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Cross-sectional Sampling
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The covariate-adjusted population attributable risk {PAR) measures the proportionate reduction in disease
prevalence in the target population when the putative risk factor is removed. after adjusting for covariate
effects. This paper extends the model-based approach developed for retrospective and cohort studies to the
cross-sectional sampling design. An appropriate logit linear model is utilized to estimate the covariate-
adjusted attributable risk. The asymptotic variance of this complex ratio estimate is obtained using Taylor
series expansions which incorporate the sampling variation of the estimated model parameters and the
appropriate estimates of risk factor prevalence. These methods are illustrated with cardiovascular disease risk
factor data from the second National Health and Nutrition Examination Survey (NHANES Il). Am J Epidemiol

1995;142:1338-43.

logit models; population attributable risk; statistics

Quantification of the impact of exposure to a risk
factor on a particular disease in a target population is
a primary public health concern. The population at-
tributable risk (PAR) ratio (1) was introduced to quan-
tify the impact of a binary risk factor on a binary
disease outcome. Walter (2-5) derived variance esti-
mates of the PAR under retrospective, prospective.
and cross-sectional sampling designs for this simplest
situation. More often than not, however, the risk ¢x-
posure is multifactorial. In addition to the primary risk
factor, a number of confounding variables may be
present in the population that interact with the risk
and/or with the disease response. To adjust for a
covariate C present at K levels in the population, 0,. . ..
K — 1, a covariate-adjusted population attributable
risk may be defined as

K-t

A= 1= D [PCOPHD, IE,COVIPHD,)], (1)

k=0
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where the subseript 0 (1) denotes absence (presence)
for D corresponding to discase status and E to expo-
sure status (4-9).

A unified formulation of PAR in the general multi-
variable setting with more than one risk factor has
been put forward for retrospective and prospective <
studies (J0-18). Except for the simplest case'of a
binary risk factor and a binary discase, no variance
formulation for PAR under cross-sectional sampling
has been developed. Unlike a prospective study where
the exposure prevalences are assumed known, the es-
timate of PAR as well as the estimate of its variance,
under cross-sectional sampling must incorporate the
estimated exposure prevalences. In this paper, We pro-
posc an extension of existing methodology (10, 11, 17,
I8) to estimate PAR for polychotomous risk factors
and covariates under cross-sectional sampling. 1ts as-
ymptotic variance has been formulated by accounting
for the additional source of variability introduced by
the estimated exposure prevalences.

In the next section. an example is intro
data from the second National Health and "
Examination Survey (NHANES II). In the exampnga
the disease of interest is hypertension among yound
adult women. We then describe the methodOlO%é awe
the estimation procedure in detail. Under Resuof’ ihe
present the theoretical results in the COH‘teXt final
NHANES 11 data. A discussion follows in he
section.
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EXAMPLE TABLE 1. Frequency distribution {row proportions) of

Consider the data presented in table 1, which were diastolic blood pressure (DBP) at two levels by multiple levels

. of body mass index (BMI) (kg/! H
obtained from NHANES II conducted from 1976 to 24 years, NHANES IIS‘ ) ofm) and race: women aged -

1980 (19). These data were selected from a larger

research project investigating secular trends in cardio- Race BMI DpBe’:ce‘r?t?letah oy Simated
vascular disease risk factors over the 20-year period Yes(D) N " previonces
1960—1980 in the United States (20). These un- ——— _ YesD) Nowy
weighted frequency data summarize the distribution of o - 10 16 26 00269
: \ €y (Es)  (0.3846) (0.6154) (1.00)
diastolic blood pressure (DBP) among young adult
women, aged 18-24 years, by ordinal levels of body [25,27) 1 12 13 00135
mass index and race. Although these data were ob- () (0.0769) (0.9231) (1.00)
tained from a weighted, com i
ssumption of si%n le dplex Survel}'l deS_lgn, o (28,25 ¥ . 2 00217
4 P : pie random sampling is U?ed Ey) (0.1429) (0.8571) (1.00)
throughout this paper for simplification. Arbitrarily,
DBP exceeding 82.6 mmHg (determined from the <23 10 63 73 0075
weighted 90th percentile of the distribution) is re- (Ed  (0.1370) (0.8630) (1.00)
garded as disease bemg present for ‘these Cross- Subtotal o4 100 133 041377
sectional survey data. An important public health con-
sideration is the differential impact of body mass index White =27 29 64 93 00963
(BMI), expressed as weight (kg)/height (m)?, and race (Co) (E)  (0.3118) (0.6882) (1.00)
on elevated blood pressure. 25.27) . 57 61 00667
In the next section, we develop a methodology to (E,) (0.1094) (0.8906) (1.00)
assess the impact of BMI and race on elevated DBP
measurements, taking into account the fact that the [23,25) 8 101 109 01128
underlying sampling design is cross-sectional. From a (Ev) (0.0734) (0.9266) (1.00)
primary prevention perspective, we consider BMI as 03 40 527 567 05869
Fhe primary risk factor and race as a potential covariate ) (0.0705) (0.9294) (1.00)
mfluencing hypertension.
Subtotal 84 749 833  0.8623
Total 108 858 966  1.0000
* NHANES I, second National Health and Nutrition £xamnation
Survey.
METHODS

Although logistic regression modeling is general enough to be utilizeq as a fr’am‘ewgr‘k t;) prfuliuctg)g:l}l::;;n{tf:;}ml
Covariate-adjusted population attributable risk across a wide range of snua‘nons.' . ,L] ?(;.\.L( o\ ‘ : \r‘m‘." : ihe
methods within the simpler context of a primary risk _factor reported on / levels‘ dnfdl 's‘mi_fg -T}n““ :ntfm.‘“c. \(:m; X
L(i) be the simple logit at exposure level i and covariate level ¢, and 7y be the coefticient for the covariate status.
Let

5
Model I: L() = a+ B+ ¢y, i = 0./~ Lc =0.1 (2
Where B, is the effect of the ith Jevel of the primary risk factor reported on a nominal scalc. Incorporating the
effects of the primary risk factor on an ordinal scale, let

] T (IS
Model II: L(i) = a + i3 + ¢V, i=0.. .- 1.c 000

Cnmianely > that 3 0 Model T Note
.. : ; arameters uniquely. assume that B
W i icient. To identify the model parame e . Model 11
chfrf};B 1 the t'rf;nd Coeftf)etween the two models is the replacement of B, in Model 1 ;\ ”‘fyl ’_ﬁ "(“’I n‘](l:ldl\uhl-fi
It e ony a e arametric formulation for the conditional probability of disc J;(I R
R . - o these s as
belonlg usetfulthtg 'tgl;VlZVilpof exposure (E;) and cth level of covariate (C,) under these mode
ing to i

Pr(DllEiC(') = [expla + B+ ey Y1+ expla s B, eyl
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using Model 1 for purposes of illustration. Throughout subsequent developments, these formulations will be
developed in terms of Model 1, but can be applied readily to Model I

Following equation 1, and replacing the conditional

disease probability by its parametric formulation given in

equation 4, the covariate-adjusted population attributable risk for multiple risk levels is

1 I-1

A= 1= [SAP(CHUZ 2 APHC ED], )

c=0

¢=0i=0

where A, = [exp(a + B; + ¢Vl + exp(a + B; + ¢yl

Next we describe the procedure to derive the maximum likelihood estimator for the covariate-adjusted PAR
together with its variance under a cross-sectional sampling design. Maximum likelihood estimators of the
parameters for models I and II are obtained readily from PROC LOGIST in SAS (SAS Institute, Cary, North
Carolina). These estimates and their asymptotic covariance matrix are the same as given in Greenland and
Drescher (18). However, under a prospective sampling design, the exposure prevalences are assumed to be
known quantities, and are treated as constants for the derivations of the asymptotic variance of the estimated PAR
(18). Under cross-sectional sampling, the exposure prevalence must be estimated and the covariance between
model parameters and the exposure prevalence is derived by applying the implicit function theorem (21).

The maximum likelihood estimators of the factor prevalence rates are the observed proportions in each of the
covariate-exposure categories. An estimate of the covariate-adjusted PAR under the cross-sectional sampling is
given by equation 5 with all parameters and factor prevalence rates replaced by their maximum likelihood

estimators, i.e.,

1 7I-1

i
fom 1~ [SAmLIS SAs, ©

c=0

c=0i=0

where A, = [exp(& + B; + YVl + exp(@ + B, + cY)], b = Pr(C.E), and B,,=Pr(C)i=1....1-1

c=0,1.

Note that A, is a function of two dependent sets of random vectors, namely, the estimated parameter vector,

b= (& By .-

o Bi—p ¥, (or b = (&, B, %) as the case may be) and the vector of cell proportions, p. The
covariance matrix between b and p can be expressed as

C=V,H3, )

where V,, and 2. are estimated dispersion matrices of b and p, respectively, and H is the Hessian matrix (21)- Vb
and 3, are obtained easily;  is the observed variance-covariance matrix of a single multinomial random vector.
and V,, is the inverse of the observed information matrix. The (Lk)th element of H is given by (oL/ ab,0p)> where
L is the appropriate log likelihood, b, is the /th element of the vector b and p, is the kth element of the vector

Let the Jacobian of In(1 — A,) with respect to the elements of b be denoted by J* with its /th elemfiﬂt given
by (3[In(1 — A,)1/ab,), and the Jacobian with respect to the estimated cell frequencies be denoted by B* with 118

kth element given by (o{In(l — A 1/9p,). Therefore

Var,(A,) = (1 — A,)[J8V, 34 + BB + 2B*C'J*],

(8

where the subscript ¢ designates cross-sectional sampling.

RESULTS

Let us now apply the theoretical results derived
above in the context of the data presented in table 1.
The covariate-adjusted PAR may be interpreted as that
proportion of disease in the target population which
theoretically could be eliminated if all exposed indi-
viduals revert back to the baseline level of no expo-
sure, after adjusting for the covariate effect. In the

duction of
0 the
we

absence of any covariate, A, Measures the re
disease in the target population attributable !
primary risk factor only. As a special case of )\Aauc—
define another quantity measuring the Overi.ﬂl rfe ctor
tion in the disease when both the primary mkl z;,-ly.
and the covariate are absent in the population- Cv elq of
if there are I levels of exposure and WO 13: with
confounding, one can form a combined varid
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TABLE 2. Alternate models for the analysis of NHANES |1* data
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Logit Covariate BMI* Lack of fit
model in model scale significance _—2log M
. e level likelihood odel parameterst
Yes None i
Nominal 1.00 628.22 By =009, 3, = 031, Bs = 1.75
Ordinal 0.05 635.19 B=055
Race Nominal 0.73 624.66 By =0.06, 3, = 028, B, - 1.70
¥ =052
Ordinal 0.22 631.67 B =053
% = 0.51

* BMI, body mass index; NHANES I, second National Health and Nutrition Examinati
DIV s NH » Sec ‘ lion Examination Survey.
T B is the BM! effect for the ith level relative to the baseline (BMI <23). 8 is the BMI trend parazlneter under equally spaced scoring. ¥ is

R the race effect.

Nlevels and A, can be used directly to estimate the
overall PAR. However, to distinguish between these
two quantities for the example considered, let us de-
tote the overall PAR by A,

Two separate modeling strategies are considered in
the Methods section. Although the actual sampling
design for NHANES 11 was cross-sectional, the meth-
ods for prospective (18) as well as cross-sectional
sampling designs are applied to these data to facilitate
tomparisons. Recall that the form of PAR is equiva-
lnt under both designs. However, under the former,
the exposure prevalences are taken to be known con-
sants, rendering A, to be a function of b only. In other
words, :

Var, (1) = (1 = RIVIA,

Where the subscript  denotes the prospective sampling
heme. In effect, under prospective sampling, the
txposure prevalences are taken to be equivalent to
their estimated values under cross-sectional sampling

to facilitate comparison, but are treated as known
constants.

A summary of these results is presented in tables 2
and 3. Table 2 provides essential information for the
various models considered.

Recall that BMI is assumed to be the primary risk
factor and race the covariate. Using the results in the
first part of table 3, a comparison can be made be-
tween the model-based and the non-model-based esti-
mates of the proportion of individuals in the target
population belonging to the category of DBP =90th
percentile attributable to BMI =23. In order to obtain
the non-model-based estimate of PAR, defined only
for a 2 X 2 table, the data in table 1 were collapsed
over the three highest exposure levels and over race as
well. For that situation, labeled “no model.” the PAR
is estimated to be 30.1 percent, and the standard errors
under the prospective and the cross-sectional sampling
designs are calculated to be 6.78 and 6.84 percent.

respectively (2).

TABLE 3. Population attributable risk (PAR] analysis of NHANES iI* data under alternate models: prospective and cross-

Sectional designs®, T

| mogel Coreocel e a SE,A) seho o Se SE. (v
No None Nominal 0.301 0.0678 0.0684 - - -
Yes None Nominal 0.301 0.0678 0.0684 - - -
Ordinal 0.368 0.0582 0.0601 - - N
Race Nominal 0.292 0.0673 0.0692 0.346 0.0680 0 0695
Ordinal 0.361 0.0589 0.0610 o,fzog 0 0559' 0 0605
al Health and Nutrition Examination Survey: SE. standard e;;amﬂw reomoratng

I *BMI, body mass index; NHANES I, second Nation ek aarameter. 1o

t A4 is the covariate-adjusted population attributable

e combined effects of race and BMI.

Am J Epidemiol Vol. 142, No. 12, 1995
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In the second panel of table 3, the impact of BMI on
DBP is quantified first without considering the effects
of the covariate. The nominal scale logit model in this
case is

ModelI: L(i)=a+ B, i=0,..,1-1, (9
and the ordinal scale model is
Model Il: L(i) = a +iB, i=0,..,1—1.
(10)

In the absence of a covariate in the model, the overall
PAR ), and the covariate-adjusted PAR A, are iden-
tical. Under models in equations 9 and 10, the para-
metric formulation of the PAR follows easily from
equation 5 with ¢ = 0, yielding PAR estimates to be
30.1 percent and 36.8 percent, respectively. In the last
panel of table 3, the results of the covariate-adjusted
analyses described in the previous section are summa-
rized. Note that white race is taken to be the reference
level for the covariate.

Several observations on the results in table 3 are
noteworthy. First, whether or not the data have been
collapsed over the covariates, the estimated standard
errors of the attributable risk measures under the pro-
spective sampling are always smaller than those under
cross-sectional sampling. This is easily explained, not-
ing that under the latter we introduce a second source
of variability by estimating the category-specific ex-
posure rates. Second, the estimated PAR (30.1 per-
cent) based on the nominal scale risk model (without
a covariate effect) and the same estimated without any
model assumption are identical and so are their esti-
mated standard errors. Walter (2) noted that the sum of
all estimated category-specific PARs is equal to the
estimated marginal PAR, when the marginal PAR is
obtained from the 2 X 2 contingency table formed by
collapsing over all the exposure categories. The nom-
inal scale logit model without a covariate is in effect a
saturated model. Thus, the results in this case are
identical to those obtained without any model assump-
tion.

Finally, for these particular data, the covariate-
adjusted PAR estimate for BMI (ordinal parametriza-
tion) is 36.1 percent, whereas the overall PAR for both
BMI and race is only 40.9 percent. As such, these
methods provide a promising approach to isolating the
relative importance of potentially confounding sources
of variation in disease patterns within target popula-
tions. Even though the sum of PARs for BMI and race

effects does not equal the overall PAR for race and
BMI, making it somewhat difficult to quantify the
proportion of total variation in DBP explained by
BMI, clearly BMI is the dominant source. Benichou
(22) suggested that one can obtain an overall PAR

estimate from a fully saturated model including the
race X BMI interaction terms. In this particular case,
the estimated value of this parameter is 36.9 percent,
which further shows the influence of BMI over an
individual’s diastolic blood pressure measures.

DISCUSSION

Model-based estimation leads to increased asymp-
totic precision when the assumed model adequately
describes the data (23). The simpler the model, the
better the performance of the model-based estimator.
There are several methods of assessing the fit of the
model. We have chosen to apply the criterion of p
value. If the lack of fit significance level is greater
than 5 percent, the model in question is assumed to fit
the data. Table 2 shows the significance level for
testing the lack of fit of each model using the weighted
least squares algorithm as implemented in SAS PROC
CATMOD (SAS Institute, Cary, North Carolina).

However, if the model does not fit the data, the
model-based asymptotic variances of the estimated
parameters are still smaller than their non-model-
based counterparts, but the bias of the estimators does
not go to 0 with increasing sample size. Misspecifica-
tion of the model is a part of systematic error in the
inference process and requires special attention. In the
example considered, we have discussed two models,
one model with BMI parametrized as a nominal scale
variable and the second model with BMI incorporated
as an ordinal variable. There is a gain in efficiency in
using Model 11, because the asymptotic standard errors
for both the prospective and the cross-sectional sam-
pling schemes are smaller than those obtained under
Model I. Model II is more parsimonious than Model 1.
and it still fits the data adequately. However, the gain
in efficiency is not overwhelming, and therefore one
may reasonably prefer to use Model 1. The choice of
one model over the other is driven by the relative
importance of efficiency versus bias, and, dppendmg
on the situation, there may not be a clear winner.

The covariate-adjusted PAR A, 18 equivalent t0 }he
formulation in Bruzzi et al. (10). However, Bruzzi €t
al. considered a case-control study, and under the r :;re
disease assumption they estimated the relative risk ly
the observed odds ratio. The inference method fO;
lowed by Greenland and Drescher (18) and the ptese?g
authors are more general since no such assumption ©
made. _ 4t
It has been argued (22) that there is no nee he
consider more than two levels of exposure ltloem_
primary risk factor. Recall that the sum of ﬁ e;li'
mated category-specific PARs is equal 0 t.ele Jby
mated marginal PAR when the marginal 1s obtained b

: is s
collapsing over the exposed categories (2). This

1995
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indeed true in the case of Model I, because it indicates
ssturation on the primary risk factor. However, under
~ Model T atrend effect for the primary risk factor is
Casumed that, when true, may result in substantial
svings i the estimated asymptotic variances of the
PAR. ti this case. the ordinal structure of the risk
factor becomes of prime importance and the PAR is
ot 1 seneral, equivalent to the marginal PAR.

A mixzunum likelihood estimate of the covariate-
diusted PAR and its asymptotic variance have been
derived - this paper utilizing a logit model-based
spprocch. Even though two simplistic models are dis-
wssed at-Jength, the methodology is general enough
o be adapted to any situation. Currently there is
. 10 softwure available that provides the estimated
vartate-adjusted PAR along with its asymptotic vari-
ances for cross-sectional study. We used SAS and
SPLUS software (StatSci Division, MathSoft, Inc.,
Seattle. Washington) to obtain the required estimates.
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