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P
ON THE BOREL HIERARCHIES OF COUNTABLE PRODUCTS OF POLISH SPACES

Introduction. Let X be an uncountable Polish (complete, separable metric) space
1. Introduction.
dlet H XY, Equip H with the product of discrete topologies and also with the

an e == .
product of copies of the Polish topology. The former topology will be called
the d-topology and the latter the p-topology (which is known to be Polish).
Topological properties with respect to these topologies will carry the prefix d and
P as the case may be. The d- topology on H gives rise to two hierarchies {(of Borel
sets) defined as follows.
Put %o =T, ={ A C H: 4is dclopen h
and inductively define for u < Wy,

Zu= ()

Vb

Ou=(A: 4 € Xy}
Denoting the Borel o —field on H with respect to p by B, we define

Iy = H:'=-{A ES:Aisd-clopen};

3= ( U ),

- v<u . -

“u=- {4: .| EEM}.

It is not hard to check (as pointed out to us by a referee ) that

3 = | s
H<w,
A.Maitra (2] agked whether

(1) o= une for 0 < u< w,.
In connection with ( | ) he made the following conjectyre ( which he proved for the

case 4~ 1.2).
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(1) Suppose A and B are two analytic ( I} ) subsets of H such that 4 can be
separated from B by a Xy set, 0 < 4 < w,. Then there is a £f set which separates

4 from B.

Observe that trivially ( II ) implies ( I ). In this short note we shall show that
under a certain category- theoretic assumption, ( II ) is true for all U < w . We
shall obtain this as a simple consequence of results and tecniques of Louveau

developed in [ 1 ]. The relevent definitions and results are reviewed in the next

section.

Note that the above assumption is not consistent with ZFC. However, it

holds in the Levy- Solovay model [ 4 ].

2. Regular and Separating Families of Sets. We shall use standard notation and
terminology from effective descriptive set theory as found in Moschovakis [ 3 1. All

unexplained notation and terminology are from [ 3 ].
Definition 1. Let X be a recursively presentable ( r.p. ) space. By a coding pair we

shall mean a pair< WX, CX> (or < W, C > when X is clear from the context )

such that

(i) Wisa I} subset of w¥ X w.
(ii ) C is a I} subset of X X w¥Xw whose projection on w¥ X wis W and

such that the relation

(a, n)EW & (z,0,n )& C
is 1.
{Cam: N Ewl,n €W } is precisely the class of

( iit ) For each a,

all AXa) subsets of X. Observe that such a coding peir exists ( ¢f.[ 1; pl4 1).

61



Definition 2 ( Louveau ). A family ® of subsets of an r.p. space X is said to be

separating with parameter oo € WW, if it satisfies the following two conditions:

(i) The set Wo def ((oum) EW : Ca,n €@ }isa i{oo) set -

(ii ) If A, and 4, are two Ti(a) subsets of X and if there is a B € ® which
separates A, from A then there exists a Al <aga>) set in @ which separates 4,
from 4,.

Definition 3 ( Louveau ). Let ® be a family of subsets of a r.p. space X and
o € wW. The separating kernel of ® of order a, written Sa(®P), is the family of
THa) subsets of X which can be separated from every disjoint Ti(a) set by a set

which is Aj(a) and in &

Clearly, Aj{c) N @ C Sy (®); and if ® is separating, then Zja) N ® C S(®).
Notation. For each r.p. space X , let Tx(ct) denote the topology generated by the
Ti(a) subsets of X. We shall often drop the superscript when it is clear from the
context. Note that if X is a product space the TX(a.) is not the product
topology. In what follows , unless explicitly mentioned, we shall always use
this topology and not the product topology when X is a product space. For
A B C X,wewrite 4 ~y B iff AAB ( =(A—B)U (B—A4)) is T(a) - meager.

Definition 4 ( Louveau ). Let ® be a family of subsets of an r.p. space X. Then &
i8 said to be regular with parameter o € wW

» if it satisfies the following two
properties:

(i) Th iti
e set W ( cf. Definition 2 ) ig (o).

(#) Pro
perty of regularity: For every real o and for every set E € &
]

there i
18 8 sequence { 4, : n € w) g S<aga> (®) such that
, a

E ~cago> ( U 4dn).
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Theorem 1 ( Louveau ). For each u < w,, define a family ®; by the recursion:
@, = &;
cl:°/‘4+1= ( Py g, s
& = U®y, if \is limit.
L<A
Then, each @, is regular ( and for u > 0 , separating ) if ® is regular, with

parameter < aga, >, where o, is the parameter of ® and ay€ WO is a real such

that jaul = U .

Moreover, let ¢(x, n, E) be the following set relation:
é('xe n, E) —
[tevn)eW)a{ 38 €Al <ato >N YmI(<aoe>BMNEE & Con= X ~UC o o5 gem))
Plainly, ¢ is ﬂ}(ao)—-monotone which defines inductively a sequence Wﬁ‘, by
Wo = Wo;
witl = { n) 2 gle, n, Wk
W = UWE, if \is limit.
b e f
Then, for each ordinal L,
— L
Wou Wo -
{ For a proof of this theorem see [ 1 ]).

Proof of Conjecture ( II ) . Without loss of generality, we assume that X = wW¥;
the result for Polish spaces can be obtained by standard transfer theorems. We

shall identify X"x X% with X% for each integer n > 1.

We first make the following easy but important observation.
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is of = U A4n , with
Proposition. Any set 4 € %, is of the form 4 N, An each

Ap = Alp) X XY with Afny C X
Thus £, precisely consists of sets of the above type.
Proof. Let 4 En) = {{( Ty Tn ) S Xy Ta) & 4 }, where
T Ky ¥n) = {x EXWi(x),= Xy vom (X )= x,,} . Clearly, A 271) x X¥ C 4
for every n. Now suppose X = ( Xy X2r-)E A Since 4 is d -open, there is n >1
such that
x € S( x4 Xa) © 4.

Clearly ( 2y, Zqa) € 4 zn) and hence x € 4 l(n) x Xx¥. 0

Let &, = { 4 ‘(n) XxX¥: n>0 &4 ,(n) - X™ } and inductively define
®4 as in Theorem 1. It is not hard to see that
uu =¢u if1$u<WQ;
0u+1 lf U 2 wg D
Now consider the following statement:

) For each n > 1, every subset 4 of ( w¥W )" has the Baire property relative

to T(a) for every a.

Observe that under the Axiom of Choice statement (P) is not true . However,
in the Levy-Solovay model [ 4 ], it can be show’n that (P) holds ( cf.l 1 ] ). As

pointed out to us by a referee AD implies (P)— this c;n be proved by playing the

Banach - Mazur game with T}{a) sets.

We now prove

Lemma. A
ssume that (P) holds. Then the family ®, is regular without parameter.
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Proof. Let < W™, C™> be ( uniformly in m ) a coding pair for X™ and let
<W, C> be a coding pair for X“. Observe that A I(n) C x" s Al(x) in X"

/

iff A () X XY s Al(a) in X¥ . Hence
(a, n) € W¢0
— (OL,n)EW&C(a’n)E(Do
=+ (a,n) EW & (3mA3K) {(a, k)E WM & C g X XY = Cq, n ).
It is easy to check that Wg is ) . Next observe that if E C X™is Ii(a), then

E X X% isin Sa ( @ ). This follows from the Suslin-Kleene Theorem( cf.[31).

Now, fix a and let 4 € ®,. Then for some n , 4 = 4 I(n) X X% , Where
4 27,'3 < X™. Since (P) holds, there is a sequence { Erx } of Ti(a) subsets of X"
such that 4 En) ~a | %JE;C ). Hence,
, ’ w
(A () XXY)A(UEEXXY)) = (A A(UEE)) XX
is meager relative to T(a) by Lemma 2.13 of [ 1 ]. But each Ep X X¥ € Sq (&)

by the observation above. Thus A4 has the regularity property.

This completes the proof.
Theorem 2. Assume (P). Suppose 4, and 4, are two X} subsets of H such that 4,
can be separated from A4, by a Iy set with 4 > 1. Then 4, can be separated

from 4, by a Ilfl set.

In other words, Conjecture ( II ) is true for all # < w,.
Proof. We shall prove this by induction on u. The resuit for # = 1 is known and
can be easily proved. So assume u > 1 and fix z such that u<wi and A4,, 4, are

T(z) subsets of H.

Now observe that, by the Lemma and Theorem 1, Il is a separating family

With parameter oy ( which can be chosen to be recursive in z ). Hence there is a
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. 1 3
set B separating 4, from A, such that B is A)<ay z>) and in I, .

H — . i
Fix n such that ( < oy z>» n ) € wH and C <Oy, Z>y T B. Plainly,

i+l . .y
(< oy z>n ) € wuu = W:: , by Theorem 1. (We assume for simplicity that

U W

Hence there exists B € A%(<onu , z>) such that

Iz H - H — H .
(‘c/m)[(<oto,cm>..3(m))€l~/¢’0 ] &C <Qyy Z>, N H r% ¢ <0y, Z>y B(m)

Write By, = CH for each m. Clearly, each By is Al<ay , z>) and

<au, z>, 5(1‘7‘!) -

in llnm for some 7m < 4. By induction hypothesis, Bm € Ilnm and
* * _ _ . * .

hence U Bm € [ngunn) ]a ~ =% . Thus B = H—UBjy isa I, set which

-~

separates A, from A,. This completes the proof. [

As an immediate consequence we have
Corollary. Assume (®). Then, for u < Wy
TH = TuN3B.
Remark. As remarked earlier, the statement (®) holds in the Lévy-Solovay model.
Consequently, both Conjectures (1) and ( II ) are true in that model.
Postscript. V.V. Srivatsa ( unpubished ) has proved (I ) in ZFC.
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Martin’s Axiom implies a stronger version of Blumberg’s Theorem

Let R be the real line. In 1922, H. Blumberg proved the following theorem:
Blumberg’s Theorem [Bl]: If f:R—R, then there is a dense subset D of R such that

fiD is continuous lere, fID is the real valued function on D with the subspace

topology.

In any such theorem, it is of interest to ask how much the hypothesis can be
weakened or the conclusion strengthened. The obvious way to weaken the
hypothesis is to allow the domain of f to be some subset of R instead of R. A set
XcY is categorically dense in Y if XU is of second category in Y for every
nonempty open subset U of Y. Trivial modifications in the proof of Blumberg’s

Theorem then giv e the following strengthening:

Proposition: If X is a categorically dense subset of R, and f:X—R, then there is a
dense DCX such that fid is continuous.

If every point of XCR is isolated, then the same result holds trivially. For
similar reasons. this is also true if X is scattered (just let D be the set of isolated
points of X). However, if X is dense, it is easy to see that the hypothesis cannot be
Weakened any further, for if XR is dense and of first category, partition X into

fountably many sets X,,, n<w, each nowhere dense. Let f(x)=n iff x& Xy, and {

obviously cannot be continuous on any dense subset. If X is dense and of second
Category, but not categorically dense, the same trick can be used on XN for some

Interval J, letting f be constant outside 1.
Thus, for dense X, X being categorically dense is both necessary and
Sufficient (at least for subsets of R). It is perhaps somewhat surprising that the
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