yr*—1)]
Jorall 0 < € < €,. The upper bound vs uniform in r auch that r £ const. << .

Proof : TFor any n,

e[ dex, Ky) > 8 < plxla, ¢ 0K} +ple] lle—z, ) > S/}
By (1), we can chooso N such that
x| le—zyll > 8fe} < const. » oxp [—(2e%)~112).
Noting that zy € If, wo obtain

px|an ¢ (1e)K} = pfz| lenil > rie?)
¥ 2~ p2/e2
— " X > 3
/t{:c|i.._l< g, x> r2f }

< connt, « (r¥[e2) N1 oxp [—(26%)71 r¥].

Honco
1| d(ex, Kp) > 8} < J(r[e)N « oxp [—(26%)1r%]

= oxp [—(26%)7{?—(2€2) log (M(r/e)¥)}],

where 3f is a constant. Tor a given h > 0 thero is 8 number g, == £,(8, , r)
such that (2e2) log (M(r/e)N) < b for all 0 < € < €, The proof is complote.

Thooroms 1 and 2 can bo oxtonded to a Gaussian measuro on (B, 8) with
zero mean and covariance function (8y,, ya)ir, 71, ys € B®, whero § is a bounded,
solf-adjoint, positive, invertiblo, lincar operator on J/.  We first remark that
any such oporator S dotermines a Geussian measure on (B, 8).
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Temma 1 Let S be a bounded, sclf-udjoint, positive, invertible, lineay
opernlor on I, Then there i3 a Guussian measure (rall it v) on (B, 8) with zero
mean and covariance function

Ry = J <yua> <ypoa > o(dx) = (Syw vy ya € B
B

Proof : Defino & new norm [||«f|j on I by |||2]|] == |Shell, z€ /1. Then
JIj«/ll is & measurablo norm on /I (cf. Gross, 1962). Let B’ be the (|i+|'-completion
of II and let 2/ be the o-additive oxtension to B’ of tho canonical normal
distributionon II. Denote elements of B’ by primes. Supposo that {z,} (z, ¢ H)
converges in [[[+}|f to ' € B’. Thon ||Shapm— Ste,ll = [||Tm—2,/ll— 0 23 m, n—> o,
and henee there is x € B such that [|Slx,—2||— 0 a8 n—> 0. Define the map J
from B’to Bby Jx’ = z. J i3 linear and continuous, for ||Jz'|| = l_i:n IStz l=

L] -

lim [[jz,)ll = |z, and the restriction of J to If is 8. Lot J* ho tho
n—) o

transposc of J, i.o., tho map from B3 to the dual of B’ such that < y, Jz'> =
<y’ >, 2eB, yeB*. If 2 e U, then(Shy, 2" )y = (y, Siz') = <y, Jz'>
=(J%, ')y and henco J®y = Sly for yeB*. Sincoe J is continuous,
it is measurabla and induces & probability measuro v = p’J-* on (B, 8). It
remains to show that R, (y,, ) = (Syy, ). Wo have

R, vs) =éf <Y x> <Yz > PN dr)
=£ < Yo J2' > <y, J2' > ()
=BI < Iy’ > < Sy, 2> p(dx)
=;,[ <8y, 2" > < Shy,, 2'>p'(dx’)
== (S Sy = (S yadn.

Tho proof is complete.

Tet v bo the Ganssian mensure vn (B, &) with zoro mean and covarinnco
function (Sy,, ¥.)i, 1, y2€ B*, whore S is a bounded, solf-ndjoint, positive,
invortiblo, Jinoar operater on H,
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Thoorow 3: Lel gell. Then, for any positive numbers & and h, there
i3 a positive number €, = €,(8, h, |S=i@|lir) suck that

v{z|les—gll < 8} > viz|llx—(B/e)l < 8}
2 ecp [—2e%)(|S-HlIG + 1))
for all 0 < & < €,

Proof: Lot g’ and J Lo tho Guussion moasure and tho map introducol
in tho proof of Lemma 1. Sinco J is continuous and J-1¢ = S-I¢ for e ll,
thoro is & &’ = §"(§) > 0 such that

el lle—(@lell < &) > wi='[ lll 2/~ (S-1gfe) Il < 87.
Applying Thoorem 1 to g, wo obtain tho conclusion.

Theorem 4: Let Ly = {e H||S ! Blly < r} and d(x, Ly) = inf {|z--@ll|
éeLg. Then, for any 8, h, r> 0, there is a positive number €, = €,(8, I, r)
such that

v{z]d(ee, L) > 6} < exp[—(2e2)-Y(r*~-h)]
Jor all 0 < € < €.

Proof : Noto that J~1L, == §-1L, == K,. Since J is lincar and conti-
nuwous, thero is 2 8’ > 0 such that

vz |d(ez, L) > 8) < &’ |d'(ex', Kr) > 87}

whoro d’ is tho distance in [fl-/l| -norm in Z’. The conclusion is obtained
by applying Thoorem 2 to u'.

Dofino a roal functional I,(¢) on B by

(879, @) = 1S-¥lly, if gell,
L) =
(¢}

, if@dll
1,(3) mny Do callod the action functional or tho energy funclional corroaponding

to the Gaussinn monsure v.  Wo shall write /() for I(). The following
proportics of I(g) nre wsolul in applications,
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() Tho sot K, = {pell]/(P) < (0 < r «Z o) is compact in B,

(L) I(g) is lower semi-continuous on If with respeet to || - |-norm
convergenco, i.c., if g, —¢ll— 0, ¢, ¢ € I, thon I(3) < liminf I{g ).
A—pn

The property (a) scems to be widely known.  For a proof, sco, o.g., Kuelbs
and TePogo, (1973). TFor a proof of (b), wo noto that if |¢,—¢ll— 0, then
<Y, 3> = = <y ¢ > = (y,$u for any ye B*. Sinco B* is denso
in 1, {¢,} convarges wonkly to ¢ in U, end henco I(@) = |gIZ
lim inflig, I3 = lim inf J(3,).

e e

Wo noto ulso that I,(}) hes the same propertics :
(@) Thesot Ly = {$ e 11| 1,(¢) < rF is compact in B, and

L) 2 i3 lower semi-continucus on NI with respoet to ||-norm
i 1
com’crgonco.

An expression for I($). Reeall thet p and v aro mutunlly absolutely
continuous relative to @ if and only if § is o hounded, sclf-adjoint, positive,
invertiblo, lincar oporator on 71 of tho form § = I—T, where I is tho identity
operator and 7T is & Hilbert-Sehmidt operator.  In this eeso, if s & muximal
chain of orthuprojectors on fI, thon S-! admits the following factorization
rolative to 7

S = (I-L*)(I-L),

whero L is a Hilbert-Schmidt oporator and L® is the adjoint oporator of L
(sco Kullianpur and Qodaira, 1973 for tho dotails). Sinco (§-'¢,¢), =
MI—=LYS Ny = Np—Ll%, 1,($) can bo oxpressed in terms of L as follows

1(¢) =

{ g—Lolg, if del, e

, it g¢H.

In particular, if 7 does not havo gaps, thon L is a Voltorrn operator {soo
Kallisnpur and Oodaira, 1973).

3. SPECIALIZATION TO S8PAOCES OF CONTINUOUS FONCTIONS
Lot 7'p = [0, 117(p > 1) bo tho p-dimensional cubo and € = C(T'p) bo the
Banach spaee of real continuous functions & on Ty with the supremum norm
IFllo- Lot g ho w Gaussien mensure on the o-fiold &(C) of Borel sets of € with
zoro wcan wnd continuous covariunce function R(t, 5), whoro ¢, s €2’ Lot
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1 = H(R) Lo tho reproducing kernel Hilbort sprco (RIKIS) with reproducing

kernol (r.k.) R(t,8). Thon M CC end |z)la € sup RIL, L) iy for ze M,
- LeTy

wheroe |||, is tho norm of JI. Tt is cesy fo soo that in order that Thoorems

1-4 okl for s end v on (C, G(C)), it suffices Lo verify thet |[i, is & mensurablo

norm on 1. 'Tho latter scems to Lo a reasonzbly widely known fect, which can
bo deduced from u result of Dudley-Feldmen-LeCem (1970) as follows.

Assumo for simplicity that tho complotion of I with rospect to ||la
coincides with €. Only slight changos ero needed in tho proof if this is not
tho cnso, Let m Lo tho cenoniesl normel distribution on 1/, end defino a
cylinder et measuro o on C by

MreCl(<yna> .y < Ymz>)eE}
= m{x e I |{{yy, 2y, -os (ys 2)) € E},

where g€ C* (i = 1, ..., n) and E is a Borel sot in B#. Sinco st and g agreo
on all cylinder scts of tho form {xe C|(x(ty), ..., z(¢,) € E} and p2is o given

o-mditivo Gaussian measuro on G(C), ji hos & o-additive oxtension to 8(C),
i, g itself. The conclusion follows from tho following result of Dudley-
Feldmen-LeCom : 2 hes a o-additive oxtension to &(C) if and only if |+fls is
a measurablo norm on I,

Thus Theorems 1-4 hold for Gaussizn measurcs 2 and » on (0, 8(C)).

Remark:  Consider tho following important special caso : ¢ = C[0, 1]end
4 = tho standurd Wiener measure on (C, 8(C)). In this caso II consists of
absolutely continuous functions ¢ on [0, 1] vanishing at tho origin end having

. [ .
squoata integrable derivatives @. Turther (]} = 6[ (S()de = gl end I is
isometrically isomorphic to L2[0, 1] by tho map ¢— &. Assumo that & Gaussinn

moasure v on (G, .8(C)) is absolutely continuous with respect to s, Chooso
o naximul chain 7 in L0, 1] consisting of orthoprojectors Py with rango

{fe L*}0,1]]f(s) == 0 n.o. for ¢ < 8 1}. Then, by (2), using tho isometry
from U to L*[0, 1], wo sco that for g e I/

L) =Ip—Lii = I o~ 'J it o) )syea, - ()

A2-5
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where I is tho Volterra operator on L?[0, 1] corresponding to L on II and

L, s) is tho corresponding square integrablo Volterra kerncl on L0, 12
Note that tho formula (3) bears closo resomblinee to the action functional
which occurs in tho estimates of Wontzell-Freidlin (1970).

4. ArPLICATION TO WMIGH LEVEL OCCOT'ATION TIMES OF PATH CONTINUOUS
GAUSSIAN PROCESSES

In this scetion wo apply Theoroms 1 and 2 to obLtain some wsymptotio
estimates for tho probabilities of high level occupation times of path conti-
nuous Gaussian procosses. Let o Lo a Gaussian measuro on G = C(T) with
zero moan and covarinnco function 2(s, (), &, ¢ e T'p, and let U Lo the RKIS
associatod with z.

Thoorom 5: Let D be a subset of C such that D° (Il # ¢, where D°
denoles the inlerior of D. Then

(®) Tim inf (1fa?) - Tog @D} > —(112) - inf Gl | ¢ D° (V1.
(b) Iirisup (1/ac?) « log pf{aD} < —(1/2)r3,

where ry = sup{r| K.\ D = ¢} and D is the closure of D.

Remark : 1t is known (Kallianpur, 1971) that tho support of s coincides
with the closuro of /7 in C, and so the condition DI 3 ¢ is not restrictive.
Proof : (a) IfgeD°(M M, thon thero is n &§>0 such that
{ze C| lz—9dllo < 8} C D°, and 60, by Theorem 1 with & = 1/,
plaD} 2 pfz|l(vfa)~dlle < 8} > exp[—(a2/2)(|IgIFH+1)]

for uny & > 0, if & is sulficiently large. Honco
lin:’ini'(l/m‘-‘) +log ufaD} > —(1/2)I1%

for all g ¢ D°() I, und (u) follows.

(b) Thecasory =0 iy obvious. Lot 0 <r <, Thon theroisnd>0
such that d(K,, D) > &, smeo Ky is compact in €, and honeo, by ‘Ihoorom 2
wilh &€ = la,

nlaD) & plxld(afa, Ke) > 8} < oxp [—(a?/2)(r* =)
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for any b > 0, if « is sufficiently largo. Therofora
lim sup (1/a?) « log p{aD} < —(1/2)r2
amd
for all r < ro, and (b) follows, Tho proof is completo.

Theorom 6: Suppose that D* (Il # ¢ and inf {IgI%|¢e DN I} =
inf{IgI5 | e DO I} = V%, say. Then

Jim_(1fa®) - log pfaD) = —(1/2)?

and 1 = sup (*| K, (D = 2}

Proof: Foranyr<bh, KyN\D = @, and ro ry = b. Tho assortion follows
from Theorom 3.

Theorem 7: Let

Dy = {xeC| ; Tiziys y (2)de > f}
»

={zxeCIA{L]z(t) > 1} > f)

for0 < B <1, where I4is the indicalor function of aset A and Xis Lebesgue
measure on Tp. Then

lim_(1fe?) log iz CIA(LI(1) > &} > ) = — (1125

where L% = inf (1008 | ¢ € Dy I} = sup (2| Ky () Dy = 8}

Proof: Noto that D, is open and

B fe|A{L|2(0) > 1} > B} for >0
{z]2()> 1 for eomoteTp} for g=0.

It is roadily scen that the conditions of Theorom 6 aro satisfied, and tho
conclusion follows from Theorom 6.

Remark : Thoorom 7 is an oxtension of Thoorem 1.1 of Marlow (1973)
to path continuous p-paramotor Gaussian processos. In tho case of p =1,
Marlow shows that if R(s, 1), 0 < 8, ¢ < 1, is non-docroasing in & for oach ¢,
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then bE = 1/R(1—f, 1—p). This can ansily bo seen as follows. Tt ia known
and cnsy to sco that, for oach £ €[0, 1), sup {| ()] [$ € K7} = R, 1) and the
supremum is attained by rR(., 1)/RY,1). Tlenco 13, NKr=¢ or %4
necording a8 r < or > 1[RW(1—p,1—8), andro b3 = V[R(1—pB, 1—B). The
moro general enso D = (.rl,\{[_|:r(/_) > j(i)} > fi} with 0 < fe C ean bo troated

in the samo way.

5. APPLICATION TO TAIL PROBABILITIES OF REAL CONTINUOUS
FUCTIONALS OF GAUSSIAN PROCESSES

Lat F bo a roal continuous functional on C = C(Tp). Then, from Theoroms
1 and 2 it follows that if ¢ € If, then, for any &, A > 0,

x| | Fzla)—F(@)| < 8} > exp [—(a*/2)(gll+ 1))
and
/1{-"|¢i“,{, | Flzja)-F(@)} > &) < exp [—(2*/2)(r*—h)].

if a is sufficiently large.  Supposo F is omngencous, i.0., Flcx) = c?F(x) with
somo q > 0 for any positive constent ¢ and x e C, and lot D bo & subset of
R such that D° (Y F(/I) # ¢ end inf {igly| F(@) e D (N F(IT)} = inf {I3ln]
F(¢ye D°(M F(IN}. Then, by the reesoning used in Scetion 4, wo obtein

lim (1/a?@) «log pu (x| F(x) € aD} = —(1]20?,
a—p @

wherob® = inf (gl | Fip) e D" (\ F(II)} = sup {2} D () F(Ky) =g}, From
this, putting D = (1, c0), wo immediately obtain the following asymptotic
estimato for tho tail probabilitios of F.

Thoorem 8 : Let F be a real continuous functional on C such that
F(cx) = c¢"F(x) with ¢> 0 for any posilive conslant ¢ and F($) > 0 for some$ ell.
Then

lim (V]x*e) « log plx| F(x) > a} = —(1/2)h2,
a—) o

where

b = inf (Il | F(3) > 1} = sup (| F(K,) < 1}.

Remark : Marlow (1070) has obtrined, by a different method, o
similar asymptotic fornula for tail probabilities of uniformly slder
continuous, asymptotically homogonoons functionals of Gauasinn procosses.



FREIDLIN-WENTZELL ESTIMATES FOR ADSTRACT WIENER SPACES 127

Note that 1 = sup F(Kp) = U9-sup F(K,) rad henco tho valno of b2 can
be determined by solving the extremal problom sup F(K,). In what follows
wo consider severnl oxamples for which 5% ean Dbe explicitly given by
ovaluating sup F(K,).

Example 1: Let g Lo a Gaussinn measure on C[0, 1] with zero mean and

covarianco function R(s, (), and lot F(r) = } 20t = |23 Then
o
1
Jim (1/a)log ,L{ J o> a} = —(2A)™,

whero A, is tho largest cigenvaluo of the covarianco operator R with kernel
R(s, 1) on L?[0, 1].

This is 8 known result, and 80 we givo only a sketoh of the proof. Let {A¢
and {y bo tho ocigenvalues and tho corresponding normalized ecigenfunetions
of R. Then {$; = A}f2 {1y} is n completo orthonormal system in 1. It can be
shown that |9 < A, ¢} for any $ell. Hence sup F(K,)< A, Sinco
18,13 = A;, we have sup F(K,) = A, and hence the result.

Ezample 2: ITet o bo tho etandard Wiener mensure on C[0, 1] and let

1
F(x)= [ |x()|2dl, g > 1. The RKHS /I associated with tho standard Wiener
0
measuro is the space of all abzolutely continuous functions ¢ vanighing et the
. 1 ..
origin and having square integrable derivarives ¢, and (¢, Y)g = [ ¢yrdt.
[

Strassen (1964, p. 220) proved thet sup F(K,) = ¢(q), whero
c(7) = 2(q+2)'/DV( f (1—10)~V d1)a g2,

Wo thus obtain

lim (1ae) - logg 1 { Flz@led> a} = ~(2)ely e, 9> 1.
e o o

In particular, ¢(1) = 33 and ¢(2) = 4/a%. Tho ense ¢ = 1 has been previously
obtained by Marlow (1970) by a different method, and the caso g = 2 is of
courso a particular case of Examplo 1. Tfg is rn integer, then the seme formula

holds for F(x) = j| 29() di.
[
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Example 3: Let 2 bo the standard Wiener menasure on C[0, 1] and It
1 1
F@) = § |01ty § 1=
[} o

Then sup F(K,) = 28, whoro 0 < &, < 1 is tho largest solution of
(1—8)d sin (1 —8)/s)+cos ((1—s)}/s) = O
(sco Strassen, 1064, p. 222). Henco

1 1
lim (1/a%) +log ,z{ £ 1= 2dy [ |z de> a} = — (882,
a—bo 0 o

Example 4: Let p Lo tho Gaussinn measure on C[0, 1] induced by a
Brownian bLridge, i.e., the Ganssian measuro with zero mean and covarianeo

1
function R(s, 1) = s(1 =) for 0 < s <t < 1, andlet Fl2) =  |z()[9d, g2 1.
o

Then wo have

Jim (1) - Toz  { o} wO119d> a) = —2elg) e, 131,

where ¢(g) is the same as in Examplo 2.

The RKHS with r.k.RR is the space of all absolutely continuous functions
¢ on [0, 1] such that $(0) = ¢(1) = 0 and ¢ = dg/dte L0, 1], and (g, Y =
1. . 1
J B0t Hence sup F(Fy) = sup{ [ 18(] ¢de]3(0) = 3(1) = 0 and g, <1}-

o

Tt can bo shown that sup F(K,) = 2-9¢(q), by tho classical methods of the
caleulus of veriationa in a similar way as in Strassen’s proof for tho Wiener
measure ¢aso. o omit tho details of the proof,

1 -

If ¢ is on integor, the above F(z) can be replaced by [ a7 (1)dr. Noto

0
that the abovo result F(K,;) = 2-7¢(g) ean bo used to obtain an iterated
logarithm result for tho functional F of empirieal distributions (cf. Tinkelstein

1071).  Finkelstcin discussos only the caso q = 2, which is also n particular
caso of Examplo 1.

6. AN ASYMPTOTIO FORMDLA FOR INTEORALS ON
ABSTRACT \WIENER SPACES
A LaPlaco asymptotic formula for integrals in ono dimension is of tho form

Jim { _j’: G(z) oxp [—A-2F ()] dx] _f: oxp (—A-tF (@M} = GG
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whero F is & continuous function lwving a uniquo global minimum at § and ¢
is continnous at E.

Schilder (1966) proved tho following analoguo of the abovo formuls for
integrals with respect to Wiener measuro g on C = C[0, 1] :

lim { § G(Ax) oxp [—A-2F(A2)]e(d)] f exp [—/\"F(/\x)]/t(dx)} = G(3),
A=30 \ o ¢

whero F and @ aro real functionals on € satisfying cortain conditions and ¢
1

is & minimizing point at which tho functionsl F(z)4(1/2) [ (dx/dt)? dt sttains
]

o global minimum over tho spaco of absolutely continuous functions on [0, 1]
vanishing at tho origin and having square integrable derivatives, ie., the
RKHS associated with Wionor moasuro. Pincus (1968) generalized the abovo
result of Schilder to a largo class of Gaussian processes and showod a oloso
connection with Hammerstoin integral equations. Also, in a recont paper
Marcus (1974) indicated that tho results of Schilder and Pincus can
be obtained by tho method of that paper.

In this scction we extend tho asymptotic formula of Schilder and Pincus
to integrals on abstract Wicner spuces, applying Theorom 1 and tho arguments
used in Section 2.

Thoorom 9: Suppose F' und G are rcal measuruble funclionals on B
satisfying the following conditions :

(8) FON)+(12)070%, & ell, attains ils unique global minimum over Il
at e ll,

(V) F(x) > —a—a2|? for all x€B, where a, is any positive conslant,
ay < (4027, and o = ||i|| (sce Section 2),

(¢) P is uniformly continvous on the set E = { € B||«ll < 2ro}, where

7t > 4{a,+F(@)+ (1285}

@) [Gx)] < b, exp (blla)?) for all 2 € B, where by and by are any positive
conslants, and G is conlinuous at ¢. Then

xli'.no (B]' G(Ax) cxp [—/\".l"(/\x)]/t(d.c)lt‘!' exp [—A~2F(Ax)] pe(d)} = G(Q).
()

Remark : 1t follows from (b) snd (¢) that r3 > |IgiZ > 0. Noto also that
16 B, sinco (19l < oliglly < or.
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Proof : (i) By condition (d), for any &> 0, thero is & 3 > 0 such that
fe—gl < & implies |G(x)—G(P)] < €/2. Henco
1 ] Gz exp{~A-2FQAx)lld2)] [ oxp [—A'FAD) n(d=)—G(9)] < ¢f2
F o dy e 1TAN—C(@)) exp[—AF ()] pd=)] [ oxpl—A=tF(Ax)) p(l).

Wo shall show that tho sccond term is <e[2 for all sufliciently small A,
(i) Comsider first tho denominetor [ exp [—A-*F(Az)] p(ds). By
i
condition (¢) end the remark, for any 7> 0, thero is a 8’ > 0 such that

1Az—¢) < & implies | FAz)—F(g)] <y/2 aund henco F(Az) < F($)+nj2
"Thereforo, using Theorom 1, we obtain

3‘ oxp [—AF(Ax))pldx) » u--’u«' oxp{—A-2F(Az)] p(dz)

> oxp[—AHF(@)+/2)) - piAz—g) < )
> oxpl—AHF@)+1/2)] - exp [~ (DA-K(1gid 4 )

= oxp [— A3 (F(S)+{(1/2)igIg + )
for eny 9> 0, if A i3 sufficiently amall.

(iify Sinco Ky is compuct and tho sct {z]llx—g] > 8/2} is closed,

D = D(r, 8) = K¢ () {z|Iz—¢ll > 8/2)

is compactin B, Sinco DG K, C E and I(y) = [y} is lower somi-continuous,
F(y)+(1/2)ilyiy, is lower somi-continuous. By condition (a), ¢ is the
uniquo minimizing point, and honce there is an 3’ = 7'(r, 8) > 0 such that

min {F)+(U2yiE) > F@)+Q 280+
Chooso 8 > 0 small cnough so that §° < min (8/2, ra) and if fz—y| < &,
z,y € E, then | F(z)—F(y)| < #’J3, which is possible by condition (c).
Lot N Lo an integer such that (20})-1> y = r3(2(8°))1, wher
ah= mp [ 1<pz—zy> |l and 2y = :(:'l< &1, 2 >y (300 Saction 2)
Put

Ay = =1 IAz—¢ll > 8, IAx—Azyll < 8°, Azyllg < 1)
and

Ay = {e|Ae—2xxll > 8V (x| lAznlla > 1}
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Thon (z|Ax—gll 2 8} C 4, ..

(iv) By condition (b), (d) and Schwarz’s inequality, we have

1100 oxp [~A=F ) u(d)
2

< { 16y exp (b2lAz|?) « oxp [A=*(ay+a,lIAz]%)] p(dz)
2

< by oxp (2,273 _Loxp [2(0Aa,) e Y e(de)}d « ({A 0.

By condition (b), 2(b.A%a,) < (202)~1 for all sufficiontly smull A and henco

J",oxp [2(b A% -a,)1z?) je(dx) € const. < co.

Let now 2> 0 bo small onough so that r2 > 4{a,+F(3)+(1/2)ligiE}+ 5k
Then, by condition (c),

#ds < plile—anll > 8/} +p{llznll > 1A}
< const « oxp [—y(8")2A-2]+-const. « exp [—(1/2)A~¥r*—k)]
< const, » oxp [~ 24~%ay 4 F(g)+(1/2)lIglG + 1)
Henco wo havo, for all sufficiently small A,
[ 16(A2)] oxp [—A-tF(Ax)) p(d2)

< oonst. + oxp[—AY{F()+(1 /2l +1)

Similarly wo havo

JA G(3)] oxp [—A-2F(Ax)] pu(d)

< const. « oxp [—A-3{F()+(1/2)lIglIF 4 1}].

(v) Lot zed,. Then Azye K, CE and [Aal < llAz—Axnl-+lIAzml
<84re < 2o, Since  [Az—Axnll <8 and Ay, Axve B, FAx)>
FQAzy)—9'3. Turthermoro, sinco [Azy—eo| > [[As—@l—lAx—Azyl| > §—5"
> 812, FQan) > — (12NN F )+ (1 /2)15 +2', and Tenco

Fz) > — (12 Axn 4 F(h)+ (1 2NSNE+(2/3)y"
A2-0
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Lot # bo o number such that 0 < 8 < (2/3)p'r% Then (1/2)f10i% < y)a
for nll ¢ K,. Thercforo, (1/2)A1AxnlE < '/3 ond henco

FQAz) > —(1/2)0—Aznlit + F(@)+ (120915 +7'/3.

Thus
) 1G(Az)] oxp [—A~*F(Az)] p(dx)
l< b, oxp [b,At « 40%1] « .{1 oxp [—A-2F(Az)] u(d)
< const. » oxp [—A=H{F(@)+ (L[l +'[3}] «
§ oxp[(/2)(1=Aleniiy] p(d).
But

N o
L exp [(1/2)(t =Bzl p(de) = (2m)-N12. lﬂl I oxp[—(A/2)s*}ds < oo.
Thereforo

,{ | G(Az)| oxp [—A-2F(Ax)] p(dx)
1

< const. « oxp [—A~*(F(g)-+(1/2)IglE+'/3})-
Similarly we have
1 16@)] exp[—A-2FA0)] p(d2)
1

< const. + oxp [—A-¥(F(@)+(1/2)gI%4+7'/3)).
(vi) I‘rom (iv) and (v) woe get

. J oi>e 1G(Ax)—G(@)] exp [—A*F(Ax)) u(dz)

< const » fexp [A-2{F(¢)+(1/2)plE+7'/3}]

+oxp [—A{F(G)+(1/2)1gilk+ M}
Chooso 7 > 0 (in (ii)) smoll cnough so that 4 < min (3°/3, k). Then

Il |G(Ax)=G($)| oxp [—A-2FAx))p(dr)] | oxp[—A-2F(Ax)] pldx)
Rx—gll>3 ir

< const. « {oxp[—A=3(y'[3—p)]+exp [—A-H(h—))) < €2

for all sufficiently small A, This complotes the proof.
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Tor the integrability of G(Ax) oxp[—A-2F(Ax)] it is enough to assume
g < (20%)7, and it is desirablo to wenken the restriction g < (40971 in
condition (b). This can be done if condition () is replaced by a stronger
condition.

Theorem 10: Assume condilions (a) and (d) of Theorem 9 and the
Jollowing conditions :

(V) Fla)> —a,—ay llzl|? for all x € B, where a, is a posilive conslant;
ay < (264 and o = ||i||, and

(¢') F is uniformly conlinuous on any bounded sel in B.
Then the asymplotic formula (4) holds.

Proof: The condition a, < (40?1 is used only in the step (iv) of tho
proof of Theorem 9, and henco it suffices to make the following slight changes

in tho arguments, Choose a number p > 1 close enough to 1 so that
Pay < (20?1 and put ¢ = p/(p—1). Let r bo & number ruch that

vt > 2q-{a,— F(g)+(1/2) g7} +(20+1)%

for some % > 0. Uso Hélder's incquality instead of Schwarz’s in tho step
(iv) of the proof. Then

£ |G(Ax)| exp [—A-2F(Ax)) u(dx)
1
< byexp (7,2-2) « Jl', exp [plbpA24-ay)lil?] p(defjir - (n{AJ)e.
Sinco p(b,A2+a,) < (20%)-1 for all sufficiently small A,
[ oxp[p(h,A%4-a,)||z|?] n(dx) < const. < co,
B

and by tho same reasoning as in (iv) wo get, for sufficiently small A,

A} < const. + exp [—qA~2{a,+F(3)+(1 /2315 +H)).
Honce, for all sufficiently small A,

‘{ [G(Az)| oxp[—A-2F(A2)] ldx) < const, s oxp[—A~ZFI)+(1/2)l|$11%+A}).
2
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Tho rost of proof does not raquire any changes,

Remark : If F i3 continuous on B, then the condition () (mndt (b)) implies
that F(2)-+(1/2)0yik attains its infimum over J7 at a point in I7, and heneo
wo need only assumo tho uniqueness of its minimizing point ¢ in 71, Indeod,
since

F()+Q2)IpiE > —a—a Wl +(12)1715
> —a—(m* =YD > —ay,
—ay < inf {F)+(12)ii) = do. say, and, given any d> 0, if [} >
velr

(2 —dg—d)[((1/2)—ay0?) = ¢, then F(U)+(12)ily > do+d. Sinco F(y)
F(1/2)Iy1i% is lower semi-continuous and K, is compact, F(yr)-+(1/2)ly13

attains its infimum on K, and henco on JI, in K, C I1.
In (i) of the proof of Theorem 9 it has been shown that
3’ oxp [—ATF(Az)] p(dx) > exp (— A~ F(B)+(1/2)iglf + 7))
for any 9 >0, if A i3 sufficiently small. In fuct, tho arguments usod in tho proof
yicld tho following asymptotic estimato fornj’ oxp [~A-2F(Azx)] p(dx).

Thoorom 11 : Suppose F satiafies conditiona (), (b) and (c) (or (a),
(') and (¢’)). Then

llir’no Atelog ‘J; exp[—A~*F(A)) pi(dx) = —{F(3)+(1/2)li$i%).
Proof :  In view of tho abovo result in (i), it suflices to show that
J OXPI=AF (] ) < exp [—A-(F@)+ (/2115 —0)]
for any € > 0, if A is sufliciently small. Put

A = {z[lAz—Aznll < 8, IAanly < 1),

where 8 > 0 is o number to o specified later and N s an intoger such that
(20%)-1 > r3(28*)! (sco (iii)). Then, in oxactly the samo way as in tho proof-'l
of Theoromw 9 and 10, it can bo shown that, for any § > 0,

[ exp[—A~IF(Ax)] pe(dx)
B-A
< const. « oxp [—A~¥(F(¢)+(1/2)'g1F + A}
< oxp [—ATF(S)+(1/ gl +47]
for a sufficiontly small 4' > 0, il A ia sufficiently small,
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Given € > 0, chovse > 0 small enouzh so that if xed, Ax, Axye E,
and if JAr=Xdanll <8, then F(Ar)> F(Ary)—e[3.  Rinco F(Ary) 2>
F@)+ 2S5~ (1/2) IAxn), we lave

§ oxp [—A~2F(Az)) p(dx)
P

<oxp[—A~*(F($)+ (/)5 —¢e/3)]

AI oxp[(1/2)A=% [IAxn15] p(da).

Just as in (v) of tho proof of Theorom 9, let #> 0 be a number such that
p<(2/3er2 Then

/.‘l' oxp [(1/2)A" A2y |if) p(dx)

< oxp(e/3)A-] - AJ' oxp [(1/2)1 = Aliznlig) p(dz)

< const. » oxp[(£/3)A~2] < exp[(2/3)eA-2]
for sufficiently small A, Henco

J osp[=A-F(@As) Mdz) < exp[—A-* {F(@)+(1/2) I3l —¢))

if A is sufficiently small. Tho proof ia completo.

Consider now the specinl ense B = € = C(Tp) and JI = tho RKHS with
rk. R(L, 8), & 8 € Tp, associnted with a Gaussinn measuro s on € (Section 3)

Assumo that tho Gateau differential DF(x;+) of F at xeC in tho dircction
v eIl exists for any yell, io.,

lim €-Y{F(x+¢ey)—F(v)) = DF(x;y)
=0

oxista for all 37 € JI and DF(x;+) i3 & bounded lincar functional on I1 for all
z€eC. Assumo further that DF(x;-) is continuous in the L?%7'p)-topology.
Then, Ly Riesz’s theorem, there is a 8F(2)(¢) in L¥(Tp) such that

DR p) = { aF@)@ia)is
P
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8F(r) is ealled the Fréchét-Volterra derivative of F at a.
Supposo that F satisfies the conditions of Theorem 9 or Theorem 10 and

has a Fréehét-Volterra derivativo in a neighiborhood N of 6. Then, for any
vell,

O = DF(¢; Y)=(d, Y)ir = 1.[ SF(G)a)(8)ls— (3, ¥)n-
P
Take y(+) = R(-,$). Then

P(1)— [ SF(QUDR( ,tMe = O.
Ty -

Thus ¢ satiafies the following Tlammeratein integral equation

()~ | SFE@R, Oz = 0, z¢ N,
14

(for Hammerstein cquations, (seo e.g. Vainberg, 1073), and Theorems 9 and 10
show that a solution ¢ of tho above nonlinear integral equation is givon in
tho form

lim { f Azeoxp[—A-TF(Az)] p(dx)] § exp [—A-tF(Az)] p(d2)} = &.
A=»0 ¢ c

This is an extension of Pincus’ result (Pincus, 1968) on tho solution of
a Hammerstein equation for functions of many variables.
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