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EMBEDDING A STOCHASTIC DIFFERENCE EQUATION
INTO A CONTINUOUS-TIME PROCESS
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A concept of divisibility is introduced for stochastic difference equations. Infinite divisibility then
leads to a continuous time process in which a nested sequence of divisible stochastic difference
equations can be embedded.

Stochastic difference equation * divisibility * infinite divisibility * embedding * continuous time

1. Introduction

Let the random sequence {Y,}5—o be defined recursively as follows
Y,=A,Y, ,+B, (n=1,2,...). (1.1)

The relation (1.1) is called a stochastic difference equation (SDE). In this paper we
shall consider sequences {Y,} satisfying (1.1) with

A,, B,}_, is an i.i.d. sequence,
{ Foei q (1.2)

A,>0 with probability one.

An example is a stock of material checked at regular time intervals. A, is the
intrinsic decay or increase of the stock and B, the quantity added or taken away
just before time n. More examples are given in Vervaat (1979). Obviously for k, n =0,

k k k
Yn+k: H An+j Yn+ Z H An+jBn+r

j=1 r=1j=r+1

(Wlth H;:n+1 = 1)5 le
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Yn+k:A:+kYn+Bz+k’ (13)

where

k

k k
(A:+k; Bﬁ+k) = < H An+j5 Z H An+j Bn+’)' (1'4)
j=1

r=1j=r+1
In particular
-1 2(n—1)
You=A30""" Youon)+ B3

i.e. the process {Y,}, o satisfies relations of the type (1.1) and (1.2). We say that
the sequence {Y,} is divisible if there exists a sequence { Y} satisfying relations of
the type (1.1) and (1.2) such that

Y,=Y% forn=0,1,2,....

Clearly not every sequence {Y,} is divisible. On the other hand such a property is
attractive since e.g. in the case of the savings account restriction to a fixed time
interval is unnatural.

If we require that the divisibility property continues to hold when one goes to
smaller and smaller time intervals and if we pass from rationals to reals, we
arrive—via (1.3) and (1.4)—at the following requirements for a continuous-time
process { X}, which is such that {X,,},_, satisfies relations of the type (1.1) and
(1.2) for every h>0.

X, =A/X,+B] for0ss=t, (1.5)

where A;>0 and B; are random functionals satisfying:
(i) for 0<s<u=t almost surely

Al=ALA], B} =A{B,+B};
(ii) for 0sa<b=c=d the families of random variables
{(A],B))lass<t=b} and (A, B))|css=<t=d} (1.6)

are independent;
(iil) the distribution of

{(A%, BiTDY,
does not depend on h.
An example (cf. Wolfe, 1982) is the Ornstein-Uhlenbeck process

t

X, =e " X,+ J e P aw,

0

with p a positive constant and W, Brownian motion. This process satisfies (1.5) and
(1.6) with A]=e™*""9 and BS =[le T aw,.
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In Section 2 we characterize the process { X} satisfying (1.5) and (1.6) and obtain
a representation of {X,} in terms of a two-dimensional process with stationary and
independent increments. As a consequence we can answer the question under what
conditions on the distribution of (A,, B;) from (1.1) and (1.2) one can embed the
sequence {Y,} into a continuous-time process with the stated properties. It seems
natural, even when one deals with a discrete-time problem, to use a pair (A,, B,)
compatible with a continuous-time model. .

In Section 3 we obtain a stationary solution of (1.5)—extended to the entire real
line—under appropriate conditions.

The existence of a stationary distribution for the related stochastic differential
equation (2.3) below has been studied by Zabczyk (1983) and Jacod (1985) for the
special case dR, =dt.

2. The continuous time process

All the processes we consider are defined on a fixed probability space (£2, &£, P).
Let us fix {A}, B} satisfying (1.6). It is easy to see that then {X,} given by (1.5)
is a Markov process with stationary transition probabilities. Of course, X, {A7, B}
uniquely determine {X,}. We are now going to obtain a representation of {A], B}}
and hence {X,} in terms of an R’-valued process with stationary independent
increments.
We will assume, in addition, that

A, =A’>»1 and B,=B{->0 in probability as ¢ | 0, (2.1)
AY>0 as. foreveryt (2.2)
Our first result is on path properties of {A}, {B,}.

Lemma 2.1. Let {A!, B}} satisfy (1.6), (2.1) and (2.2). Then {A,},{B,} admit RCLL
(right continuous with left-hand limits) modifications.

Proof. (1.6) and (2.1) together imply that {A,}, {B,} are continuous in probability.
Further, {M,}:={—log A,} is a process with stationary independent increments.
This yields existence of a RCLL modification of {A,}. See e.g. Theorem 14.20 in

Breiman (1968). We now prove the result for {B,} by modifying the arguments. in
the proof of the Theorem referred to above. Fix T. For a continuous strictly increasing
function ¢ such that lim, . ¢(x)=~a, lim, . (%) = @, 0< a <o, define

Y, = E[y(Br)|(A,, By, s=t1].
Then, using (1.6), it follows that

Y, =6(T—¢ B,)
where

0(s, x)= E[y(Ax+ B,)].
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Using continuity in probability of {A,, B}, it follows that 0(s, x) is continuous in
s for each x. The rest of the arguments are exactly as in the proof of Theorem 14.20
in Breiman (1968). [

From now on A,, B, will refer to this RCLL version. This and (1.6) yield the
existence of a RCLL version of (A}, B}) as well. This also shows that X, defined
by (1.5) is RCLL.

For a <b let % denote the smallest o-field which contains all P-null sets and
with respect to which {(A], B;): a<s<t= b} is measurable.

Our first result is the following.

Theorem 2.2. Suppose (A}, B}) satisfy (1.6),(2.1), (2.2). Then,

(i) M,=—log A, is a process with stationary independent increments w.r.t. { %}
(by this we mean M, is F, adapted, M, — M, is independent of , and M, has stationary
increments). As a consequence, M,, A, are F,-semimartingales.

(ii) LetR,= j'g A.l dA,. Then R, is a process with stationary independent increments
w.rt. {F.}.

(iii) N,= B, —f(t) B, (A,_) ' dA, is a process with stationary independent increments
wr.t. {F,}.

Here and in the sequel, j:ﬁ, dZ, stands for the stochastic integral | 1(u)f dZ,,
where Z,, is a semimartingale and f, is a predictable process.

Proof. (i) is a direct consequence of (1.6). The semimartingale property of M, (and
hence A,) follows from Jacod (1979, p. 63).
(ii) follows from (1.6) and the fact that for s <, R, — R, is limit in probability of

k—

k—1 i
Y (4,)7'A,,, ~ A=Y [A7, -1],
j=0 j=0

where s =1,<---<f, =t and limit is taken as sup; [£;.,~ 1|~ 0.
For (iii) note that

t

N,—N,=B,— B, —J B, (A,.) 'dA,

1

-5 [ B (A aa,

=BJ(A] - 1)+B‘:—J' (BYA,_+ B} )(A, ) ' dA,

= BQ{A: —-1- Jt (A9 dA,,} + BS - J” Bi_(A,.) 'dA,
=BJ{AI~1-(A) (A, —AJHB?—II B, (A, ) ' dA,

s

=B~ J B (A,.) 'dA,.
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For s fixed, {A(}, .. isa 9;"-semimartingale and it is easily checked (using Riemann
sum approximation of the integral) that

J B, (A, ) 'dA,,:f B, _-(A}.) "dA:.
Hence
N,—N\=B,‘—J' B, - (A.) ' dA].

Thus, N, — N, is F-measurable, and hence independent of F,. Stationarity of the
increments of N follows from (1.6) (iii). This completes the proof. O

Note that A, =1, B,= 0 implies that My;=0= N,.

Corollary 2.3. (i} A,, B,, M,, N, are F,-semimartingales.
(ii) Suppose X, is independent of F2,. Let 9, be o(X,, F,). Let X, be defined by
(1.5). Then X,, A,, B,, M,, N, are %,-semimartingales. []

R, and M, are related via (see Jacod, 1979, p. 190),
R =—M,+ M, M%), + ¥ [AM+{exp(~AM,)—1}].

We now show that the process X, satisfies an SDE driven by {R,, N,}.
Theorem 2.4. Let X, be given by (1.5) where (A}, B}) satisfy (1.6),(2.1), (2.2). Then
X, is the unique solution to the stochastic differential equation
dX, =X, dR,+dN, (2.3)

where R, N, are as in Theorem 2.2.

Proof.
dX, = X,dA, +dB, = X,A,_ dR,+dN,+ B,_Al dA,
=(X,A, +B,_)dR,+dN,=X,_dR,+dN,.

Uniqueness of the solution follows from standard results on SDE. O

We will now obtain explicit expressions for X, A7, B} in terms of processes
{R,, N}

Theorem 2.5. (i) Let U,==A;' and V= fo U dU;. Then V, is a process with station-
ary independent increments w.r.t. {%,} and

V,= M, + XM, M9, + ¥ [-~AM,+{exp(AM,) —1}].

s=1



230 L. de Haan, R.L. Karandikar /| Embedding

(ii) Let S,:= N,+[V, N1,. Then S, is a process with stationary independent incre-
ments w.r.t. {F,}.
(iii) N,=S,+[R, S]..

t

(As—)71 dSS = exp(_Mt) J‘ exp(Msf) dSs

0

t

(iv) B =A,- J

0

Proof. (i) follows by arguments similar to those in the proof of Theorem 2.2. For
(ii) we need to prove that [ V, N, is a process with stationary independent increments
w.rt. { %}, given that V,, N, have the same property. This follows from the fact that
[V.N],—[V, N, is limit in probability of

k—1
3 (V',+| + Nt,-+1 V- N’j)z_(V’jH — N, ~ V’j+ N’f)z’
j=0

where s=t,<<---<t, =1 and limit is taken as sup;|t;,., —#;|=>0 (see Jacod, 1979,
p- 34, 37). (iii) can be deduced from the relations expressing R,, V, in terms of M,.
From the definition of R, N, S, it follows that

B, :J B,_dR,+S,+[R, S],.
0

This is an integral equation expressing B, in terms of (R,, S,). It is well known that
this equation (or the corresponding stochastic differential equation) admits a unique
solution. It is easy to check, via Itd’s formula or integration by parts formula that

A, J' (A,) " dS,
0
satisfies the equation and hence

Br :At ' J‘ (As—)71 dSY

0

This completes the proof. [
These two results together yield the following result.

Theorem 2.6. Suppose {A7, B7} satisfy (1.6),(2.1), (2.2). Then there exist processes
{M.,},{S,} with stationary independent increments w.r.t. { %} such that

A; = exp(—(M, — M,)). (2.4)
B} =exp(—M,) ‘[ exp(M,_) dS.,. (2.5)

and then the process X, defined by (1.5) can be expressed as

t

X=X, exp(*Mx)+eXp(—M,)J exp(M,_) ds,. (2.6)

¢

Note that A,=1, B,=0 and, by definition, My=S,= R, = Ny=0.
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Conversely, suppose that the R”-valued process {M,, S} has stationary independent

increments. Then { A7, Bi} defined by (2.4), (2.5) satisfy (1.6) and X, defined by (2.6)
satisfies (1.5) for this choice. [

Example. Let  {M,} be a homogeneous Poisson process and S,:=
Y,+-o-+ Yy, (r=0) with Y, Y., ..., iid. standard normal and independent of

{M.}. Then the process {X,} is constant except for the jump epochs of {M,}.
Morcover the process

Y, = Xy,
tn=1,2,...) with {N,} the jump epochs of {M,} satisfies
)'n -1 = /) an + Un

with0< p -1 and U;, U.,...,1.i.d. standard normal. Clearly a stationary distribu-
tion exists and is normal as well.

Remark. One sees that the functionals {A}} and {B}} cannot be independent except
in trivial cases. Note that in contrast the case of independent A, and B, (in (1.1))
plays an important role in Vervaat’s (1979) paper.

Remark. The process M, R, V, N, S introduced earlier in this section can be
described directly in terms of (A}, B}) as follows. In the statements given below,
0=1,<1,<---<1=Tisanarbitrary partition of [0, T], the limitis to be understood
as limit in probability uniformly in ¢ and the limit is taken as the maximum width
sup;(t,., — ;) goes to zero.

(i) Y —log(Ar )=> M,

(SR PR

(11)

b

(Ay. —1)=R,.

i !

i) Y (A, '—D=>V.

[

(iv) >_ B::H—> N,.
(V) 2‘ (A::Ol) ]B::n_)s"
[ PR
These statements can be proved using the representation of (A3, BY) optained in
the previous theorem and results in Emery (1978). It may be noted that (iv) canrllpt
be used as definition of N, because we do not have a direct proof that ¥ By

converges.

Brownian motion, {X,} is the well known Ornstein-
y of the SDE (2.3) and the solution with
{X,} which is a solution to (2.3) or
lized Ornstein-Uhlenbeck process.

When R, = pt and {N,} is
Uhlenbeck process. In view of the similarit
Ornstein-Uhlenbeck process, a process
equivalently given by (2.6) can be called a genera
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3. Stationarity

In this section we examine as to when does X, converge in distribution (as f - o),
If it does, and the limit does not depend on X, then it follows that the limit
distribution is a stationary initial distribution for the Markov process {X,}.

Our first result is:

Theorem 3.1. Let {A;, B;} satisfy (1.6), (2.1), (2.2). Further suppose that

Ellog A7]<0 (3.1)
and

E[log" | Bj|] < co. (3.2)
Then for all X,, X, defined by (1.5) converges in distribution to a probability measure

w1 (not depending on X,). Further, i is a stationary initial distribution for the Markov
process {X,}.

Proof. Since X,,, =X, - An,,+Bh.;n=1and {A},,, Bi,,} is an i.i.d. sequence,
X, % u, where u does not depend on X,. This follows from results in Vervaat
(1979), and can be proved directly using strong law of large numbers and Kol-
mogorov’s three series theorem. Condition (3.1) implies A? 2 0 and hence it follows
that B), % u. Let 1, R", t,> 0 be arbitrary. We need to prove that X, %> u. Let n,
be integers such that n;<t,<n,+1, and u;=t,— n;. Then n, > as well. Now

B, - B! =B, Al (3.3)
where Bj and A} are independent. As noted earlier, A% 0 and hence
A £ A% 2, 0.0n the other hand | BY,| < Supg< =1 |B%| < o0 as paths of B% are RCLL.
Hence

B! - B! 5 0. (3.4)
But B} £ BY, and hence (3.4) gives B¢ % p.

This along with A] £> 0 yields
X, 4, .

That p is a stationary initial distribution follows by standard arguments. [

The previous result gives sufficient conditions on {A3;, B;} for existence of a
stationary solution to (1.5). It would be good to obtain conditions on {M,, S}
instead, in view of the representation (2.5).

The first condition (3.1) easily translates as

EM, > 0. (L)'
It seems reasonable to expect that in presence of (3.1),
E log™|S,| < o0 (3.5)

would imply (3.2). However we are unable to prove this. We will prove that (3.5)
and E[M,| <o together imply (3.2). This will be done in several steps.
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Proposition 3.2. Ler {Y,} be a local I[°- -martingale with Y,=0. Suppose that
Ellog'(Y),]<<oc. Then

E ’:log' (s\u[’3| YJ):' < 00, (3.6)

Here, {(Y'),} denotes the unique predictable increasing process with (Y)Y, =0 such that
(Y= (Y} is a local martingale.

Proof. Follows from Yor (1979) by noting that (Y), dominates |Y|? in the sense
ElY, "< E(Y),

for all stop times T and that if @(x)=1log" x, then

|
F(.\‘)z_\‘J‘ —dd(u)=1. |
.u

Proposition 3.3. Let {S,} be a process with stationary independent increments, with
RCLL paths. Let
Si=1Y 4s,- Liss, -1ps ST=-3% AS,- Liss,<-n

1w u=t
and
S, =S8 -S,+5".
(Here, AS,, =5, -S,. =S,~lim,.,,.,, S,.) Then we have:
(i) {S;},{S7}, {S} are processes with stationary independent increments and the

three processes are independent of each other.

(ii) EST<cc.

{ii1) ES = at and E(S —at)’= bt for some a, b.
(iv) S$,:=8,—atisa square integrable martingale with (), =bt.
) IfE log "|S,| <o, then E log"|Si| <0, E log"|S"| <.

(v

Proof. (i) is an easy consequence of the Levy-Khincin formula for~the characteristic
function of {S,}. (ii} follows from the observation that jumps of S, are bounded by
1, see Ramachandran (1969). (iii) and (iv) are easy consequences of (i) and (ii).
{v) follows from independence of S;, S7 and S, and the inequality

log'|x+ y|=1+log”|x|+1log"|y|. (I

Remark. Suppose M, is a process with stationary mdependent increments, with
E|M,|<co. Then decomposing M, into M;, M} and M, as above, one gets EM ;<
w, EM"< 0. It is easy to see from (iv) that E sups<,|M | <co. This and the fact

that M, M" are increasing processes yields

E sup|M,|< E sup|M,|+ E|M |+ E|M]| <.

st s=1

(3.7)
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Our main result follows.
Theorem 3.4. Let (A%, BS) be given by (2.3), (2.4) where {M,, S,} is a process with
stationary independent increments. Suppose
E|M)|<x© and EM,>0, (3.8)
E log*]S,| < co. (3.9)
Then conditions (3.1), (3.2) of Theorem 3.1 hold.

Proof. That (3.8) implies (3.1) is obvious. Also one has
E sup|M,| < (3.10)

s=1

(see Remark above). Since
1
Bi=e™™. J e™-dS, and log" xy=<log’ x+log*y,
0
(3.2) would follow if we show that

1
J- eM-ds,
0

Let us write f, =e™«- and S/, S”, .§,, ﬁ,, a, b be as in Proposition 3.3. Then the fact
that S}, S7 are increasing processes yields

E log” <0, (3.11)

r1
log* £, ds.,
0

o

< 1+sup|M,|+log™|S],
s=<1

1

log™ || f.ds.,

JO

< 1+sup|M,|+log"|SY|,
s=1
1

log™ || f. du
0

o

=1+ sup|M,|.

s=<1

Hence it suffices to show that

E log”

1
L fudS, | <oo. (3.12)

Siznce S, is an L*-martingale with (S), = bt, it follows that Y,:= §o . dS, is a local
L”-martingale with (Y), = b [; f2 du. Hence

Elog(Y) <1+log" b+E log" sup f2

u=]

<1+log" b+2F sup|M,| < co.

u=l]

Proposition 3.2 implies (3.12) completing the proof.
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Remark. Let v, y be the Lévy-measure of the processes M,, S, respectively. It is
proved in Ramachandran (1969) that

E|M|<co iff J |x| dv(x) <o0.

Ix[=1

Thus the condition on M can be easily stated in terms of the characteristic function
for M,. Similarly it is proved in the paper cited above that for a >0

E|S,|" <o iff J‘ [x]* dy(x) < 0.

Jx]=1

Thus, we get that [ [x|* dy(x) <co for some a >0 implies E log™|$,| < co.
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