In the example in the previous paragraph, there was no
{IMVUE for 7() = 6, the parametric function of interest.
But, what if a UMVUE exists for 7(6) and there is a mini-
mally sufficient but not complete statistic 77 Could we use
7 to Rao-Blackwellize an unbiased estimator h of 7(6) to
nistain the UMVUE (i.e., could it serve the same purpose
5 the complete sufficient statistic in the Rao-Blackwell
snd Lehmann-Scheffé theorems)? The answer is nega-
“tve because even though the UMVUE of 7(6), which can
2 made into a function of T alone by using the Rao-
lackwell Theorem, is unique (cf., Rohatgi 1976, p. 353),
{here can still exist many unbiased estimators of 7(¢) that
e functions of T. An example of this phenomenon is
srovided by taking X from the probability function

fx(k;0) =Pp{X =k} =0 ifk=-1
=(1-67%0 ifk=0,1,2,...,
swhere 8 € © = (0, 1). Clearly, X is minimally sufficient
but not complete. Letting 7(6) = (1 — ), it is known (cf.,
i.ehmann 1983, pp. 76-77) that the UMVUE of 7(6) is
hX)=1 ifX=0
=0 ifX #0.

But another unbiased estimator of 7(¢) that also depends
on X is hp(X) = h}(X) — aX for any a € (—o0, 00).
This phenomenon shows the importance of the concept
of completeness in guaranteeing that the process of Rao~
Blackwellizing an unbiased estimator / of 7(6) will pro-
duce the UMVUE.
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Binomial and Negative Binomial Analogues Under Correlated

Bernoulli Trials

Roman VIVEROS, K. BALASUBRAMANIAN, and N. BALAKRISHNAN

Several statistical applications demand the adoption of
models in which the response is binary but the out-
comes of different trials exhibit some degree of correla-
tion. Although the independent case is well known and
ireated even in elementary textbooks, results on corre-
lated Bernoulli trials are hardly found in the literature.
Analogues of the binomial and negative binomial distri-
butions are presented in this article when the correlation is
of the Markovian type. Probability-generating function,
probability mass function, mean, and variance are derived.
The analysis allows illustration of a variety of techniques
useful in the study of discrete distributions appropriate
for second-level probability courses. An example on cus-
tomer brand switching discussed by Olkin, Glesser, and
Derman is presented as illustration.
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1. INTRODUCTION

A daily customer has to choose between two brands, A
and B, of a given product. A model for representing the
customer switching patterns discussed by Olkin, Glesser,
and Derman (1980, pp. 459-460) assumes that only the
customer’s choice of brand on the immediately preceding
day, day i, affects his or her choice on day i + 1. Suppose
that when the customer chooses Brand A on one day, then
he or she will choose Brand A the next day with prob-
ability .8; when the customer chooses Brand B on one
day, then he or she will choose Brand A the next day with
probability .3. The customer chooses a brand randomly
the first day he or she buys the product. The following are
questions of concemn to the product makers.

Q,: How likely is that the customer will choose Brand A
on 20 days out of the first month (30 days) he or she
buys the product?

Q,: How likely is it that the twelfth time the customer
chooses a Brand A product occurs in 15 days?

If the probability of choosing each brand was constant
from day to day, then any student with an elementary
course on probability could provide an answer to the afore-
mentioned questions by invoking the binomial and neg-
ative binomial distributions because the chain of brand
choices across the various days will simply be a sequence
of independent Bernoulli trials. In the present application,
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however, the trials are not independent, and the answers
to Oy and @, demand careful examination.

The problem just described is an example of Markov-
correlated Bernoulli trials. These correlated trials find
application in many applied disciplines. For instance,
Estes (1950) and others since then have used binary
Markov models to represent learning (see Olkin et al.
1980, pp. 449—-450). An application to binary signal trans-
mission in communications was discussed by Pfeiffer and
Schum (1973, p. 358). Kemeny and Snell (1960, p. 31)
discussed a model for representing gambler’s behavior
in choosing between two slot machines. An application
to model the starting-up reliability of power-generation
equipment operated on gas (e.g., lawnmowers) is pre-
sented in Viveros and Balakrishnan (1993). Dry-rainy
weather patterns (Ross 1993, p. 138) have also been mod-
eled with Markov-correlated Bernoulli trials. An interest-
ing application to modeling vowel-consonant patterns in
biblical text, and more generally in languages, was made
by Newman (1951). Among the eight languages investi-
gated, Newman (1951) found that Samoan and Lifu (the
largest of the Loyalty Islands, a group located in the south
Pacific Ocean east of New Caledonia) are the only lan-
guages whose vowel-consonant patterns appear to follow
first-order Markov chains. King James English has pat-
terns that appear to follow a third-order chain.

To examine this class of problems more generally, let
Po, P15 and py be po = Pr(0y = S), p; =Pr(0; =S | O;4
=S8),and p; = Pr(0; = § | 0;_; = F), where O, is the
outcome of trial £ (i > 1), and § and F denote success and

JSailure, respectively. Letg; =1 —p; (j=0,1,2).

This simple correlation structure is tantamount to a sta-
tionary two-state Markov chain with state space {S, F} and
transition matrix with rows (p;,¢;) and (p2, g2). There-
fore, any situation giving rise to such Markov chains will
provide an application for the results discussed in this ar-
ticle (e.g., see Kemeny and Snell 1960).

This article centers merely on probabilistic considera-
tions; we do not discuss statistical issues such as the esti-
mation of py, py, and p, and the testing of the Markovian
assumption. We refer the interested reader to the work of
Bishop, Fienberg, and Holland (1975, chap. 7) and Cox
and Snell (1989, pp. 98-105) for the statistical analysis of
binary Markov chains and time series.

The focus of this article is on the distribution of the
random variables: X, denotes the number of successes in
the first n trials; N, denotes the number of trials needed to
get x successes. Note that n is fixed in X, and x is fixed in
N,. Clearly, X, and N, will have the familiar binomial and
negative binomial distributions when pg = p; = p,, that is,
when the Bernoulli trials are independent. To the best of
our knowledge, the elementary treatment of the extensions
to correlated trials discussed in this article do not appear to
have been hitherto presented. As will be seen, the richness
of the analysis provides an opportunity for the classroom
teacher to illustrate a variety of techniques useful in the
study of discrete distributions.

In contrast to the corresponding results for independent
trials, we found that the distribution of N, is simpler to
describe than that of X,. This explains the order of pre-
sentation we followed.

244 The American Statistician, August 1984, Vol. 48, No. 3

2. NEGATIVE BINOMIAL

Let ¢,(¢) denote the probability generating function
(PGF) of Ny, namely, p.(f) = E(t*+). It is obvious that

Ne=Y1+1h+ 47, H

where ¥; is the number of Bernoulli trials elapsed since the
(i — 1)th success up to and including the ith success, 1 <
i < x. Because of the Markovian property, Yy, ¥5,..., Y,
are independent. Furthermore, Y,, Ys,. .., Y, are identi-
cally distributed with probability mass function (PMF)
fi(1) = pi, f50) = qugs pa for y > 2, whereas the
PMF of Y; is of the same form but with ( py, ¢1) replaced
with (po,go). As aresult, each of Y5, Y3, ..., Y, has PGF
QDB(I) =pit+ qlpztz/(l — qZT). Snmlarly, the PGF of ¥ 15
walt) = pot + qopat* /(1 ~ got). These results, when used
in conjunction with the multiplicative property of the PGF
over sums of independent variates, yield

x—1
qopat* qi1pat?
)= T i U'H e . 2
ox(t) [Po 1——q2t] [P1 1—(]21] 2

An alternative derivation of (2) 1s possible by working
directly with the contributions to the PGF of all possible
sequences of outcomes ending in a success and containing
exactly x successes.

When expanded in powers of ¢, the coefficients of (2)
give the PMF of N,. A convenient way of obtaining such
coefficients is by first writing

ot = g7 '35t {q2(po ~ p)l1p2(1 — @2t)™
+ (pr =PV +qolipa(1 — o)™
+ (p1 — p)I'},

and then applying the binomial theorem in conjunction

with the negative binomial series (e.g., see Kalbfleisch

1985, p. 24) (1 — g2~ = 525 (7" )(gar)’. The final

. i
result 18

ey = g7 (po — pr)gy !

x—1
x—1 i+n—x-—1
<3 ()M

X (qip2)(pr — p2) !
= X
- - X i+n—x—1
() (1)
=0
X (qp2)(pr — p2) (3)

for n > x. Itis easily verified that Equation (3) reduces to
the familiar negative binomial PMF,

mon= (" e nze @

- X
whenpy=p, =py=p.

A referee has correctly pointed out that explicit calcu-
lation of fy (n), n small, can become a cumbersome task
when direct use of (3) is attempted. An alternative simpler
version of (3) is obtained by noticing that

x~1 ~1 . . ] )
> (x ; ) (H'; - ]> (@2 (py — poy ="

=0
: 1 { d" 7w py ~ py + qipauy ]
(n—x)! duh—x "

=il



A similar expression holds for the second sum in (3). Use
ol the Lagrange formula for high-order derivatives of
products yields

(v 1)Ain

1)
. ne i+ . ]
S ny=(py - p, gy ! Z <” j ! | )

1=1

R | -
x (l/ >(I’1612) TN gipy) !

WA -x)
"o n--a - | X
+ ‘I()I’Z‘Iz § < j —1 ) </>

J=1
X (prg2) gyp)? !, neox+ . (5)
where a Ah = min{a.b}. When n is small, (5) requires
only a few terms for the explicit calculation of fy.(n); these
expressions may also be readily verified by direct proba-
bility arguments.

[tis casily seen from (2) that (1) = Co1Dlprr+ps-
pO1/(1 - gar). This relationship can be rewritten as

gD =[pit+(py = p)fle (0. (6)
Equating cocfficients of 7 on both sides of (6) yields
the recursion
D+Cp2 pilfe, (0 2),

(N
for m > x. Thus (7) provides an alternative method for
computing probabilitics associated with N, in a simple
recursive manner. Note that fy (v) = pop)

The clementary method for the derivation of geometrie
moments suggested by Samanicego (1992) can be adopted
here to obtain the mean and variance of cach Yoin(1). In
fact, cach ¥; (2 -7 7 -7 x) can be shown to have mcean and
varianee jip = l+q) /py and o, = (¢, /p1)+q, g2 q1)/pi.
respectively. Similarly, the mean and variance of Yiojia,
and o3 can be obtained from ju and ay by replacing ¢, with
go. Thus the mean and variance of N, are derived from (n
tobe jiy, = jra + (v Dy and ”,i/, = rri +(x I)n;; and
arc given by

In )y = gaf (0 D+pify, (0

Dail/p2.
{palgo+ (v - 1 g1+ go(2gs - go) + (x - | b
a0}/ (8)
Alternatively, gy, and o3 can be obtained from (2)
by differentiation.

A normal approximation to the PMF of N, can he de-
rved as follows. Define S, = Y+ Yo+ -+ Y. and
note that

Jiv, =X+ go + (v

N

N

X (2(]3 =

5 1%
. . (x - 1,
(/V‘ = /1'\})/”‘\'1 = ZI [] + _.#}

R |
. a3
+ 7, (1 —2 S
(x Doy,

where Zy = (Y, g and 7, = 1S (v Dyl
By central limit theorem, 7, =~ N0, 1) for a
large. Note that the coefficient of 7, in (9) converges to (),
whereas that of 7, convergesto Toasy -~ Because 7
has finite variance. then

(ND i a2 N0, (1

L2
l) g

tor vlarge. As usual.a contiuity correction may enhance
the quahity of the normal approximation.

3. BINOMIAL

A convenient way of connecting X, and N, is by means
of the fundamental identity

Pr(X, < x)=PrN, - n). (1)

In the independent case, (11) is usually used to compute
probabilitics about N, from those about X,. Here the roles
are reversed. The PMFof X, can be calculated from (Il)yas
Fx () =PrNC<n) PN, o), (12)
for O < x < n. Summing (7) over the obvious range yields
a corresponding recursion for the cumulative distribution
function of N,. Substituting this recursion in ( 12) gives

So)=qf, (O +pify, (- D+ (pa o iy, REOERY

(13)
for 0 < x < p,
Perhaps the most convenient way of computing fy (x) is
by using the identity

S ) = Sy () + fug, NUIR (14)

where M denotes the number of trials needed to get y
flures. The PME of M, can be obtained from (3)or(5)
simply by taking v = y and reversing the roles of py and g,
prand ¢y, and p, and ¢,. Equation (14) finds justification
in the fact that the occurrence of v successes in the first
n trials can take place by observing cither of the disjoint
cvents that the ath success comes on trial northe (1 ath
fatlure comes on trial n.

Because the Markov-dependent model has three prob-
ability parameters. the range of shapes exhibited by fy (x)
is considerably larger compared with that for the standard
binomial. In particular. bimedal and trimodal shapes are
possible. This fact widens the scope for data fitting.

Let (1) denote the PGF of X,. (1) = E(#*). The
derivation of (1} illustrates another important ool in
the study of discrete distributions., namely the solution
of difference equations. Tt is convenient (o decompose
+alt)as

20 = 20+ A0, (15)

. 3 - . .
where 21(1) and 27(1) are the net contributions 1o the

PGF from n sequences of trials ending in a success and in
afatlure. respectively. By conditioning on the outcome of
the ath trial. one immediately obtains

[ 3
7‘!1 4) 1 (,) = P]’Y’JHM(’) + p?"?“n’ .‘I'

i} 4 i
e =g N g, (16)
A straightforward manipulation of (16) viclds the dif-
ference equation

Yy

s
Tone ! (

Y Opyt+gay 0 (ps o= 00 (17
The general solution of (17) takes the torm
S = A o]t & B (181

wheie airand ey are the roots of the quadrane poiy
nomial Qs = =0 ipir4 gz (pe porand A
and Birvare arhitrary coetficients ce.g.. see Johnson and

The American Statistician, August 1958 Vol 45 No 3 A



Kotz 1977, pp. 13-14). The quadratic equation Q,(z) =0
has solutions

Calty=0,+6,, B(t) =6, — 0,

0 = (pit+q2)/2, 6, = [(prt = g2)* + 4qiput]'/?/2.
(19)

Noting that <p(ls)(t) = pot, cp(zs)(t) = pop1 2 + qopst, the par-
ticular coefficients A(z) and B(¢) of interest are calculated
as the solution of the 2 x 2 system of linear equations ob-
tained from (18) forn = 1, 2 after substituting for a(t) and
B(¢t) from (19).

These results can be combined to yield an expression
for ¢, (1). First, note that by using (15) and (16), one can
write ©,(¢) in terms of <pf2 ,(#) and <pf,s)(t). Then (18) gives

P2#a(t) = [(p2 — p)t + (DA™ (O[O
+[(p2 = pOt+ BOIB*OIBN], (20)

where A*(1) = [ pop11 + qop; — poBB()]/[a(t) — B(t)] and
B(1) = [ pop1t + gop2 — pocd(D1/[B(1) — o))

A careful examination of (20) reveals that as expected,
a(?) 1s a polynomial of degree n in ¢. Finally, evaluating
@n(t) at t = 1 gives the mean of X, as

Ux, =[npa+py—pr/a+(a—1)
X (poq1 = qop2)(p1 — p2)*~"/al/a, (21)

where a = g, + p,. Note that (21) reduces to the familiar
result iy, = np when py = p; = p, = p.

4. EXAMPLE: BRAND SWITCHING

Consider the customer brand-switching model de-
scribed in the introduction. From the information pro-
vided, py = .5, p; = .8, and p, = .3, where success
and failure correspond to choosing Brand A and choos-
ing Brand B, respectively.

The answer to Q, requires the calculation of probabil-
ities about Ny,. Some of these probabilities, which were
computed by using (3), are reported in Table 1.

The answer to Q, is fy,,(15) or 6.4%. In addition, the
chances that the customer opts for Brand A at least a dozen
times during the first three weeks he or she buys the product
is Pr(Ny; < 21) or 60%, whereas the chances that the
customer opts for Brand A at least a dozen times during
the first month is Pr(N;, < 30) or 91%. The mean and
standard deviation of Ny, as calculated from (8), are 21
and 6.6 days, respectively.

In contrast, if the customer made his or her selections
randomly, from the ordinary negative binomial distribu-
tion with p = .5 one would obtain v, (15) = 0.011,
Pr(N;; < 21) = 33, Pr(Ni» < 30) = .9, with mean

Table 1. PMF of N;, for the Brand Switching Model

nofy,(m N () nofy,(m n fn,, (M
12 .043 17 069 22 .0583 27 029
13 .048 18 .068 23 048 28 025
14 058 19 066 24 .043 29 021
15 064 20 .062 25 038 30 018
16 068 21 .058 26 -033 >3 064
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Table 2. PMF of X3, for the Brand Switching Model!

X fxm(x) X fx:,o(X) X fXJo(X) X fXao(X)
<6 .008 11 .029 16  .076 21 .072
7 .006 12 .039 17 .082 22 062
8 .010 13 .049 18  .085 23  .051
9 015 14  .059 19 .084 24 039
10  .021 15  .068 20 .079 >25 .068

and standard deviation for Ny, at 24 and 4.9 days, re-
spectively. Similarly, if the customer opted for Brand A,
80% of the time regardless of his or her previous selec-
tions, again from the ordinary negative binomial distri-
bution with p = .8, one would obtain Sna(15) = 0.2,
Pr(Nyy < 21) = .996, Pr(N,, < 30) = 1, with respective
mean and standard deviation for N, of 15 and 1.9 days.

Consider Q;. The PMF of X3, has been computed
through (14) and is reported in Table 2. The answer to
O is fx,,(20) or 7.9%. In addition, the chances that the
customer opts for Product A at least half of the time durin g2
the first month he or she buys the productis Pr(Xzy > 15)or
76.4%. From (21), the expected number of days in which
the customer chooses Product A out of the first month is
iy, = 17.8 days.

By comparison, if the customer made his or her se-
lections randomly, from the familiar binomial distribu-
tion with p = .5 one would obtain Jx0(20) = 0.028,
Pr(Xs > 15) = .572, and Hx,, = 15 days. Similarly,
when the customer chooses Product A with probability
p = .8 regardless of previous selections, the ordinary bi-
nomial model gives fy, (20) = 0.035, Pr(X; > 15) =1,
and py,, = 24 days.

5. DISCUSSION

The theory of Markov-dependent Bernoulli trials s fas-
cinating and rich in many ways. From the teaching—
learning process point of view, the benefit is twofold: the
students have the opportunity to understand the concepts
and appreciate the consequences of a simple dependence
structure, and the instructor is able to introduce in one
model several techniques useful in the study of discrete
distributions. From the applications point of view, as in-
dicated in the introduction, the scope is fairly wide.

Although the focus of this article has been the bi-
nomial and negative binomial analogues under the pro-
posed Markov-correlated Bernoulli trials, many other in-
teresting problems arise under such dependence model.
For instance, Viveros and Balakrishnan (1993) and
Balakrishnan, Balasubramanian, and Viveros (1994) have
extended the start-up demonstration test model of Hahn
and Gage (1983) to the practical situation in which
the trials are Markov dependent.  Here the emphasis
is on runs of successes and failures. More interesi-
ing and somewhat involved extensions to Markov depen-
dence models of various sampling procedures (c.g.. fre-
quency and run quota sampling) have been examined hy
Balasubramanian, Viveros. and Balakrishnan (1993).
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Accent on Teaching Materials
Harry O. PoSTEN, Section Editor

In this section The American Statistician publishes announcements
and selected reviews of teaching materials of general use to the statis-
tical field. These may include (but will not necessarily be restricted
to) curriculum material, collections of teaching examples or case stud-
ies, modular instructional material, transparency sets, films, filmstrips,
videotapes, probability devices, audiotapes, slides, and data deck sets
(with complete documentation).

Authors, producers, or distributors wishing to have such materials
announced or reviewed should submit a single, complete copy of the

product (three copies of printed material double-spaced) to Section Ed-
itor Harry O. Posten, Statistics Department, University of Connecticut,
Storrs, CT 06268. A statement of intention that the material will be
available to all requesters for a minimum of a two-year perisd should
be provided, along with information on the cost (including postage) and
special features of the material. Information on classroom experience
may also be included. All materials submitted must be of general use
for teaching purposes in the area of probability and statistics.

Review of Teaching Statistical Concepts

This book by Anne Hawkins, Flavia Jolliffe, and
Leslie Glickman provides an overview of research in
teaching introductory probability and statistics. It is
published in London by Longman Group UK Limited
(Longman House, Burntmill, Harlow Essex, CA20
2JE) as part of the Effective Teacher Series. Cost:
£11.99.

Probability and statistics are useful topics for all students to learn
but are difficult to teach. If it were obvious how to explain things
like conditional probability and standard errors, then we would all be
good statistics teachers, and ours would be among the favorite sub-
Jects of most students. This is not the case, as is well known. There
is a lot we do not know about how to teach probability and statistics,
but many people are doing research in the area, and progress is being
made. This book provides an overview of the research, along with
general comments and suggestions for improving statistics teaching,
particularly at the introductory level.

If you think of yourself as an innovative statistics teacher who
keeps a close eye on the statistics education movement, then this
book was written for you. By reading it you will find out what
research has been done and be reminded of the key issues that call for
future research. If you do not put much stock in the scholarly work
done in the area of statistics education, then you may safely forego
reading this book—but then you probably would not be reading this
review in the first place.

Much of the discussion in the book deals with the United
Kingdom (reading Chap. 7, “Statistics Practicals and Projects,” I
was reminded of the quote by Shaw that England and America
are two countries separated by the same language), but Hawkins,
Jolliffe, and Glickman cite research done around the world and dis-

play knowledge of a surprisingly broad literature on research in
statistics education. I found it refreshing to hear about statistics
education at the school level in England and to contrast it, in my
mind, to the situation in the United States, where we have tended to
postpone the introduction of probability and statistics until college.

The book is more of an overview of general issues than it is a
compilation of anecdotes and teaching ideas. Several solid teaching
ideas are mentioned, but they are not the main focus of the book.
Rather, Hawkins et al. provide a detailed resource to turn to when
you hear an anecdote about teaching statistics and ask yourself “But
has anyone done serious, scholarly research on this?” If your goal
is to pick up a collection of ideas to use in the classroom, you will be
disappointed by the amount of reading you have to do to get to the
next novel classroom tip. Hawkins et al. are serious about their task
and expect the reader to be diligent as well. This is not a book for
someone who has only a passing interest in statistics education; this
book is for people who take statistics education seriously and are
systematic in searching for ways to improve their teaching. Hawkins
et al. do not take a chatty, informal approach that says “Here are
some neat ideas; give them a try” They approach their subject as
scholars and experimenters who address difficult questions, eschew
simplistic answers, and seek solid evidence to support hypotheses
regarding the effectiveness of teaching methods.

The book begins with a brief history of statistics teaching, noting
that mathematics has overshadowed the applied nature of the devel-
opment of the field and that computers are now changing what is
taught, as well as how it is taught. Computers have made real data
analysis possible in the schools, but few school-level teachers have
training in statistics. Thus, there is much to be done if we are to
improve the general level of statistical thinking among students at
all levels,

The chapters on teaching descriptive statistics, probability, and
inference contain a set of recommendations that we have heard be-
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